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Abstract We use the well-known Bogomolny’s equations,
in general coordinate system, for BPS monopoles and dyons
in the SU (2) Yang–Mills–Higgs model to obtain an explicit
form of BPS Lagrangian density under the BPS Lagrangian
method. We then generalize this BPS Lagrangian density
and use it to derive several possible generalized Bogomolny’s
equations, with(out) additional constraint equations, for BPS
monopoles and dyons in the generalized SU (2) Yang–
Mills–Higgs model. We also compute the stress–energy–
momentum tensor of the generalized model, and argue that
the BPS monopole and dyon solutions are stable if all com-
ponents of the stress-tensor density are zero in the BPS limit.
This stability requirement implies the scalar fields-dependent
couplings to be related to each other by an equation, which
is different from the one obtained in Atmaja and Prasetyo
(Adv High Energy Phys 2018:7376534, arXiv: 1803.06122,
2018), and then picks particular generalized Bogomolny’s
equations, with no additional constraint equation, out of
those possible equations. We show that the computations in
[1] are actually incomplete. Under the Julia–Zee ansatz, the
generalized Bogomolny’s equations imply all scalar fields-
dependent couplings must be constants, whose solutions
are the BPS dyons of the SU (2) Yang–Mills–Higgs model
(Prasad and Sommerfield in Phys Rev Lett 35:760, 1975), or
in another words there are no generalized BPS dyon solutions
under the Julia–Zee ansatz. We propose two possible ways
for obtaining generalized BPS dyons, where at least one of
the scalar fields-dependent couplings is not constant, that are
by using different ansatze, such as axially symmetric ansatz
for higher topological charge dyons; and/or by considering
the most general BPS Lagrangian density.
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1 Introduction

The natural extension of monopoles are dyons which are
essentially monopoles with non-zero electrical charges. They
were first proposed as an alternative to quarks by Julian
Schwinger [3], whose quantum mechanical properties were
studied by Zwanziger [4,5]. Like monopoles, it is also natural
for dyons to exist in the non-Abelian gauge theories. The first
example of monopoles existence was shown in the SU (2)

Yang–Mills–Higgs model, also known as Georgi–Glashow
model [6], by Polyakov and ’t Hooft [7,8]. It was later shown
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that the dyons could also exist in the same model by Julia and
Zee [9].

The explicit solutions of ’tHooft–Polyakov monopoles
and Julia–Zee dyons were presented by Prasad and Sommer-
field by taking a special limit to the model [2]. These solu-
tions turn out to be solutions of first-order differential equa-
tions, known as Bogomolny’s equations, that were derived
by Bogomolny [10].1 The solutions saturate the non-trivial
static energy bound which turns out to be proportional with
the topological charge. Obtaining the Bogomolny’s equations
of a model is important in particular to study the topological
stability of its solitons solutions. There have been some meth-
ods developed in these directions which are the first-order
formalism [11,12], FOEL (first-order-Euler–Lagrange) for-
malism by using the concept of strong necessary condi-
tions [13,14], the On-Shell method [15,16], and the BPS
Lagrangian method [17,18].

The new studies on monopoles and dyons have been car-
ried out recently that give arise to new features and dynam-
ics. Some of those studies were based on modifications to
the SU (2) Yang–Mills–Higgs model [6]. One of the stud-
ies were done by inserting extra degrees of freedom along
with additional global symmetries [19]. The other one is
by adding scalar fields-dependent couplings to each of its
kinetic terms, that we shall call as generalized SU (2) Yang–
Mills–Higgs model proposed in [20], in which the monopoles
could be endowed with internal structures [21]. In condensed
matter, this effective model could be important for the mag-
netic materials known as spin ice that has a capability to
support exotic magnetic structures such as monopoles [22–
24]. There is also a possibility of electric dipole existing
in these monopoles [25]. This motivates us to study further
about dyons in this effective model which may exist as exotic
structures in spin ice. More recently, there is also a study by
combining these two modifications that leads to monopoles
endowed with some internal structures [26].

In this article we would like to study about BPS dyons
in the generalized SU (2) Yang–Mills model. In the gen-
eralized SU (2) Yang–Mills–Higgs model the dynamics of
overall system may differ from its corresponding canonical
model, which are explicitly shown in the generalized Bogo-
molny’s equations for BPS monopoles and for dyons. The
first-order formalism has been used to derive the general-
ized Bogomolny’s equations for BPS monopoles in which
the solutions are called generalized BPS monopoles [20].
These Bogomolny’s equations exist only if the scalar fields-
dependent couplings are related to each other by an equa-
tion. On the other hand, the BPS Lagrangian method has
been used to rederive the Bogomolny’s equations for BPS

1 These solutions to Bogomolny’s equations are generally called BPS
solutions for monopoles and dyons, or briefly called BPS monopoles
and BPS dyons.

monopoles and it also managed to obtain the Bogomolny’s
equations for BPS dyons, which exist only if the scalar fields-
dependent couplings are related to each other by a more gen-
eral equation [1]. However, all those derivations rely on a
particular hedgehog ansatz namely ’t Hooft–Polyakov and
Julia–Zee ansatze for monopoles and dyons respectively. It
is then necessary to find the generalized Bogomolny’s equa-
tions for BPS monopoles and dyons in general coordinate
system that are independent of any ansatz in order to study
other possible soliton solutions and configurations. We also
would like to verify if the relations between scalar fields-
dependent couplings for BPS monopoles and dyons, derived
in [1] for the Julia–Zee ansatz, are still hold in the general
coordinate system for any ansatz. Nevertheless the existence
of these Bogomolny’s equations in general coordinate sys-
tem are inevitable for extending the corresponding model to
its supersymmetric version.

For this matter, we will use the BPS Lagrangian method
and generalize its procedures in order to work in general
coordinate system. At first, we will employ it to the case
of the SU (2) Yang–Mills–Higgs model and derive its cor-
responding BPS Lagrangian density using the fact that we
already had the well-known Bogomolny’s equations, in the
general coordinate system, for BPS monopoles and dyons at
our disposal. We generalize the BPS Lagrangian density, by
multiplying each term in the BPS Lagrangian density with
arbitrary function of the scalar-fields, and then use this gen-
eralized BPS Lagrangian density to derive the generalized
Bogomolny’s equations for BPS monopoles and dyons in
the generalised SU (2) Yang–Mills–Higgs model. We write
down all possible generalized Bogomolny’s equations, that
correspond to the generalized BPS Lagrangian density, for
BPS monopoles and dyons in the general coordinate system
and study their stabilities from the stress–energy–momentum
density tensor. As an example we will apply the Julia–Zee
ansatz into the generalized Bogomolny’s equations, along
with the constraint equations, and compare the results with
the ones in [1].

