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Abstract We have recently shown that in Einstein–Cartan–
Brans–Dicke (ECBD) gravity, torsion effects are not present
in today’s universe because they are suppressed in a four-
dimensional system, as in the bulk of five-dimensional
braneworld endowed with torsion. In this addendum, we
naturally introduce new features on the ECBD Maxwell
Lagrangian dynamics deriving the chiral dynamo equation,
and studying its physical properties. Magnetogenesis results
are derived in this ECBDM universe. In particular we show, in
the present universe, torsional magnetic fields of the second-
order in the ohmic resistivity behave as BECBD = 10−13

Gauss, which is exactly the estimate made by Miniati et al.
(Phys Rev Lett, 2018) for the axion QCD magnetic field in
the present universe. We found this at 1pc coherent length,
whereas they found it at 20pc. To obtain this result, we con-
sider a strong magnetic field of the order of the Biermann bat-
tery 1030G. This seems to show that our model of ECBDM
gravity can be used with success in inflationary magnetoge-
nesis with torsion. Inflation or deflation are shown to depend
upon torsion chirality. Torsion is shown to depend upon the
BD parameter ω and decays in time as in the reference to
which this addendum refers (Garcia de Andrade in Eur Phys
J C, 2002).
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1 The extended model

Recently, we show, the author showed that Einstein–Cartan–
Brans–Dicke (ECBD) gravity can suppress the dynami-

a e-mail: luizandra795@gmail.com (corresponding author)

cal torsion in inflationary phases [1]; in the same way,
Paul et al. [2] have shown that this result is valid in the case
of dynamical torsion in the bulk of a five-dimensional (5D)
spacetime. As we have done in most of my papers [6], in
the present paper, we investigate the dynamics of torsion in
the case of chiral dynamos in ECBD. To this end we might
consider the same Lagrangian

LECBDM =
∫

d4x
√−g

(
−φR + ω

∂μφ∂μφ

φ
− φ3F2

4
+ JμAμ

)

(1)

where μ = 0, 1, 2, 3 and F2 = FμνFμν is the electro-
magnetic field tensor squared, and ECBDM is the Einstein–
Cartan–Brans–Dicke–Maxwell, where we add the electro-
magnetic Lagrangian without the axial anomaly term. Note
that, torsion is not coupled with the EM fields. In this section
we couple scalar fields to torsion via non-minimal coupling
[10]. R in this Lagrangian is the Ricci–Cartan scalar. The
new EM terms introduced here now allow us to introduce the
chiral dynamo problem. The chiral total current is

J = σ [E + v×B] + μ5B (2)

The chiral current is superposed on the electric current, where
σ = η−1, where σ is the electrical conductivity and η is the
electrical resistivity. Now,

φ̈ + 3H φ̇ = 4π

ω

(
ρ − 3p − 8πσ 2

φ

)
(3)

where φ is the inflaton field and H = ȧ
a is the Hubble expan-

sion, while a is the cosmic scale factor. The Friedmann–
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Robertson–Walker (FRW) metric is given by

ds2 = dt2 − a2(t)
[
dx2 + dy2 + dz2

]
(4)

Units are used where, the gravitational constant G = 1, and
the Ricci–Cartan scalar R is given by

R = [Ṡ0 − 6S0
2 + 12H2] (5)

Now let us obtain the first field equations from the Euler-
Lagrange (EL)

d

dt

∂
√
gLECBDM

∂φ̇
− ∂

√
gLECBDM

∂φ
= 0 (6)

Here, the interaction term between the scalar inflatons and
EM invariant F2 is of the Ratra type [11]. Thus, by computing
the partial derivatives of the Lagrangian (1) and substituting
them into the EL equation, one obtains

R = 3φ2

4
F2 + 2ω2β2 + 3ω

(
3H

φ̇

φ
+ φ̈

φ

)
(7)

This is the well-known Rainich already unified field equation
[13], as can be seen by taking the inflaton as constant. Let
us now obtain the remaining equations in the form of EL
equations as

d

dt

∂
√
gLECBDM

∂ Ṡ0
− ∂

√
gLECBDM

∂S0
= 0 (8)

where a is the cosmic scale and H = ȧ
a is the Hubble func-

tion. Then, this equation yields

φ̇ + 3Hφ = −2S0 (9)

where S0 is the zero component of the axial torsion vector.
This equation tells us that if torsion is constant, its solu-
tion yields a decaying inflaton field in cosmic time t , which
depends upon torsion. The stronger the torsion, the faster the
decay of the inflaton field. Now we consider the case of the
EL equation for the cosmic scale a. This yields

LECBDM + 8H2(1 − φ̇) − 8φ

[
H2 + ȧ

a

]
= 0 (10)

But it is easy to show that

Ḣ + H2 = ä

a
(11)

Substitution of expression (11) into (10) yields

φ−1LECBDM + 8H2
(

1 − φ

φ

)
− [2H2 + Ḣ ] = 0 (12)

Making use of expression (9) and only considering Hubble
parameter H up to O(H2), we obtain

φ−1LECBDM + 8H2(1 + 2S0) − [2H2 + Ḣ ] = 0 (13)

Taking the ECBD Lagrangian in the form

φ−1LECBDM ≈ 12H2 − ω

(
φ̇

φ

)2

(14)

Note that from this equation that if we constrain ECBDM
cosmology to the case where expansion rebounds, universe
expansion stops, (H = 0) and torsion is constant, this assump-
tion can be used as a boundary condition to determine the BD
parameter ω. The last expression reduces to

ω

(
φ̇

φ

)2

+ S2
0 = 0 (15)

Assuming this specific boundary condition where inflation
turns into deflation, one obtains from the last expression that

S0 = √
ωt−1 (16)

from previous equations. Then, torsion is non-constant, and
substitution of the last expression squared into (14) yields
the result

(
φ̇

φ

)
= S0 = √

ωt−1 (17)

This expression shall be very useful to solve chiral dynamo
equation in the next section. Note that expression (16) above
is quite important, due to the fact that torsion is determined
in terms of the BD parameter ω. This agrees with the status
quo that general relativity is a torsionless equation, since GR
is characterized by (ω = 0).

