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Abstract We investigate the effect of damped oscillations
on a nearly flat inflationary potential and the features they
produce in the power-spectrum and bi-spectrum. We com-
pare the model with the Planck data using Plik unbinned
and CamSpec clean likelihood and we are able to obtain
noticeable improvement in fit compared to the power-law
�CDM model. We are able to identify three plausible can-
didates each for the two likelihoods used. We find that the
best-fit to Plik and CamSpec likelihoods match closely to
each other. The improvement comes from various possible
outliers at the intermediate to small scales. We also com-
pute the bi-spectrum for the best-fits. At all limits, the ampli-
tude of bi-spectrum, fN L is oscillatory in nature and its peak
value is determined by the amplitude and frequency of the
oscillations in the potential, as expected. We find that the bi-
spectrum consistency relation strictly holds at all scales in
all the best-fit candidates.
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1 Introduction

Over the last three decades, tremendous advances in pre-
cision cosmology have aided our understanding of the early
universe. The Standard Model (SM) has emerged as the most
successful model for describing the evolution of the uni-
verse owing to the support of numerous precise observations.
While SM enjoys widespread acceptance, it does have a few
drawbacks, such as horizon problem, flatness problem etc.
Among the numerous candidate theories for the early uni-
verse, inflation [1–7] has proven to be the best contender
to account for these problems. Additionally, inflation has
been able to account for the dynamics of primordial fluc-
tuations that seeded the formation of large scale structures
today [8,9]. The imprints of these primordial fluctuations
can be best identified in the cosmic microwave background
radiation (CMB).

From COBE [10,11] to the PLANCK [12–14] mission, we
have made significant progress in our understanding of CMB
physics. With the help of CMB data, inflation has emerged as
the most promising candidate for describing the near homo-
geneous and isotropic nature of the Universe over the large
scale. Numerous inflationary models exist that appear to be
consistent with the CMB observations, in which a near flat
potential generates a nearly scale invariant spectrum of scalar
perturbations. While these models appear to be consistent
with the observational data, it has been noted that adding a
few features to these flat power spectra may result in a better
fit to the data [15–38]. These additional features are found
to fit a few consistent outliers that are being observed in the
data for decades [39–56]. The persistent existence of these
outliers could be owing to some unknown features of infla-
tionary dynamics, which could expand our understanding of
the early universe. As a result, it is critical to investigate
about these features in the power spectrum. We provide a
single field canonical inflationary potential in this study that
simulates these extra features using damped sinusoidal oscil-
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lations. A noteworthy aspect of this feature is that it could
generate both sharp and resonant featured oscillations, as
well as their combinations [57]. Primordial standard clock
[58] is one model that can generate a combination of sharp
and resonant spectral features, but it is a two field inflationary
model. It is shown in [59] that these features could account
for the additional smoothing in the CMB temperature spec-
trum, thus resolving the Alens anomaly. It increases H0 while
decreasing S8. Additionally, the model fits the One spec-
trum [60], which resolves many tensions and anomalies in
the Planck data. In this study, we examine alternative best fit
candidates for this feature, in addition to the one mentioned
in [59], by analysing the entire k-space. Using Planck CMB
data, we identify these features in the primordial power spec-
trum using this range of spectra. Later, we will demonstrate
that these features could account for some of the in outliers
CMB data that are not captured by the power-law form of the
primordial power-spectrum. We examine a few possible can-
didates, sharp featured and resonant featured, that improve
the fit to CMB data noticeably.

This paper is structured as follows. In Sect. 2, we intro-
duce the potential form and discuss the methodology of work
as well as the various datasets used for it. The results and dis-
cussion of various best-fit candidates are provided in Sect.
3. Finally, we discuss the conclusions and inferences drawn
from the work in Sect. 4. Appendices contain the analytical
calculations used in the work. We used natural units through-
out the paper, h̄ = c = Mpl = 1. In this paper, we use
the metric signature (−,+,+,+). For formalising the equa-
tions, we used three sets of coordinates for time, namely cos-
mic time (t), conformal time (η), and the number of e-folds
(N ). We work in an expanding homogeneous and isotropic
universe whose metric is given by the Friedmann Lemaitre
Robertson Walker (FLRW) metric having perturbations up to
linear order. An over-dot and an over-prime denote differen-
tiation in terms of t and η, respectively. Differentiation with
respect to N is given by a subscript N , i.e. fN = d f/dN .