2 The generalized SU(2) Yang–Mills–Higgs model

In this article we will consider the generalized SU (2) Yang–
Mills–Higgs model with the following Langrangian density
[1,20]:2

L = −w(|�|)
2

Tr
(
FμνF

μν
) + G(|�|)Tr

(
Dμ�Dμ�

)

−V (|�|), (2.1)

where w,G > 0 and V ≥ 0 are functions of scalar fields
and are also SU (2) invariant, with |�| = 2Tr (�)2, Fμν =

2 Here we follow the notations in [1].
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∂μAν − ∂ν Aμ − ie
[
Aμ, Aν

]
, Dμ ≡ ∂μ − ie

[
Aμ,

]
, and

μ, ν = 0, 1, 2, 3 are spacetime indices with metric signature
(+ − −−). In terms of components, the gauge and scalar
fields are

Aμ = 1

2
τ a Aa

μ, � = 1

2
τ a�a, (2.2)

with a = 1, 2, 3 and τ a are the Pauli matrices. The full
Euler–Lagrange equations are

Dμ

(
GDμ�

) = 2
∂G

∂|�|Tr
(
Dμ�Dμ�

)
�

− ∂w

∂|�|Tr
(
FμνF

μν
)
� − 2

∂V

∂|�|�, (2.3a)

Dν

(
w Fμν

) = −ieG[�, Dμ�]. (2.3b)

In the literature, the solutions for monopoles and dyons
were mostly found by taking the following Julia–Zee ansatz

�a = f (r)
xa

r
, (2.4a)

Aa
0 = j (r)

e

xa

r
, (2.4b)

Aa
i = 1 − a(r)

e
εai j

x j

r2 , (2.4c)

where xa ≡ (x, y, z), as well as xi, j ≡ (x, y, z), denotes
the Cartesian coordinates. Here we shall call the function
f (r), j (r), and a(r) as effective fields of the scalar Higgs,
the scalar potential, and the vector potential fields respec-
tively. Notes that the Levi-Civita symbol εai j in (2.4) mixes
the spatial indices and the group index. The ansatz (2.4)
is actually defined for the Julia–Zee dyons while for the ’t
Hooft–Polyakov monopoles is defined by taking j = 0, or
known as the ’t Hooft–Polyakov ansatz. For the later pur-
poses let us define Ei = 1

2τ a Ea
i ≡ F0i and Bi = 1

2τ a Ba
i ≡

1
2εi jk Fjk which represent electric fields and magnetic fields
respectively.

3 BPS Lagrangian method in general coordinate system

The standard way to obtain Bogomolny’s equations of a
model is by considering its energy functional. We then rewrite
it by completing the square in such a way that it contains
“boundary” term. Using this Bogomolny’s trick, we will
able to obtain the Bogomolny’s equations by minimizing
the energy functional of this form [10]. However the Bogo-
molny’s trick may not be applicable to all models since there
is no rigorous way to do it. Nevertheless even if we obtain the
Bogomolny’s equations, by using the Bogomolny’s trick, we
still need to verify if these Bogomolny’s equations satisfy the
full equations of motion trivially, e.g. in the case of SU (2)

Yang–Mills–Higgs model the Bogomolny’s equations indeed
satisfy the Gauss’s law constraint equation trivially [28,29].

A more rigourous way to obtain the Bogomolny’s equa-
tions of a model is by using BPS Lagrangian method [17,18].
Rather than considering the energy functional, the BPS
Lagrangian method works directly to the action of a model.
This method uses the fact that the Lagrangian density of
most models contains up to quadratic in first-derivative of
the fields. As an example Lagrangian density of a model with
N -scalar fields, φi where i = 1, . . . , N , can be rewritten into
the following form

L =
N∑
i=1

gi (φ j )
(
∂μφi − f iμ

(
φ j , ∂νφ

j
))2 + LBPS , (3.1)

where in general gi (φ j ) is a function of fields φ j ’s, and f iμ
is a function of fields φ j ’s and their first-derivative ∂νφ

j ’s,
with j = 1, . . . , N , but not of ∂μφi . Here we shall call LBPS

as BPS Lagrangian density which in general is a function of
fields φ j ’s and their first-derivative ∂νφ

j ’s. The Bogomolny’s
equations are obtained from (3.1) in the limit where L −
LBPS = 0, or also known as the BPS limit condition, such
that

∂μφi = f iμ
(
φ j , ∂νφ

j
)

. (3.2)

The BPS Lagrangian density plays an important role in the
BPS Lagrangian method. Its Euler–Lagrange equations are
called constraint equations,

∂μ

(
δLBPS

δ(∂μφi )

)
= δLBPS

δφi
, (3.3)

which must be considered, in addition to the Bogomolny’s
equations, in order to find the solitonic solutions. Depend-
ing on the choice of terms in the BPS Lagrangian density,
its Euler–Lagrange equations could be all trivial. In this case
the BPS Lagrangian density contains only “boundary” terms
such that there are no additional constraint equations. Sev-
eral possible “boundary” terms, that can be included in the
BPS Lagrangian density, have been studied in [14]. For most
of the known cases, their BPS Lagrangian densities were
found to contain only “boundary” terms, under some par-
ticular ansatze [1,17]. There has been a study on the BPS
Lagrangian density containing “non-boundary” terms, under
a particular ansatz, which results in solitonic solutions whose
stress tensor are non-zero [18]. However, the existance “non-
boundary” terms does not always imply additional constraint
equations. In the BPS limit, these constraint equations could
be trivially satisfied and thus can be neglected in finding the
solitonic solutions. We will see that this is the case for BPS
Lagrangian densities considered in this article.

Let us first consider the SU (2) Yang–Mills–Higgs model
by taking G = w = 1 into the Lagrangian density (2.1),
which can be written in terms of Ei and Bi as [6]
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L = Tr (Ei )
2 − Tr (Bi )

2 + Tr (D0�)2 − Tr (Di�)2 − V,

(3.4)

where i = 1, 2, 3 is the spatial indices. The next step in the
BPS Lagrangian method is to write the BPS Lagrangian den-
sity. The BPS Lagrangian density initially consisted of terms
that are linear in the first-derivative of fields with additional
condition that they are “boundary” terms, which its Euler–
Lagrange equations are trivial [17]. It was then extended to
contain the terms that are quadratic in the first-derivative
of fields [18]. Furthermore, it can be generalized to contain
terms that are polynomial in the first-derivative of fields, or
in general terms that are not necessary “boundary” terms as
such its Euler–Lagrange equations are non-trivial [27]. These
Euler–Lagrange equations will then be constraint equations
that must be considered in finding the solutions. However
so far the BPS Lagrangian density has been written under
certain ansatzs, such as (2.4), in the spherical coordinate sys-
tem [1]. Generalizing to general coordinate system would
then implies the BPS Lagrangian density with massive terms
and hence making the computation to be more complicated.
For particular case of the SU (2) Yang–Mills–Higgs model,
we will make use of the well-known Bogomolny’s equa-
tions for monopoles and dyons [10,28,29] to derive the BPS
Lagrangian that would lead to these Bogomolny’s equations.