2 Helical chiral dynamos in
Einstein–Cartan–Brans–Dicke–Maxwell gravity

In this section we shall finally derive the chiral dynamo equa-
tion in the case of the ECBDM model of the previous section.
We recall that though we do not start from the coupling of
torsion to EM fields; the magnetic field may be computed
in terms of torsion, as we shall see in this section. Here in
differential forms notation F = d A where A = (Aidxi ) is
the magnetic potential four-dimensional one form, where no
torsion is present. Variation of the four-dimensional potential
in the above Lagrangian is

∂i (a
3φ3Fi j ) = a3φ3 J5+c

j (18)
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where electric current Jc is given by

J(5+c) = μ5B + σ(E + v×B) (19)

First current is the chiral, and the second is the normal electric
current. Substitution of this current into the expression (19)
yields

(λ2 − λμ5)

[
3

(
φ̇

φ
+ H

)
− σ

]
∇×E = σ∇×[v×B] (20)

which from from the Bianchi identity

∂[i Fjk] = 0 (21)

we obtain the Faraday effect

∇×E = −∂tB (22)

After some algebra we obtain the chiral dynamo equation

∂tB = −[η(λ2 − λμ5)[1 + 3η(H + ωt−1) − iv.k]B (23)

where we have used Eq. (17) of the previous section. Since
in the early universe the conductivity is very high and the
ohmic resistivity is quite low, we may keep only terms up
to first order in resistivity and drop terms like O(η2) and
compute second-order contributions of the ohmic resistivity
or diffusivity by the end of this section, where we compare
both results. Under this assumption chiral dynamo equation
reduces to

∂tB = −η(λ2 − λμ5)B (24)

We now assume that chirality dominates over the relation
between the magnetic helicity parameter and the chiral chem-
ical potential, such as μ5 ≥ λ. This allows us to express the
last chiral dynamo equation in the form

∂tB = ηλμ5B (25)

and then now it is much easier to find the solution of this
simple dynamo equation. This solution can be approximated
by

B ≈ Bseed(ηλμ5t) (26)

By making use of the λ = L−1
B , where LB is the coher-

ent length of the magnetic field and taking LB = 1pc as
in the Googol et al. primordial magnetogenesis torsionless
paper [15], since t = 1018s and the Bseed

ECBDM = 1013G
at today’s axion field, we would need a magnetic field in the
present universe of the order of BECBDM = 10−34G. We now

use the expression for the dynamo solution of the order of
O(η2), which yields a solution as

B ≈ Bseed(η
2λμ5t) (27)

This immediately yields BECBDMchiral = 10−13ωG as a
helical magnetic field in the present universe. The ω factor
which is sometimes used in BD gravity as ω = 1

6 will not
appreciably change our results here; since we would obtain
a 10−14G for the axion magnetic field. We have used the
following data in this computation: a seed field from the
Biermann battery mechanism as BBierm = 1030G, a chi-
ral chemical potential as μ5 = 10, as a value used by Shober
et al. [18] to investigate chiral dynamos in torsionless space-
time. By substituting these data into expression (27), one
obtains the estimate Binflaton

ECBDM = 10−13 Gauss, which
is exactly the result obtained by Miniati et al. [23] from 20pc
coherent length. Though we apparently do not see the pres-
ence of torsion in this chiral dynamo equation, it is actually
present in the relation between H and S0 above.

3 Conclusions

In this addendum we have investigated the magnetogene-
sis in the case of the ECBDM model for cosmology. One
obtains in the present universe a magnetic field of 10−13

Gauss from a second order in the ohmic diffusivity in chiral
dynamo equation. With GUT seed fields of the order of 1041G
obtained by Berera in the early universe, one would be able
to obtain, instead an axionic magnetic field in the present
universe of 10−13. Using our solution, a magnetic field of
BECBD(η2) = 10−3 Gauss, which is a field found at the core
of some galaxies is found. We note that the ECBDM uni-
verse seems to be a promising model to improved results for
magnetic fields from torsion, which are able to seed galactic
dynamos at a reasonable coherence length. It is also important
to note that, here we have not address back reaction into the
metric, which would require a metric of non-Friedmannian
nature, because we are not using the axial anomaly term E .B,
and most of the magnetic fields obtained are very weak to
back-react on the isotropic homogeneous universe consid-
ered. Of course, solutions of several Lagrangians can be used
in the near future to test the model dependence of the electro-
dynamics which we were using to further investigate magne-
togenesis in Riemann–Cartan spacetime [24]. We were told
very recently that Bamba et al. [25] have investigated helical
magnetogenesis with a reheating phase and high-order cur-
vature baryogenesis without torsion. It would be interesting
if we tried to add torsion couplings even non-minimally with
magnetogenesis along their lines. This work may appear in
the near future. More on GR magnetogenesis may be found
in the last reference [26]. Actually, Bamba et al. [28] have
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investigated the non-helical magnetic fields in the reheating
phase in higher-order curvature coupling. This is an inter-
esting subject to work and to review in order to perform
extensions to modified gravity magnetogenesis.
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