2 Model and data

In this paper, we investigate the dynamics of a single canon-
ical scalar field in an inflationary potential. Our potential is
divided into two parts: a baseline with a slow roll regime
where we could begin the inflation, and a small feature in the
form of damped cosine oscillation. The nearly scale invari-
ant (slightly red titled) power-spectrum is obtained from the
baseline part of the potential. We add features in this baseline
potential to capture extra possible signals in CMB data. The
feature we propose could be added to any baseline potential
that could produce a near scale invariant power spectrum.
This was verified using a couple of different base potentials.
One can also directly add features to the power-spectrum and

estimate parameters, but in such cases, it may be difficult
to obtain an expression for potential back from the spectra.
Therefore, we work with features in the potential itself.

We consider the potential to be of the following form,

V (φ) = γ 2φ cosh (β1φ) + α cos (ωφφ)

[β2(φ − φ0)]2 + C
. (1)

Here β1 and β2 are fixed and C is an arbitrary constant added
to avoid the divergence at φ = φ0. It can be any value other
than 0. The power-spectrum tilt is controlled by β1. We fix
β1 by performing a parameter estimation with only baseline
potential parameters, i.e. by varying only two parameters γ

and β1. We allow β1 to vary between values that result in
an approximate tilt of 0.94–0.98. This analysis done using
Plik bin1. The best-fitting value for β1 results in a tilt of
∼ 0.96. β2 regulates the amount of damping applied to the
oscillations, ensuring that features remain localised. We can
see from Fig. 1 that using the above potential, we can produce
both sharp (ωφ → 0) and resonant features (β2 → 0)in the
power-spectrum.

We vary four parameters in the full potential function, one
in the baseline part and three in the feature part. The effect of
each parameter on the power-spectrum could be understood
from Fig. 2.

Potential, as described in Eq. 1, contains sinusoidal oscil-
lations which damps as we move both sides from φ0. Assum-
ing a slow roll dynamics during the initial phase of infla-
tion, given an initial value for the field(φi ), one can obtain
other initial conditions required to calculate the background
dynamics. Here we are working with number of e-folds (N ),
defined as a = aieN where a is the scale factor. Initially, the
potential term dominates the kinetic term therefore one can
approximate Hubble parameter as, 3H2 ≈ V (φ). Therefore,
(φN )i for a given φi evaluates to be,

Hi = √
V (φi )/3, (2a)

φN i = −Vφ(φi )

3Hi
. (2b)

Once we have the initial conditions we solve for the back-
ground equations and get the form of φ, φN , and H as a
function of e-folds(N ). We do all these calculations using
the FLRW metric. With aforementioned quantities, we can
get the slow roll parameter, ε(N ), and calculate the end
of inflation(ε(Nend) = 1). To find initial value of scale
parameter, ai , we impose that the mode k = 0.05 Mpc−1

crosses the horizon at N = Nend − 50 [61]. Once the back-
ground is evaluated completely, we add the perturbations to
the fields and solve for the curvature perturbation as discussed
in Appendix A.

The field continues to be in the slow roll phase till it feels
the effect of oscillations. Once the effect of oscillations take
over, the field accelerates into an intermediate fast-roll phase
which is responsible for the features in power-spectrum.
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Fig. 1 This figure shows two
types of features that can be
generated by our model in
different limits. Here, the red
curve is the sharp featured
oscillation whose peaks are
separated linearly in k and
purple curve corresponds to the
resonant features whose peaks
are separated uniformly in log k.
Note that the x-axis is in log
scale here

Fig. 2 Variation of the power spectrum in response to changes in potential parameters. Here, we varied one parameter by a specific step size while
holding the other three constant. In the upper right corner of each panel, the varying parameter is specified
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Inflation continues as the field rolls further down the potential
till ε becomes one. Assuming Bunch–Davies initial condition
[62], one solves for the curvature perturbation (R),

R′′
k + 2

(
z′

z

)
R′

k + k2Rk = 0, (3)

and get the power-spectrum from

Ps(k) = k3

2π2 |Rk |2. (4)

One can also use the Mukhanov–Sasaki equation (Eq. 13b)
to get the power-spectrum.