Using the Bogomony’s trick [10], one can obtain the well-
known Bogomolny’s equations for monopoles and dyons by
completing the square in the energy density [28,29],

Ei = sin θ Di�, Bi = cos θ Di�, D0� = 0,

V = 0, (3.5)

with θ is a real constant. In addition there is one constraint
equation that must be considered in order to find the solutions
and that is the Gauss’s law constraint [28,29],

Di F0i = ie [�, D0�] , (3.6)

which is essentially the Euler–Lagrange equations for the
gauge scalar potential A0. Notes that the Gauss’s law con-
straint is trivially satisfied in the BPS limit and thus we only
need to consider and solve the Bogomolny’s equations (3.5)
in order to find the BPS monopole and dyon solutions. Using
these Bogomolny’s equations, we can rewrite the Lagrangian
density (3.4) to be

L = Tr (Ei − sin θDi�)2 − Tr (Bi − cos θDi�)2

+Tr (D0�)2 − V

+2 sin θ Tr (Ei Di�) − 2 cos θ Tr (Bi Di�)

−2 sin2 θ Tr (Di�)2 . (3.7)

In the BPS Lagrangian method we set L−LBPS = 0 in the
BPS limit, which is the limit where the Bogomolny’s equa-
tions (3.5) are satisfied, and thus implies the BPS Lagrangian
density

LBPS = 2 sin θ Tr (Ei Di�) − 2 cos θ Tr (Bi Di�)

−2 sin2 θ Tr (Di�)2 . (3.8)

So here we find that the BPS Lagrangian density consists
of terms proportional to Bi Di�, Ei Di�, and (Di�)2. Fur-
thermore setting all terms in L − LBPS to be zero gives us
the Bogomolny’s equations (3.5) in which here their solu-
tions shall be called the standard BPS monopoles and dyons,
respectively for sin(θ) = 0 and sin(θ) �= 0.

Now let us write a slightly more general BPS Lagrangian
density, than the previous one, as follows

LBPS = −2β Tr (Bi Di�) + 2α Tr (Ei Di�)

−
(
α2 − β2 + 1

)
Tr (Di�)2 , (3.9)

where now α and β are arbitrary constants. We would like
to prove that the Bogomolny’s equations (3.5) and also the
Gaus’s law constraint (3.6) can be rederived using this BPS
Lagrangian density. Taking L − LBPS = 0 and setting all
terms to be zero gives us Bogomolny’s equations

Ei = αDi�, Bi = βDi�, D0� = 0, V = 0. (3.10)

One can show that Euler–Lagrange equation of the first term
in the BPS Lagrangian density above is trivial using the
Bianchi identity Di Bi = 0 and a relation

[
Di , Dj

]
� =

−ie
[
Fi j ,�

]
, and hence it is indeed a “boundary” term while

the remaining terms turn out to be “non-boundary” terms
which contribute to the Euler–Lagrange equations of the BPS
Lagrangian density: for �,

αDi F0i −
(
α2 − β2 + 1

)
Di Di� = 0, (3.11)

for Ai ,

α (D0Di� − ie [F0i ,�]) = ie
(
α2 − β2 + 1

)
[�, Di�] ,

(3.12)

and for A0,

αDi Di� = 0. (3.13)

The Eqs. (3.11)–(3.13) are additional constraint equations,
in addition to the Bogomolny’s equations (3.10), that must
be considered in finding solutions for monopoles and dyons.
With these additional constraint equations, we seem to have
more equations than the number of fields to be solved. In
the BPS limit, in which the BPS equations (3.10) are satis-
fied, these additional constraint equations can be simplified,
respectively, to

(
1 − β2

)
Di Di� = 0, (3.14a)

(
1 − α2 − β2

)
[Di�,�] = 0, (3.14b)

α Di Di� = 0, (3.14c)
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where we have used the fact that [D0, Di ] � = −ie [F0i ,�].
We can simplify these constraint equations using the Bianchi
identity Di Bi = 0 which, after substituting the Bogomolny’s
equations (3.10), becomes βDi Di� = 0. Requiring β �= 0,
the remaining constraint equation is3

(
1 − α2 − β2

)
[Di�,�] = 0. (3.15)

Solutions to this equation is α2 + β2 = 1. In this BPS limit,
the Gauss’s law constraint (3.6) is trivial and thus in finding
the BPS monopoles and dyons, there are no additional equa-
tions need to be considered beside the Bogomolny’s equa-
tions (3.10). This is actually what we expected from the BPS
Lagrangian method since the Bogomolny’s equations (3.10)
must satisfy trivially the Euler–Lagrange equations which
the Gauss’s law constraint is one of.

4 Generalized BPS monopoles and dyons

Following the previous sections now we may consider a
more general BPS Lagrangian density to derive Bogomolny’s
equations for monopoles and dyons in the generalized SU (2)

Yang–Mills–Higgs model (2.1), which is given by

LBPS = 2α Tr (Ei Di�) − 2β Tr (Bi Di�) − γ Tr (Di�)2 ,

(4.1)

where now α ≡ α(|�|), β ≡ β(|�|), and γ ≡ γ (|�|) are
arbitrary functions of |�|. In this case

L − LBPS = w Tr
(
Ei − α

w
Di�

)2 − w Tr

(
Bi − β

w
Di�

)2

+G Tr (D0�)2

−
(

−γ + α2

w
− β2

w
+ G

)
Tr (Di�)2 − V .

(4.2)

Now in the BPS limit L − LBPS = 0 which implies all
terms on the right hand side of (4.2) should be zero. Since
(G, w) �= 0, the first three terms should be identified as the
Bogomolny’s equations

Ei = α

w
Di�, (4.3a)

Bi = β

w
Di�, (4.3b)

D0� = 0, (4.3c)

and the last term implies V = 0. The fourth term could be
zero if we set Di� = 0, but this will make the Bogomolny’s

3 We can not take [Di�,�] = 0 because it could imply [τ a, τ b] = 0,
for arbitrary a and b, which is incorrect.

equations (4.3a) and (4.3b) trivial and hence Di� �= 0. So
for this term we should take

γ = G + α2

w
− β2

w
. (4.4)

Additionally there are also constraint equations coming from
the Euler–Lagrange equations of the BPS Lagrangian density
(4.1), which are: for �,

4
∂α

∂|�| [Tr (�∂i�) Ei − Tr (Ei Di�) �] + αDi Ei

−4
∂β

∂|�| [Tr (�∂i�) Bi − Tr (Di�Bi )�]

+2
∂γ

∂|�|
[
Tr (Di�)2 � − 2Tr (�∂i�) Di�

]

−γ Di Di� = 0, (4.5)

for Ai ,

4
∂α

∂|�|Tr (�∂0�) Di� + α (D0Di� − ie [Ei ,�])

+4
∂β

∂|�|εi jkTr
(
�∂ j�

)
Dk� − ieγ [�, Di�] = 0,

(4.6)

for A0,

− 4
∂α

∂|�|Tr (�∂i�) Di� − αDi Di� = 0. (4.7)

As shown in the previous section, we write these constraint
equations in the BPS limit namely by substituting the Bogo-
molny’s equations (4.3a), (4.3b), D0� = 0, and V = 0,
together with the Eq. (4.4). The constraint equations are now
simplified, respectively, to

−4

(
G ′ − β

w
β ′ + β2

w2 w′
)

Tr (�Di�) Di�

−
(
G − β2

w

)
Di Di�

+2

(
G ′ − α2

w2 w′ + β2

w2 w′
)

Tr (Di�)2 � = 0, (4.8a)

4β ′εi jk Tr
(
�Dj�

)
Dk�

−ie

(
G − α2

w
− β2

w

)
[�, Di�] = 0, (4.8b)

−4α′ Tr (�Di�) Di� − α Di Di� = 0, (4.8c)

where the apostrophe ′ means taking derivative over |�|.