We calculate the primordial power-spectrum numerically
with the help of publicly available code BINGO [63]. BINGO
solves for R for each k to get Ps as a function of k. Techni-
cally, one needs to integrate curvature perturbation through-
out the inflationary epoch. But it can be safely approximated
to a region from Ni deep inside Hubble radius(k � aH )
and to an Ne well outside the Hubble radius(k � aH ). This
could be calculated using the following conditions:

k = CICa(Ni )H(Ni ), (5a)

k = CSHSa(Ne)H(Ne). (5b)

For each mode, we calculate the Ni and Ne using appro-
priate choice of CIC and CSHS values [64]. We fix CSHS but
we do vary CIC depending on the oscillations present at a
given scale, i.e. for modes near high frequency oscillations
in power-spectrum, we use a larger value for CIC . Typically,
it’s value is 200.

We incorporate BINGO into CAMB [65,66] and calcu-
late the angular power-spectrum using the Boltzmann equa-
tions. We run Markov Chain Monte Carlo (MCMC) using
CosmoMC [67,68] and identify regions in parameter space
which gives an improvement in fit. Starting from the afore-
mentioned regions, we then run BOBYQA [69] to obtain the
best-fit values for the parameters.

We performed our analysis using the Planck mission’s
most recent CMB temperature and polarisation anisotropy
data. Planck was able to map the CMB sky over a wide range
of multipoles (� = 2−2500) on both small (� ≥ 30) and large
(� = 2−29) scales. We use two sets of likelihood for high-� in
our analysis: Plik-bin1-TTTEEE [12,70] and CamSpec-v12-
5-HM-cln-TTTEEE [71]. We use commander-dx12-v3-2-
29 for low-� TT and simall-100x143-offlike5-EE-Aplanck-
B for low-� EE. Plik-bin1-TTTEEE represents the com-
pletely unbinned TTTEEE likelihood, and CamSpec rep-
resents the newly cleaned CamSpec. CamSpec-v12-5-HM-
cln-TTTEEE employs a sophisticated data analysis pipeline
to generate an improved CamSpec likelihood and also an
increased sky fraction for temperature and polarisation. In
our study, we vary the nuisance parameters in addition to the
background parameters, and we include the priors involved,
as indicated in the Planck 2018 and CamSpec likelihood

Table 1 The table contains the prior range we used for the inflationary
potential parameters

Parameters Prior

γ (×104) 0.14 to 0.20

α(×1011) −2.0 to 2.0

φ0 12.9 to 13.9

ωφ 0 to 529

Table 2 Short hands used for the combination of Planck likelihoods
used for the analysis. We have used same low � (lowT + lowE) likeli-
hoods for both the sets

CamSpec-v12-5-HM-cln-TTTEEE

Low-T (commander-dx12-v3-2-29) CamSpec clean(CS)

Low-E (simall-100x143-offlike5-

EE-Aplanck-B)

Plik-bin1-TTTEEE

Low-T (commander-dx12-v3-2-29) Plik-bin1(Plik)

Low-E (simall-100x143-offlike5-

EE-Aplanck-B)

papers [12,71]. The prior used for the potential parameters
is given in Table 1. We perform the analysis across multi-
ple parameter templates and narrow it down to three best-fit
candidates for each likelihood. The following section will
discuss these three candidates in greater detail.

3 Results

The following is the nomenclature used to identify the can-
didates: The likelihood against which it is tested followed by
the candidate number. For example, Plik-1 specifies that it’s
the first candidate analysed against Plik likelihood (Table 2).

3.1 Best-fit candidates

We explored the parameter space using MCMC algorithm
and were able to identify multiple regions that could improve
the fit to data (Fig. 3). We perform the analysis using Plik-
bin1. To identify these regions, we study various points that
lie within �χ2 = 1 region from the global minima of χ2

value of the MCMC run using BOBYQA. While perform-
ing the BOBYQA analysis we make use of both Plik-bin1
and CamSpec clean likelihoods. Using BOBYQA analysis,
we are able to identify three candidates that gave improve-
ment in fit for each likelihood. Those are Plik-1, Plik-2, Plik-
3 (Plik candidates) and CS-1, CS-2, CS-3 (CS candidates).
We also calculated the bayesian evidence using MCEvidence
[72] python package. The evidence only provided a 0.3-factor
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Fig. 3 The figure contains the triangle plot for the feature model parameters corresponding to Plik bin1. Here we can see multiple region in
parameter space which could lead improved fit to data using different combination of these parameters

weak support for the baseline model. But according to Jef-
frey’s scale, this is an inconclusive evidence.