4.1 The Bianchi identity

The equations of motion for the gauge fields are not only
given by the Euler–Lagrange equations (2.3b), but also by
the Bianchi identity,

εσρμνDρFμν = 0, (4.9)
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which can be devided into two equations

Di Bi = 0, (4.10a)

2D0Bi = εi jk D[ j Ek]. (4.10b)

In the BPS limit, by substituting the Bogomolny’s equations
(4.3), the Eq. (4.10a) becomes

β

w
Di Di� = −4

(
β

w

)′
Tr (�Di�) Di�, (4.11)

while, for static cases, the Eq. (4.10b) becomes
( α

w

)′
εi jkTr

(
�D[ j�

)
Dk]� = 0. (4.12)

Using these Bianchi identity equations, the constraint equa-
tions (4.8) can be simplified to

−2

(
G ′ − G

β
β ′ + G

w
w′

)
Tr (�Di�) Di�

+
(
G ′ − α2

w2 w′ + β2

w2 w′
)

Tr (Di�)2 � = 0, (4.13a)

( α

w

)′ (
G − α2

w
− β2

w

)
[�, Di�] = 0, (4.13b)

α

(
α′

α
− β ′

β
+ w′

w

)
Tr (�Di�) Di� = 0. (4.13c)

Non-trivial solutions require Di� �= 0, and so solutions
to the Eq. (4.13c) are α = 0 or α �= 0, or to be precise
β = cβαw, with cβ is a constant. From now on, we require
β �= 0, along with Di� �= 0, for BPS monopoles and dyons
throughout this article, and hence cβ �= 0 .

4.2 BPS monopoles: α = 0

Let us first consider the case of α = 0, or Ei = 0, which cor-
respond to BPS monopoles case. In this case, the constraint
equations (4.13b) and (4.13c) are trivially satisfied and the
remaining constraint equation (4.13a) can be simplified to

−2

(
G ′ − G

β
β ′ + G

w
w′

)
Tr (�Di�) Di�

+
(
G ′ + β2

w2 w′
)

Tr (Di�)2 � = 0. (4.14)

This constraint equation can be trivial if we set β = cβGw

and w = 1
c2
βG

+cg , with cβ �= 0 and cg are constants. Without

losing generality, we can fix these constants by comparing to
the results of SU (2) Yang–Mills–Higgs model, where G =
w = 1, and thus we must set cg = 1− 1

c2
β

. So the Bogomolny’s

equations for BPS monopoles are4

4 Here the scalar potential V is not absolutely zero, but it is SU (2)

invariant in which the model (2.1) can be spontaneously broken toU (1)

gauge symmetry, see [28,29] for more detail.

Ei = 0, Bi = cβG Di�, D0� = 0, V = 0 (4.15)

with w = 1
c2
βG

+1− 1
c2
β

and cβ �= 0 is a real constant. Setting

c2
β = 1, we get back the results of [1,20] where w = 1/G.

In general we shall call the Bogomolny’s equations (4.15),
with(out) additional constraint equation (4.14), as the gen-
eralized Bogomolny’s equations for BPS monopoles whose
solutions, with w or G are non-constants, shall be called gen-
eralized BPS monopoles.

4.3 BPS dyons: α �= 0

As we mentioned previously here β = cβαw. Later on, the
constraint equation (4.13b) implies α = cαw, with cα �= 0

is a constant, or Gw = α2 + β2 = α2
(

1 + c2
βw2

)
.

4.3.1 The case of α = cαw

In this case, the constraint equation (4.13a) can be simplified
to

−2

(
G ′ − G

w
w′

)
Tr (�Di�) Di�

+
(
G ′ + c2

α

(
c2
βw2 − 1

)
w′) Tr (Di�)2 � = 0 (4.16)

which is trivially satisfied if G and w is constants, and
thus lead us to the standard BPS dyon solutions. There-
fore the generalized BPS dyons may exist as solutions to
the constraint equation (4.16) in addition to the Bogomolny
equations

Ei = cαDi�, Bi = cαcβw Di�,

D0� = 0, V = 0. (4.17)

Here, in general, the scalar fields-dependent couplings G and
w are independent to each other, but their relation can be
determined from the above constraint equation (4.16), which
depend on the choice of ansatz.

4.3.2 The case of G = α2

w

(
1 + c2

βw2
)

In this case, the constraint equation (4.13a) can be simplified
to(

α
(
c2
βw2 − 1

)
w′ + w

(
c2
βw2 + 1

)
α′)

(
Tr (�Di�) Di� − Tr (Di�)2 �

)
= 0 (4.18)

which is trivially satisfied if α = cαw

1+c2
βw2 , with cα �= 0 is a

constant. So we have two possible Bogomolny’s equations:

• α = cαw

1+c2
βw2

In this case, the generalized BPS dyon solutions can be
obtained by solving the Bogomolny’s equations
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Ei = cα

1 + c2
βw2

Di�, Bi = cαcβw

1 + c2
βw2

Di�,

D0� = 0, V = 0, (4.19)

without additional constraint equation.
• α �= cαw

1+c2
βw2

In this case, the generalized BPS dyon solutions can be
obtained by solving the Bogomolny’s equations

Ei = α

w
Di�, Bi = cβαDi�,

D0� = 0, V = 0, (4.20)

with additional constraint equation

Tr (�Di�) Di� = Tr (Di�)2 �. (4.21)

This constraint equation may only be satisfied trivially
by some particular ansatze, and may not be useful to fix
some of the scalar fields-dependent couplings. Since the
main objective of this article is to derive Bogomolny’s
equations that are valid by any ansatz, and thus we may
neglect this type of constraint equations.

Similar to the case of the SU (2) Yang–Mills–Higgs
model, one can easily show that the Gauss’s law constraint
equations of the generalized model (2.1),

4w′Tr (�Di�) Ei + wDi Ei = ieG [�, D0�] , (4.22)

is satisfied trivially in the BPS limit for the case of BPS
monopoles, by taking α = 0, and the case of BPS dyons,
by taking β = cβαw. Here we find a more general relation
between the scalar fields-dependent couplings, as shown in

the Sect. 4.3.2 where Gw = α2
(

1 + c2
βw2

)
, than the one

derived in the spherically symmetric system [1], which is a
particular case with α is constant.

Now we will show that there are no generalized BPS dyons
for the Julia–Zee ansatz (2.4) in all of the cases described
above. Let us assume general case of α �= 0. Using the ansatz
(2.4), the Bogomolny’s equation (4.3a) yields

w j + e α f = 0, w
d j

dr
+ e α

d f

dr
= 0, (4.23)

where α and w are functions of f only, whose solutions
are j = −e α

w
f , with α

w
�= 0 is a constant. Without losing

generality, we therefore just need to consider the case of α =
cαw as in the Sect. 4.3.1. On the other hand the Bogomolny’s
equation (4.3b) implies

da

dr
= e cαcβa f w,

d f

dr
= a2 − 1

e cαcβr2w
. (4.24)

Substituting those Bogomolny’s equations into the constraint
equation (4.16) implies

(
a2 − 1

)2
(

∂w

∂ f

(
c2
αw

(
c2
βw2 − 1

)
+ 2G

)
− w

∂G

∂ f

)

+2a2c2
αc

2
βe

2 f 2w3
(
c2
α

(
c2
βw2 − 1

) ∂w

∂ f
+ ∂G

∂ f

)
r2 = 0,

(4.25)

where G is a function of f only. This equation can be solved
by considering it as a polynomial equation of explicit radial
coordinate r and then setting all its “coefficients” to zero,

∂w

∂ f

(
c2
αw

(
c2
βw2 − 1

)
+ 2G

)
− w

∂G

∂ f
= 0,

c2
α

(
c2
βw2 − 1

) ∂w

∂ f
+ ∂G

∂ f
= 0. (4.26)

Solutions to these equations are given by w and G are con-
stants, and so we will get back the Bogomolny’s equations
for standard BPS dyons, whose solutions have been stud-
ied in [2,28,29]. Here we may conclude that the Julia–Zee
ansatz (2.4) is not suitable for finding the generalized BPS
dyon solutions of the Bogomolny’s equations (4.3). However
there might be generalized BPS dyon solutions under differ-
ent ansatze, such as axially symmetric ansatz [30], which is
beyond the discussion of this article and will be discussed
elsewhere.

4.4 Stress–energy–momentum density tensor

Although we do not have explicit generalized BPS dyon solu-
tions, we may still learn some of their features from the
stress–energy–momentum density tensor due to the existence
of the generalized Bogomolny’s equations for BPS dyons.
The stress–energy–momentum density tensor of the general-
ized model (2.1) is defined as

Tμν = 2G Tr
(
Dμ�Dν�

) − 2w Tr
(
FλμF

λ
ν

)

−ημνL. (4.27)

It is usually argued that the static soliton solutions are stable
if their total energy E = ∫

d3x
√−g T 0

0 , in the BPS limit, is
proportional to the topological charge [10,28,29]. Here we
would like suggest that stability of the static solution solu-
tions can be seen from their stress density tensor. Physically,
the stress density tensor is related to (internal) pressures and
shear stress of the solutions. It is natural to expected that all
stable solutions have vanishing (internal) pressures and shear
stress. Not surprisingly, one can check that all stress density
tensor components of many well-known (stable) BPS solu-
tions are zero in the BPS limit. There are some examples
where the BPS solutions, with some of their stress density
tensor components are non-zero, are found to be unstable
either because the total static energy is not proportional to the
topological charge or the solution does not exist or unphysi-
cal [18,31]. To meet this requirement, we compute the stress
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density tensor components of the generalized model (2.1)
that, in the BPS limit, is given by

Ti j = 2

(
G − α2

w
− β2

w

)
Tr

(
Di�Dj�

)

−δi j

(
G − α2

w
− β2

w

)
Tr (Dk�)2 . (4.28)

Therefore the generalized BPS monopole and dyon solutions,
if they exist, are stable when Gw = α2 + β2. This addi-
tional relation between the scalar fields-dependent couplings
will result in stable generalized BPS monopole and dyon
solutions.

4.4.1 Stable generalized BPS monopoles

For the case of generalized BPS monopoles, the constraint
equation (4.14) is simplified to

β ′ (Tr (�Di�) Di� − Tr (Di�)2 �
)

= 0. (4.29)

Assuming Tr (�Di�) Di� �= Tr (Di�)2 � implies β is
constant and the relation Gw = 1, where β2 has been nor-
malized to unity. The Bogomolny’s equations are then given
by

Ei = 0, Bi = ±G Di�,

D0� = 0, V = 0. (4.30)

4.4.2 Stable generalized BPS dyons

For the case of generalized BPS dyons, the remaining
constraint equation (4.13a) simply becomes the constraint
equation (4.18). Again, by assuming Tr (�Di�) Di� �=
Tr (Di�)2 �, we obtain α = cαw

1+c2
βw2 and the (normalized)

relation5

G = w

sin2(θ) + cos2(θ) w2
. (4.31)

The Bogomolny’s equations are then given by6

Ei = sin(θ)
G

w
Di�, Bi = cos(θ)G Di�,

D0� = 0, V = 0, (4.32)

with cos(θ) �= 0 and sin(θ) �= 0, where θ is a real constant.

5 We normalize the constants cα and cβ by comparing with the results
of SU (2) Yang–Mills–Higgs model, where G = w = 1, and so they
are related by 1 + c2

β = c2
α , or to be precise we chose cα = csc(θ) and

cβ = cot(θ).
6 By including sin(θ) = 0, the Bogomolny’s equations (4.32), together
with the (normalized) relation of the scalar fields-dependent couplings
(4.31), are also valid for the stable generalized BPS monopoles where
cos(θ) = ±1.

The static energy density, in the BPS limit, is given by

T00 =
(
G + α2

w
+ β2

w

)
Tr (Di�)2 . (4.33)

The (stable) generalized BPS monopole and dyon solutions
have energy density

T00 = 2G Tr (Di�)2 . (4.34)

4.5 Topological charge

The integer topological charge is defined as [29]

N� = 1

8π

∫

|x |→∞
dSiεi jkεabcφa∂ jφ

b∂kφ
c, (4.35)

where φ ≡ �√|�| . Non-trivial topological charge requires
|�| → v > 0 near the spatial infinity and thus typical poten-
tial for the scalar fields is V = λ

4 (|�| − v)2, with λ = 0
in the BPS limit. Furthermore the finite energy configuration
requires near the spatial infinity Di� fall faster than |x |−3/2

and in addition we also require the functions G and w to be
finite everywhere. Under those requirements, the topological
charge (4.35) can be rewritten as

N� = − e

2π

∫

|x |→∞
dSi Tr (φBi ) . (4.36)

In the BPS limit, by substituting Bi from the Eq. (4.32), it
becomes

N� = −e cos(θ)

2π
√

v

∫

|x |→∞
dSi G Tr (�Di�) . (4.37)

Now the total static energy of BPS dyon is given by

EBPS = 2
∫

d3x G Tr (Di�)2 ,

= 2
∫

|x |→∞
dSi G Tr (�Di�) − 2

∫
d3x Tr

× (
�

(
GDi Di� + 4G ′Tr (�Di�) Di�

))
. (4.38)

The first term in the second line is obtained using the Gauss’s
theorem. The second term in the second line is equal to zero
by the Bianchi identity equation (4.11), and thus the total
static energy of BPS dyon is proportional to the integer topo-
logical charge,

EBPS = 4π
√

v

∣∣∣∣
N�

e cos(θ)

∣∣∣∣ . (4.39)

Here, we show that solutions to the BPS dyon equations
(4.32) are indeed stable.