The best-fit values for the Plik runs are presented in
Table 3. We investigated three candidates for the Plik-
runs based on the χ2 improvement we obtained from the
BOBYQA runs. We are comparing it to the χ2 obtained
from the power-law form of the primordial spectrum (referred
to as the power-law model from now on), which has a
χ2 = 24548.5 value. We can see from Table 3 that we get

10, 8.5, and 6 improvement for the candidates Plik-1, Plik-
2, and Plik-3, respectively. The residual plot from Plik-runs
with respect to the power-law model is shown in Fig. 4. The
power-law model is represented by the zero line, and the
coloured lines are candidates. We can observe slight power
suppression in the case of Plik-3. Here the improvement
comes mainly from the high-�, 4.3 while the low � gives
around 1.45 improvement. Plik-3 also gave 2. The TT resid-
ual plot is able to capture the outliers in the range � = 1000–
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Table 3 Best-fit parameters and likelihood obtained for the candidates
of the Plik-bin1 TTTEEE+lowT+lowE likelihood. First four are the
�CDM background parameters and the next four are the inflationary
potential parameters. Final row gives the χ2 values obtained by the
candidates. Improvement in fit obtained are 10, 8.5, and 6 respectively
for the candidates Plik-1, Plik-2, andPlik-3

Parameters Plik-1 Plik-2 Plik-3

�bh2 0.0223 0.0223 0.0222

�ch2 0.1200 0.1204 0.1207

100θMC 1.0409 1.0408 1.0409

τ 0.0560 0.0585 0.0510

γ (×104) 0.1724 0.1729 0.1716

α(×1011) −0.1271 0.6378 −1.223

φ0 12.97 12.99 13.20

ωφ 286.96 3.13 132.02

−2 log(L) 24538.47 24539.98 24542.57

1500, while the EE and TE residuals could capture compar-
atively lower multipoles ranging from 140 to 600. The exact
outlying multipole values captured by the Plik-candidates are
given by the Table 5.

The best-fit values for the CS runs are given in Table 4.
The χ2 value for power-law primordial power-spectrum is
10211.3, i.e. the improvement for candidates CS-1, CS-2,

Table 4 Best-fit parameters and likelihoods obtained for the candidates
of the CamSpec clean TTTEEE + lowT + lowE likelihood. First four are
the �CDM background parameters and the next four are the inflationary
potential parameters. Final row gives the χ2 values obtained by the
candidates. Improvement in fit obtained are 5, 3.8, and 3.7 respectively
for the candidates CS-1, CS-2 and CS-3

Parameters CS-1 CS-2 CS-3

�bh2 0.0222 0.0222 0.0221

�ch2 0.1205 0.1200 0.1208

100θMC 1.0406 1.0410 1.0409

τ 0.0545 0.0602 0.0524

γ (×104) 0.1723 0.1728 0.1717

α(×1011) −0.1021 0.6394 −1.224

φ0 12.97 12.99 13.21

ωφ 294.8 4.05 132.25

−2 log(L) 10,206.29 10,207.51 10,207.55

CS-3 are 5.0, 3.8 and 3.7 respectively. Figure 5 contains the
residual plots for CS runs with respective to the power-law
model. Similar to Plik-candidates, residual plot of CS candi-
dates for TT also captures the outliers in large � values and
EE captures for � ∼ 400. The complete list � values of the
outliers captured by the CS candidates are given in Table 5.

Fig. 4 Residual plots corresponding best-fit candidates to Plik-bin1 TTTEEE + lowT + lowE likelihood. Here residual is calculated from the
power-law �CDM model. Zero line corresponds to the power-law �CDM model and data points are from the 2018 Planck Plik data residual to
the power law best fit
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Fig. 5 Residual plots corresponding best-fit candidates to CamSpec
clean TTTEEE + lowT + lowE likelihood. Here residual is calculated
from the power-law �CDM model. Zero line corresponds to the power-

law �CDM model and data points are from the 2018 Planck CamSpec
data residual to the power law best fit

Table 5 Outliers addressed by the Plik-bin1 (first three) and CamSpec
clean (last three) candidates from the residual plots of TT, EE and TE
correlation in Figs. 4 and 5