5 Conclusions

We made use of the well-known Bogomolny’s equations (3.5)
in the SU (2) Yang–Mills–Higgs model in order to get all
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possible terms of the correponding BPS Lagrangian density
(3.8) that would lead to these Bogomolny’s equations. We
generalized this BPS Lagrangian density by multiplying each
of its terms with arbitrary function of the scalar fields, and
then used the generalized BPS Lagrangian density (4.1) to
derive the generalized Bogomolny’s equations in the gen-
eralized SU (2) Yang–Mills–Higgs model (2.1). In the case
of BPS monopoles, the generalized Bogomolny’s equations
are given by the equations (4.15) with(out) additional con-
straint equation (4.14). In the case of BPS dyons, there are
two possible generalized Bogomolny’s equations which are
given by the equations (4.17) with(out) additional constraint
equation (4.16), and by the equations (4.20) with(out) addi-
tional constraint equation (4.18). We then argued that the BPS
monopole and dyon solutions to those generalized Bogo-
molny’s equations are stable if all components of the stress
density tensor are zero. This additional stability requirement
yields the generalized Bogomolny’s equations (4.32) and the
equation (4.31) relating the scalar fields-dependent couplings
for BPS monopoles, where sin(θ) = 0, and for BPS dyons
without any constraint equation. Moreover we showed that
the total energy of BPS dyon is proportional to the topolog-
ical charge, EBPS ∝ |N�|.

It is easy to show that by substituting the ’t Hooft–
Polyakov ansatz, which is (2.4) with j = 0, into the gen-
eralized Bogomolny’s equations (4.30) we will get back the
self-dual (BPS) equations, and also the same equation relat-
ing the scalar fields-dependent couplings, whose solutions
are the generalized BPS monopoles studied in [20]. Therefore
the generalized Bogomolny’s equations (4.30) are indeed the
general coordinate extension of those self-dual (BPS) equa-
tions. Unfortunately, for the case of BPS dyons, substitut-
ing the Julia–Zee ansatz (2.4) into the generalized Bogo-
molny’s equations (4.32) implies G ∝ w which then, from
the equation (4.31), further imply cos(θ) = 0, or Bi = 0.
There are possible BPS dyon solutions, with cos(θ) �= 0, if
both w and G are constants, or known as the standard BPS
dyons, and therefore there are no generalized Bogomolny’s
equations for BPS dyons under the Julia–Zee ansatz. How-
ever this contradicts with the results in [1] where there exist
(spherically symmetric) generalized Bogomolny’s equations
for BPS dyons under the Julia–Zee ansatz. We also found the
relation equation (4.31) is different from the one obtained in
[1]. These contradictions appear because the computations
did in [1] is in the effective description under the Julia–Zee
ansatz and the potential scalar Aa

0 is directly identified with
the scalar fields �a , or namely by taking j ∝ f , in the effec-
tive Lagrangian density (A.1). In this way, the correspond-
ing effective Gauss’s law constraint equation of the equation
(4.22) disappears from the Euler–Lagrange equations of the
effective Lagrangian density (A.1). Furthermore, there will
be no correponding effective constraint equation of the equa-
tion (4.13c). Therefore the computations, for BPS dyons, in

[1] are actually incomplete. In Appendix A, we repeated the
(effective description) computations in [1], for BPS dyons in
the generalized model (2.1) under the Julia–Zee ansatz (2.4),
without first taking the identification j ∝ f . We arrived at the
same conclusion that there are no generalized Bogomolny’s
equations for BPS dyons and thus no generalized BPS dyon
solutions.

We could consider more general BPS Lagrangian den-
sity than (4.1) that could lead to the generalized BPS dyons
solutions under the Julia–Zee ansatz. The BPS Lagrangian
density (4.1) is not the most general BPS Lagrangian den-
sity. There are other possible terms, in terms of Ei , Bi , Di�,

and D0�, that one can add to the BPS Lagrangian density
(4.1). The first one is a term that are independent to all
first-derivative of the fields, or basically an arbitrary func-
tion of the scalar fields |�|. The second one, a term that
is proportional to Tr (D0�). The third ones are the remain-
ing terms that are proportional to quadratic of first-derivative
of the fields: Tr (Ei )

2 , Tr (Bi )2 , Tr (D0�)2 , and Tr (Ei Bi ).
Another possible way to find the generalized BPS dyons is
by considering different ansatze such as axially symmetric
ansatz studied in [30] for higher topological charge dyons.
However those possibilities are beyond the study of this arti-
cle and they will be investigated elsewheres.
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Appendix A: Generalized BPS dyons in the effective
description: spherically symmetric

In the effective description, we will apply the Julia–Zee
ansatz (2.4) directly into the Lagrangian density of gener-
alized SU (2) Yang–Mills–Higgs model (2.1) such that the
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effective Lagrangian density is spherically symmetric and is
given by

Le f f = −G( f )

(
f ′2

2
+ a2 f 2

r2

)
+ w( f )

e2

(
j ′2

2
+ a2 j2

r2

)

−w( f )

e2

(
a′2

r2 +
(
a2 − 1

)2

2r4

)
− V ( f ), (A.1)

where form now on the apostrophe ′ means taking derivative
over radial coordinate r , or over its argument if explicitly
written. Here we will consider two forms of effective BPS
Lagrangian density. The first one is suggested by the form
of generalized BPS Lagrangian density (4.1) and the second
one is following the form in [1] which is linear to all first-
derivative of the effective fields.

A.1: Effective BPS Lagrangian density motivated by the
BPS Lagrangian density (4.1)

Under the Julia–Zee anstaz (2.4), each terms in the gener-
alized BPS Lagrangian density (4.1) are proportional to the
first-derivative of the effective fields as follow

Tr (Ei Di�) ∝ f ′ j ′ (A.2a)

Tr (Bi Di�) ∝ a′

r2 , and
f ′

r2 (A.2b)

Tr (Di�)2 ∝ f ′2. (A.2c)

This then suggests that we should take the following effective
BPS Lagrangian density7

LBPS = −Q f ( f, a, j)
f ′

r2 − Qa( f, a, j)
a′

r2

−X1( f, a, j) f ′ j ′ − X2( f, a, j) f ′2, (A.3)

where Q f , Qa, X1, X2 are arbitrary functions of the effec-
tive fields with no explicit radial coordinate dependent. Solv-
ing Le f f − LBPS = 0 implies Bogomolny’s equations: for
f ,

f ′ = Q f + r2X1 j ′

r2 (G − 2X2)
; (A.4a)

for a,

a′ = e2

2

Qa

w
; (A.4b)

and for j ,

j ′ = −e2 Q f X1

r2
(
w (G − 2X2) + e2X2

1

) . (A.4c)

7 Since the effective Lagrangian density (A.1) is spherically symmet-
ric, the effective BPS Lagrangian density should also be spherically
symmetric as well.

The residual equation of Le f f − LBPS = 0 is

w
(
e2Q2

f − (
a2 − 1

)2 (
e2X2

1 + w(G − 2X2)
))

2r4e2
(
e2X2

1 + w(G − 2X2)
)

+4a2w
(
j2w − e2 f 2G

) + e4Q2
a

4r2e2w
= V (A.5)

which can be solved by setting all the “coefficients” in its
explicit radial coordinate r expansion to be zero such that
V = 0,

Qa = ± 2

e2 a
√

w
(
e2 f 2G − j2w

)
, (A.6)

and

X2 = e2

2

⎛
⎝

(
a2 − 1

)2
X2

1 − Q2
f(

a2 − 1
)2

w
+ G

e2

⎞
⎠ . (A.7)

Now, there are still two remaining functions (Q f and X1)
need to be determined by using Euler–Lagrange equations of
the BPS Lagrangian density (A.3) for f, a, and j ;

∂r

(
∂(r2LBPS)

∂rφ

)
− ∂(r2LBPS)

∂φ
= 0, (A.8)

where φ ≡ ( f, a, j) is the effective field. Substituting
all Bogomolny’s equations (A.4) and explicit solutions for
V, Qa, and X2 into those Euler–Lagrange equations, that
shall now be called as constraint equations, then we can solve
them similarly by setting all the “coefficients” in their explicit
radial coordinate r expansion to be zero. In this way, each
of the constraint equations can be written into terms with
explicit power of radial coordinate r : r−2- and r0-terms. The
function Q f can determined from the r0-term of the con-
straint equation for f by equation

a2e2 f
G

w

(
f w′( f ) + 2w

) ± aG

Q2
f

((
a2 − 1

) ∂Q f

∂a
− 4aQ f

)

× (
a2 − 1

) √
w

(
e2 f 2G − j2w

)

+a2 (
e2 f 2G ′( f ) − 2 j2w′( f )

) = 0, (A.9)

which has solution

Q f = ±
2

(
a2 − 1

)
Gw

√
w

(
e2 f 2G − j2w

)

w
(
e2 f 2G ′( f ) − 2 j2w′( f )

) + e2 f G ( f w′( f ) + 2w)
.

(A.10)

Using these solutions for Q f , the function X1 can be deter-
mined from the r−2-term of the constraint equation for a,

X1 = 1

2 j

(
4Gw

(
e2 f 2G − j2w

)

w′( f )
(
e2 f 2G − 2 j2w

) + e2 f w ( f G ′( f ) + 2G)

+w′( f )
(
2 j2w − e2 f 2G

)

e2w
− f

(
f G ′( f ) + 2G

)
)

, (A.11)
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and also from the r−2-term of the constraint equation for j ,

X1 = − 2 jGw2

w′( f )
(
e2 f 2G − 2 j2w

) + e2 f w ( f G ′ + 2G)
.

(A.12)

Both solutions are equal if w = cw2, and G = cg2 or

G = cg2

f 4 , where cw2 and cg2 are non-zero real constants.
Substituting them then all the remaining constraint equations
are trivially satisfied. So we have two possible solutions, with
w = cw2,

1. G = cg2

Bogomolny’s equations are given by

f ′(r) = ±
(
a(r)2 − 1

)
f (r)

r2

cw2
√
cw2cg2e2 f (r)2 − cw4 j (r)2

,

(A.13a)

a′(r) = ±a(r)

cw2

√
cw2cg2e2 f (r)2 − cw4 j (r)2, (A.13b)

j ′(r) = ±
(
a(r)2 − 1

)
j (r)

r2

cw2
√
cw2cg2e2 f (r)2 − cw4 j (r)2

.

(A.13c)

Comparing the Eqs. (A.13a) with (A.13c), we may take
j = σ f , where σ is non-zero real constant.

2. G = cg2/ f 4

Bogomolny’s equations are given by

f ′(r) = ∓
(
a(r)2 − 1

)
f (r)

r2

cw2
√

cw2cg2e2

f (r)2 − cw4 j (r)2
,

(A.14a)

a′(r) = ±a(r)

cw2

√
cw2cg2e2

f (r)2 − cw4 j (r)2, (A.14b)

j ′(r) = ±
(
a(r)2 − 1

)
j (r)

r2

cw2
√

cw2cg2e2

f (r)2 − cw4 j (r)2
.

(A.14c)

Comparing the Eq. (A.14a) with (A.14c), we may take
j = σ/ f , where σ is also a non-zero real constant.

One can easily show that both Bogomolny’s equations,
(A.13) and (A.14), trivially satisfy the full Euler–Lagrange
equations (2.3) under the Julian-Zee ansatz (2.4).

A.2: Linear effective BPS Lagrangian density

It is perhaps more suggestive to have effective Lagrangian
density that is linear to the first-derivative of the effective

fields,
∫
d3x

√−gLBPS = ∫
dQ( f, a, j), as such its Euler–

Lagrange equations are trivial and thus no additional con-
straint equations needed. In the earlier development of the
BPS Lagrangian method, some of the well-known Bogo-
molny’s equations, for BPS vortices, were rederived from this
linear effective BPS Lagrangian density [17]. Later on, it was
shown that the Bogomolny’s equations for BPS monopoles
and dyons in the SU (2) Yang–Mills–Higgs model also can
be rederived from the linear effective BPS Lagrangian as well
[1]. In this case the effective BPS Lagrangian density takes
the following form:

LBPS = −Q f ( f, a, j)

r2 f ′ − Qa( f, a, j)

r2 a′

−Q j ( f, a, j)

r2 j ′, (A.15)

where Q f , Qa, Q j are arbitrary functions. In order for the
Euler–Lagrange equations of the effective BPS Lagrangian
density to be trivial, the arbitrary functions must be related to
each other as such Q f ≡ ∂Q

∂ f , Qa ≡ ∂Q
∂a , and Q j ≡ ∂Q

∂ j , with
Q( f, a, j). However we first set them to be independent and
later we will find the function Q. Solving Le f f −LBPS = 0
implies Bogomolny’s equations: for f ,

f ′ = Q f

r2G
; (A.16a)

for a,

a′ = e2

2

Qa

w
; (A.16b)

and for j ,

j ′ = −e2 Q j

r2w
. (A.16c)