RUNS TT EE TE

Plik-1 500, 520 60, 420, 440 500

Plik-2 500, 1080, 1340, 1580 60, 140, 440 160, 200, 240, 260, 500

Plik-3 1080, 1340 60 240

CS-1 520, 960, 1240, 1400 420 640

CS-2 1000, 1140, 1420, 1520 420 –

CS-3 – 340 –

3.2 Scalar power-spectrum

We present here the local and global best-fits to the data.
We saw an improvement in χ2 at three different points in
the parameter space. One for low frequency, one for inter-
mediate frequency, and one for high frequency oscillations.
CS-1 and Plik-1, which have a high frequency, are the global
best-fit to the data for both CamSpec clean and Plik-bin1
likelihoods. They are both located in very close proximity
in the parameter space. Plik-1, the best-fitting Plik candi-
date, has features at a smaller scale, k ∼ 4 × 10−2 Mpc−1,

whereas Plik-3 has the features at slightly larger scales that
end near k ∼ 10−2 Mpc−1. Plik-2 have features ranging from
k ∼ 10−3 Mpc−1 to k ∼ 5 × 10−2 Mpc−1. We saw a similar
pattern with the CamSpec clean candidates, which are very
close to the Plik candidates in the parameter space and in the
same order. The power-spectrum for both sets of candidates
has been plotted in Figs. 6 and 7. In Fig. 8, a comparison of
the global best-fit for two sets of candidates is given. Both are
found in the same location, and the amplitude and frequency
of the oscillations are comparable.

3.3 Scalar bi-spectrum

Non-Gaussianity in canonical inflationary models that are
completely governed by slow roll dynamics is negligible
[73,74]. Deviations from the slow roll nature, on the other
hand, produce scale dependent oscillations in the fN L(k)
[14,63,75–92]. As a result, features in our candidates pro-
duce a significant oscillatory bi-spectrum. In this section, we
compute the fN L for each of the six candidates. We are evalu-
ating bi-spectrum in three limits: equilateral (k1 = k2 = k3),
squeezed (k1 ≈ k2 � k3), and scalene (arbitrary triangular
configuration). In all three limits, we use BINGO to evalu-
ate the fN L . To calculate the fN L , we use the same method
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Fig. 6 Power-spectrum for the
best-fit candidates to the
Plik-bin1 likelihood Plik-1,
Plik-2 and Plik-3

Fig. 7 Power-spectrum for the
best-fit candidates to the
CamSpec clean likelihood CS-1,
CS-2 and CS-3

Fig. 8 Power-spectrum for the
global best-fit of both CamSpec
clean (CS-1) and Plik-bin1
(Plik-1) likelihood
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Fig. 9 Scalar bi-spectrum evaluated in the equilateral limit for the best-fit candidates of the both Plik-bin1 (left side) CamSpec clean (right side)
likelihood

Fig. 10 Verifying consistency relation (Eq. 6) for the best-fit candidates to the Plik-bin1 (left side) and CamSpec clean (right side) likelihood
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Fig. 11 2D heat map of fN L (k1/k3, k2/k3) for the best-fit candidates to the Plik-bin1 (left side) and CamSpec clean (right side) likelihood. fN L
values are given in the color bar. Here k3 is the mode which gave the maximum fN L in the equilateral limit for the corresponding candidate

described in Sect. 3.2 and substitute in Eq. 32. Figure 9 dis-
plays the fN L for all six candidates in the equilateral limits.
One can show that in the squeezed limit fN L reduces to

fN L = 5

12
(ns − 1) . (6)

This relation is called the consistency condition [73,93]. Fig-
ure 10 verifies the consistency relation for all six candidates.
The numerically calculated fN L matches well with the ana-
lytical result. In the scalene limit, we obtain the 2D heat map
of fN L(k1/k3, k2/k3) by fixing the value of k3 [63]. Figure
11 plots the 2D heat map of fN L . Top left corner of 2D map
can be identified as the squeezed limit, i.e. k2 = k3 � k1 and
the top right corner is the equilateral limit, i.e. k1 = k2 = k3.

One can locate the maximum non-Gaussianity of three
point correlation in equilateral limits (Fig. 9). Here, CS-2
and Plik-2 generates a fN L ∼ 6. This is because of the low
frequency oscillations present in the potential and thereby in
the scalar power-spectrum. CS-3 and Plik-3 generates high-
est fN L amongst these candidates which is around ∼ 33.
This is due to the presence high amplitude and relatively
larger frequency of oscillations present in the potential. Even
though Plik-1 and CS-1 have large frequency oscillations,
their amplitude is small compared to other four candidates
which results in a fN L ∼ 19, 15 respectively.

4 Conclusion

We have studied the effect of damped oscillations in a nearly
flat inflationary potential and compared the spectra with
Planck 2018 data. Our model is able to identify resonant
features and sharp feature separately at different scales. We
are able to see that at smaller scales data prefers resonant
features but at the intermediate scales sharp oscillations give
better fit. We have separately used two high � likelihoods,
namely Plik-bin1 and CamSpec clean, for the analysis. With
the addition of 3 parameters, we are able to get around 10 and
5 improvements for Plik-bin1 and CamSpec clean likelihood
respectively. The Bayesian analysis didn’t give any conclu-
sive evidence for the model, though it weakly supported the
baseline model by a factor of 0.3. We have studied three
candidates each for both Plik-bin1 and CamSpec clean like-
lihoods. They have provided 10, 8.5, 6 improvements for the
Plik-bin1 and 5, 3.8, 3.7 for the CamSpec clean. This indi-
cates that the extent of improvement is less in the CamSpec
clean compared to the Plik-bin1 for all candidates. While
the first candidate has features located at the smaller scales
(10−2 − 10−1 Mpc−1), the third one has oscillations at large
to intermediate scales (10−3 − 10−2 Mpc−1). The second
candidate has features at the intermediate to small scales.
Owing to the feature location for different candidates, differ-
ent outliers are captured in the � space. Scalar bi-spectrum,
fN L , is evaluated in the squeezed, equilateral limits and also
in the scalene configurations. All candidates provide oscil-
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lating fN L with the maximum amplitude reaching up to 33.
The first and third candidate have produced relatively higher
fN L amplitude, ∼ 17, 33, while the second one have gen-
erated a maximum fN L of ∼ 6 in the equilateral limit. In
squeezed limits, the consistency condition is satisfied at all
scales for all three candidates of both likelihoods. Along
with the constraints on fN L , we can further narrow down
the possible candidates for inflation in future. The feature
candidates have overlap with scales that future large scale
structure (LSS) probes [94–102] can explore. Therefore, a
joint analysis can help in understanding the significance of
these features better.
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Appendices

Appendix A: Theory of inflation

One could engineer an accelerated expansion of the universe
very shortly after big-bang with the help of a single canonical
scalar field called inflaton, φ(t), moving in a potential V (φ).
The action governing such a scalar field is given by

S[φ] =
∫

d4x
√−g

[
X − V (φ)

]
, (7)

where X = − 1
2∇μφ∇μφ.

Apart from a few simple potential forms, it is not easy to
solve the Einstein’s equations analytically. In such situations,
one can resort to numerical methodologies. For numerical
analysis, a better choice of coordinate will be the number of
e-folds denoted byN . It tells number of e-fold times universe

expanded in a given cosmic time, i.e. a = aieN . The relation
between t and N is given by

dN = Hdt, (8)

where H is the Hubble’s parameter in t . Evaluating the Ein-
stein’s equation corresponding to the FLRW universe (also
called Friedmann equations) and the equation of motion of
the field, we get

H2 = V (φ)

3 − φ2
N /2

, (9a)

HN
H

= −φ2
N
2

, (9b)

φNN + φN
(

3 + HN
H

)
+ Vφ

H2 = 0, (10)

where subscript φ denotes the differentiation with respect to
φ.

With the help of background equations and linear pertur-
bation theory (Appendix B), we get the governing equation
for the curvature perturbation modes as,

R′′
k + 2

(
z′

z

)
R′

k + k2Rk = 0, (11)

where z = aφ′/H. H is the Hubble parameter in η coor-
dinate. Substituting V = Rz [103–106] one can obtain the
Mukhanov–Sasaki equation.