The residual equation of Le f f − LBPS = 0 is
(
e2Q2

f w − e4Q2
j G − (

a2 − 1
)2

w2G
)

2r4e2Gw

+4a2w
(
j2w − e2 f 2G

) + e4Q2
a

4r2e2w
= V (A.17)

which can be solved by setting all the “coefficients” in its
explicit radial coordinate r expansion to be zero such that
V = 0,

Qa = ± 2

e2 a
√

w
(
e2 f 2G − j2w

)
, (A.18)

and

e2Q2
f w − e4Q2

j G =
(
a2 − 1

)2
w2G. (A.19)

To fix the functions Q f and Q j , we solve the Euler–
Lagrange equations of the BPS Lagrangian density (A.15) for
f, a, and j . Substituting all Bogomolny’s equations (A.16)
and explicit solutions of Qa into those Euler–Lagrange equa-
tions, that shall be called constraint equations, then we can
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solved them similarly by setting all the “coefficients” in their
explicit radial coordinate r expansion to be zero. In this way,
each of the constraint equations can be divided into terms
with explicit power of radial coordinate r : r−4-, r−2-, and
r0-terms. From the r0-term of the constraint equation for f ,
we have

e2 ∂Q f

∂a

√
w

(
e2 f 2G − j2w

)

= ±aw
(
e2 f 2G ′( f ) − 2 j2w′( f )

)

±ae2 f G
(
f w′( f ) + 2w

)
(A.20)

that gives general solutions to Q f ,

Q f = ± (
a2 − c f ( f, j)

)

×
(
w′( f )

(
e2 f 2G − 2 j2w

) + e2 f w
(
f G ′( f ) + 2G

))

2e2
√

w
(
e2 f 2G − j2w

) ,

(A.21)

where c f is an arbitrary function of f and j . Meanwhile,
from the r0-term of the constraint equation for j , we have

2a2 jw2 ± e2a
√

w
(
e2 f 2G − j2w

)∂Q j

∂a
= 0, (A.22)

that gives general solutions to Q j ,

Q j = ∓
(
a2 − c j ( f, j)

) jw2

e2
√

w
(
e2 f 2G − j2w

) , (A.23)

where c f is an arbitrary function of f and j . Now we have
explicit a-dependent in all of the functions Q f , Qa, and Q j .
Therefore we can further expand all the constraint equations
in the explicit a expansion and then solve them by setting all
“coefficients” of explicit r coordinate and a expansions to
zero. From the a4-term of the Eq. (A.19), we have

(
w′( f )

(
e2 f 2G − 2 j2w

)
+ e2 f w

(
f G ′( f ) + 2G

))2

−4e2 j2Gw3 = 4e2Gw2
(
e2 f 2G − 2 j2w

)
. (A.24)

Assuming f and j are independent each other, we solve it
by rewriting it in the explicit j expansion and then setting
all its“coefficients” to zero. Its j4− term implies w = c2

w,
where cw �= 0 is a real constant. Fixing the function w, its
j0-term implies G = c2

g or G = c2
g/ f

4, where cg �= 0 is a
real constant. Substituting these solutions for w and G into
the a2-term of the Eq. (A.19), we have two possible solutions
for c f : if G = c2

g then

c f = c2
w j2c j ( f, j) + c2

ge
2 f 2 − c2

w j2

c2
ge

2 f 2 , (A.25)

and if G = c2
g/ f

4 then

c f = c2
w f 2 j2c j ( f, j) + c2

ge
2 − c2

w f 2 j2

c2
ge

2 . (A.26)

It turns out from the a0-term of the Eq. (A.19), with w = c2
w,

e2 f 2
(
f G ′( f ) + 2G( f )

)2
c f ( f, j)2 − 4c2

w j2G( f )c j ( f, j)2

G( f )
(
e2 f 2G( f ) − c2

w j2
)

−4 = 0, (A.27)

both solutions of G, and also c f , above yield the same c j = 1
which surprisingly also leads to the same c f = 1 for both.
Now, we can compute the function Q which is given by Q =
± 1

e2 (a2 −1)

√
w

(
e2 f 2G − j2w

)
. At the end we will get the

same Bogomolny’s equations (A.13) and (A.14) respectively
for G = c2

g and G = c2
g/ f

4. As discussed previously at the
end of Sect. 1, only the Bogomolny’s equations (A.13), with
cw2 = cg2 = 1, satisfy the full Euler–Lagrange equations.

A.3: Solutions

1. G = cg2

Solutions to the Bogomolny’s equations (A.13) are

f (r) = ±
(

ω2

r
− coth

( r

ω2

))
, (A.28a)

a(r) = r

ω2

1

sinh
(

r
ω2

) , (A.28b)

j (r) = σ f (r), (A.28c)

with ω2 = cw2√
cw2cg2e2−cw4σ 2

and σ <
∣∣ cg
cw e

∣∣ is a real

constant. Normalized cw2 = cg2 = 1 we get back the
standard BPS dyon solutions [2,28,29].

2. G = cg2/ f 4

Solutions to the Bogomolny’s equations (A.14) are

f (r) = ±
(

ω2

r
− coth

( r

ω2

))−1

, (A.29a)

a(r) = r

ω2

1

sinh
(

r
ω2

) , (A.29b)

j (r) = σ

f (r)
, (A.29c)

with ω2 = cw2√
cw2cg2e2−cw4σ 2

and σ <
∣∣ cg
cw e

∣∣ is a real

constant. These solutions imply only static energy den-
sity component of the stress–energy–momentum density
tensor (4.27) is non-zero and is given by Estatic = 4πω2.
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Although the total static energy is finite, unfortunately
the solutions for f (r) are singular near the origin as
such f (r → 0) → ∓∞, and so they are unphys-
ical.8 Furthermore, the Bogomolny’s equations (A.14)
are not equivalent with the Bogomolny’s equations (4.3),
under the Julia–Zee ansatz, since j ∝ 1/ f . This also
means that the general coordinate extension of the Bogo-
molny’s equations (A.14) may come from a different BPS
Lagrangian density than the generalized BPS Lagrangian
density (4.1). Notice that the effective BPS Lagrangian
density (A.3) is slightly more general than the generalized
BPS Lagrangian density (4.1) which under the Julia–Zee
ansatz is given by

LBPS ≈ −2
β( f )

e

(
a2 − 1

) f ′

r2 − 4
β( f )

e
a f

a′

r2

−2
α( f )

e
f ′ j ′ − γ ( f ) f ′2. (A.30)

Considering the most general BPS Lagrangian density
would result in most general Bogomolny’s equations,
than the Bogomolny’s equations (4.3), that may have
physical generalized BPS dyon solutions under the Julia–
Zee ansatz.
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