V ′′
k +

[
k2 −

( z′′

z

)]
Vk = 0. (12)

Since we will be working in N coordinate, these equations
can be rewritten as,

RkNN +
(

1 + HN
H

+ 2
zN
z

)
RkN + k2

a2H2 Rk = 0,

(13a)

VkNN +
(

1 + HN
H

)
VkN +

[
k2

a2H2 − zNN
z

− zN
z

(
1 + HN

H

)]
Vk = 0. (13b)

Quantizing the above equation, one can calculate the power-
spectrum and is given by the expression,

Ps(k) = k3

2π2 |Rk |2. (14)

Finally one can calculate the angular power-spectrum from
the primordial power-spectrum using the following relation
[107],

CXY
l = 2

π

∫
k2dkPs(k)T Xl(k)T Yl(k), (15)

where T is the transfer function which is calculated using
the Boltzmann equations.
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The fluctuations in R might not be always Gaussian in
nature, there might be some considerable amount of non-
Gaussianities present in it. With the help of 3-point correla-
tion of curvature perturbation, one can obtain the measure of
non-Gaussianity, fN L , to be (Appendix C)

fN L(k1,k2,k3) = −10

3
(2π)−4(k1k2k3)

3G(k1,k2,k3)

× [k3
1PS(k2)PS(k3) + two permutations]−1. (16)

Using Maldacena formalism [73], G(k1, k2, k3) can be
expressed as

G(k1,k2,k3) =
6∑

C=1

[Rk1 (Ne)Rk2 (Ne)Rk3 (Ne)]GC (k1,k2,k3)

+[R∗
k1

(Ne)R∗
k2

(Ne)R∗
k3

(Ne)]G∗
C (k1,k2,k3)]

+G7(k1,k2,k3). (17)

Appendix B: Scalar power-spectrum

Like in any other perturbation theory, we decompose our vari-
able of interest into background quantity and a variation then
equate them separately. Therefore, the Einstein’s equation at
the first order of variation can be written as

δGμν = 8πGδTμν. (18)

This is, in fact, a set of linear differential equation that gov-
erns the dynamics of perturbation in metric (δgμν). In the
FLRW background, based on the response to a local rotation
of spatial coordinates on constant time hyper-surface, one can
decompose the perturbations into scalar, vector, and tensor
transformations. Out of these, only scalar power-spectrum
has re-entered the Hubble horizon during the recombination
epoch and is responsible for the anisotropies present in the
universe. Since our goal is to account for anisotropies in the
CMB data, we will be working with scalar perturbations only.
On taking into account the scalar perturbations to background
metric, the FLRW line element can be written as [103,105]

ds2 = − (1 + 2 A) dt2 + 2 a(t) (∂i D)dtdxi

+ a2(t)
[
(1 − 2 B)δi j + 2

(
∂i ∂ j E

)]
dxi dx j . (19)

There are two approaches to study the evolution of per-
turbations. One is to construct gauge invariant quantities and
study using them while the other is to choose a specific gauge
and work throughout in it. We will be working in a specific
gauge, longitudinal gauge. Because of the coordinate free-
dom we have, we set D = E = 0. Therefore metric in the
new gauge can be written as,

ds2 = − (1 + 2 A) dt2 + a2(t)
[
(1 − 2 B)δi j

]
dxi dx j .

(20)

Using the above metric, the independent components of the
Einstein’s tensor can be found to be [108]

δG0
0 = 6H(Ḃ + H A) − 2

a2 ∇2B, (21a)

δG0
i = −2∇i (Ḃ + H A), (21b)

δGi
j = 2

[
B̈ + H(3Ḃ + Ȧ) + (2Ḣ + 3H2)A

+ 1

a2 ∇2(A − B)
]
δij + 1

a2 ∇ i∇ j (B − A). (21c)

If we consider δφ to be the perturbation in scalar field, then
the perturbed energy momentum tensor, up to linear order,
can be written as

δT 0
0 = −(φ̇ ˙δφ − φ̇2A + Vφδφ), (22a)

δT 0
i = −∇i (φ̇δφ), (22b)

δT i
j = (φ̇ ˙δφ − φ̇2A − Vφδφ)δij . (22c)

In the absence of anisotropic stresses δT i
j = 0 for i �= j ,

i.e. from Eq. 18 we get A = B. Therefore, we can rewrite
the Einstein equation from Eqs. 21 and 22 in the conformal
coordinates as follows [105],

A′′ + 6HA′ − ∇2A + (2H′ + 4H2)A = 0, (23)

where H is the Hubble parameter in conformal coordinates.
Since we are analysing a canonical model, speed of pertur-
bation is equal to 1. Also we assume that perturbations are
purely adiabatic in nature [109], i.e. δT 0

0 = δT i
j . Now defin-

ing curvature perturbation as [105]

R = A + 2ρ

3H
A′ + HA

ρ + P
, (24)

and with the help of background equations, Eq. 9, we get R′
k

in the Fourier space to be

R′
k = − H

H2 − H′ k
2Ak . (25)

Differentiating the above equation with respect to the con-
formal time and with the help Eqs. 23 and 24, we get the
curvature perturbation equation given by

R′′
k + 2

(
z′

z

)
R′

k + k2Rk = 0, (26)

where z = aφ′/H. Introducing a new variable V = Rz
[103–106] we have,

V ′′
k +

[
k2 −

( z′′

z

)]
Vk = 0. (27)

This equation is called the Mukhanov–Sasaki equation.
Quantizing the above equation, one can calculate the power-
spectrum and is given by the expression,

Ps(k) = k3

2π2 |Rk |2. (28)
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Appendix C: Scalar bi-spectrum

To obtain the non-Gaussianities present in R one need to
calculate the scalar bi-spectrum, BS(k1,k2,k3) [73], at end
of inflation(Ne) which is defined in terms of three point cor-
relation function of R as [75,110–112]

〈R̂k1R̂k2R̂k3〉 = (2π)3BS(k1,k2,k3)δ
(3)(k1 + k2 + k3).

(29)

One can adopt the following ansatz to study non-Gaussinities
[113],

R(N ,k) = RG(N ,k) − 3 fN L

5

[
R2

G(N ,k) − 〈R2
G(N ,k)〉

]
,

(30)

where RG is the the Gaussian part and fN L is the non-
Gaussianity parameter. With the help of Wick’s theorem, the
3-point correlation of the curvature perturbation can be eval-
uated as

〈R̂k1R̂k2R̂k3 〉 = −3 fN L

10
(2π)4(2π)−3/2 1

k3
1k

3
2k

3
3

δ(3)(k1 + k2 + k3)

×[k3
1PS(k2)PS(k3) + two permutations]. (31)

Using the ansatz BS(k1,k2,k3) = (2π)−9/2G(k1,k2,k3),
Eqs. 29 and 31, fN L can be determined to be the following

fN L(k1,k2,k3) = −10

3
(2π)−4(k1k2k3)

3G(k1,k2,k3)

× [k3
1PS(k2)PS(k3) + two permutations]−1. (32)

Using Maldacena formalism [73], G(k1, k2, k3) can be
expressed as

G(k1,k2,k3) =
6∑

C=1

[
[Rk1Rk2Rk3 ]GC (k1,k2,k3)

+ [R∗
k1
R∗

k2
R∗

k3
]G∗

C (k1,k2,k3)
]

+ G7(k1,k2,k3),

where each individual term is given by the following:

G1(k1, k2, k3) = 2i
∫ Ne

Ni

dNa3ε2
1 HR∗

k1
(R∗

k2
)N (R∗

k3
)N

+ two permutations),

G2(k1, k2, k3) = −2i(k1.k2 + two permutations)

×
∫ Ne

Ni

dN aε2
1

H
R∗

k1
R∗

k2
R∗

k3
,

G3(k1, k2, k3) = −2i
∫ Ne

Ni

dNa3Hε2
1

[
k1.k2

k2
2

× R∗
k1

(R∗
k2

)N (R∗
k3

)N + five permutations

]
,

G4(k1, k2, k3) = i
∫ Ne

Ni

dNa3ε1(ε2)N H
[
R∗

k1
R∗

k2
(R∗

k3
)N

+ two permutations
]
,

G5(k1, k2, k3) = i

2

∫ Ne

Ni

dNa3ε3
1 H

[(
k1.k2

k2
2

)

× R∗
k1

(R∗
k2

)N (R∗
k3

)N + five permutations

]

G6(k1, k2, k3) = i

2

∫ Ne

Ni

dNa3ε3
1 H

[(
k2

1(k2.k3)

k2
2k

2
3

)

× R∗
k1

(R∗
k2

)N (R∗
k3

)N + two permutations

]
,

G7(k1, k2, k3) = ε2(Ne)

2

[
]|Rk2 (Ne)|2|Rk3(Ne)|2

+ two permutations
]
.

where ε2 is the second slow roll parameter that is defined
with respect to the first as follows: ε2 = d lnε1/dN [114].
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