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Abstract Recent observations of the orbits of star clus-
ters around Sgr A�, imaging of black holes and gravitational
waveforms of merging compact objects require a detailed
understanding of the general relativistic geodesic motion. We
came up with a method to provide all the possible geodesics
in an axially symmetric space-time. The Kerr metric is explic-
itly worked out, recovering the Schwarzschild geodesics in
the static limit. We also found the most general Killing ten-
sor and its associated constant of motion for an axisymmetric
space-time. The relevance of these results is crucial to under-
standing the different scenarios and the fundamental nature
of the compact object at the galactic center.

1 Introduction

From the orbits of stars [1–3], and the imaging around super-
massive black holes [4,5] through gravitational lensing [6],
geodesic motions of particles and photons have a venerable
history bringing results of General Relativity to observational
grounds. Other important scenarios like frame dragging [7],
radiation transport effects from accretion flows in the vicinity
of relativistic stars [8], and gravitational waveform of merg-
ing compact objects [9], also require a detailed understanding
of the geodesic motion in a general relativistic background.

Rotation is a crucial feature for celestial bodies from the
an astrophysical viewpoint, and the Kerr solution of Einstein
equations describes the gravitational field outside spinning
compact objects and black holes [10]. Thus, geodesics across
a Kerr gravitational background are very important and have
a long history, since Carter’s study of the existence of a new
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conserved quantity associated with each geodesic [11,12].
The astrophysical relevance of tracking particles & photons
in Kerr space-times motivates a significant effort to obtain
analytical and numerical trajectories in this gravitation back-
ground (see [13,14] and references therein).

We have recently implemented a tetrad formalism by an
orthogonal splitting of the Riemann tensor, introducing a
complete set of equations equivalent to the Einstein system
and applying it to the spherical case [15–17]. This formalism
provides coordinate-free results expressed in terms of struc-
ture scalars related to the kinematical and physical properties
of the fluid.

We devise an exhaustive classification for all geodesic
motion for any axisymmetric source establishing the equa-
tions which describe each alternative. Based on the tetrad
scheme, we provide a method to integrate all possible orbits
for any stationary axially symmetric solutions, illustrating
each case with the Kerr metric.

We present the most general Killing tensor corresponding
to any axisymmetric space-time and its associated constant of
motion, which has not previously been obtained. This Killing
tensor and its conserved quantity allow us to obtain the orbits
by solving a system of algebraic equations. We recovered
the famous Carter constant along the geodesic as a particular
case.

2 The tetrad and kinematical variables

We shall consider stationary and axially symmetric sources
with the line element written as

ds2 = −A2dt2 + B2dr2 + C2dθ2

+R2dφ2 + 2ω3dt dφ , (1)
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with A = A(r, θ), B = B(r, θ), R = R(r, θ), and
ω3 = ω3(r, θ).

In this case the tetrad is:

V α =
(

1

A
, 0, 0, 0

)
, K α =

(
0,

1

B
, 0, 0

)
,

Lα =
(

0, 0,
1

C
, 0

)
, Sα = 1√

�2

(ω3

A
, 0, 0, A

)

where �2 = A2R2 + ω2
3.

2.1 The scalars and the tetrad covariant derivative

The covariant derivative of Vα in the 1+3 formalism can be
written as Vα;β = −aαVβ + 	αβ , where the kinematical
variables (aα the acceleration and 	αβ the vorticity) can be
written, in terms of the tetrad, as

aα = a1Kα + a2Lα , (2)

	αβ = 	2(KαSβ − Kβ Sα) + 	3(LαSβ − Lβ Sα) . (3)

Follows the covariant derivative of K, i.e.

Kα;β = −a1VαVβ + 2	2V(αSβ) + ( j1Kβ

+ j2Lβ)Lα + j6SαSβ .

Now, the covariant derivative of L, can be written as

Lα;β = −a2VαVβ + 2	3V(αSβ)

−( j1Kβ + j2Lβ)Kα + j9SαSβ .

Finally the covariant derivative of S is

Sα;β = −2	2V(αKβ) − 2	3V(αLβ) − ( j6Kα + j9Lα)Sβ .

2.2 Scalars for a general axisymetric metric

Assuming ω3 = A2ψ , the scalars for the axisymmetric met-
ric (1) are:

a1 = A,r

AB
, a2 = A,θ

AC
, j1 = − B,θ

BC
, j2 = C,r

BC
, (4)

j6 = (ln(R2 + A2ψ2)),r

2B
, j9 = (ln(R2 + A2ψ2)),θ

2C
, (5)

	2 = Aψ,r

2B
√
R2 + A2ψ2

and 	3 = Aψ,θ

2C
√
R2 + A2ψ2

. (6)

3 All geodesic

To obtain all possible geodesics in any axially symmetric
space-time, we define the tangent vector to the geodesic Zα

as

Zα ≡ dxα

dλ
= z0V

α + z1K
α + z2L

α + z3S
α , (7)

and, its norm, ε = ZαZα = −z2
0 + z2

1 + z2
2 + z2

3, represents
photon (ε = 0) and particle (ε = −1) trajectories.

In what follows we shall make use of the geodesic equa-
tions Zα;β Zβ = 0, written in the tetrad formalism as

z1z
†
1 + z2z

θ
1 = j1z1z2 + 2z0z3	2 − a1z

2
0 + j2z

2
2 + j6z

2
3

(8)

and

z1z
†
2 + z2z

θ
2 = − j2z1z2 + 2z0z3	3 − a2z

2
0 − j1z

2
1 + j9z

2
3 .

(9)

Because the norm of the tangent vector Zα is constant:
ZαZα = ε ⇒ Zα;β Zα = 0, and we get

z1z
†
1 + z2z

†
2 = j6z

2
3 + 2z0z3	2 − a1z

2
0 and (10)

z1z
θ
1 + z2z

θ
2 = j9z

2
3 + 2z0z3	3 − a2z

2
0 ; (11)

where we have the derivatives z† ≡ 1
B z,r and zθ ≡ 1

C z,θ .

3.1 First order geodesic equations

Substracting (10) from (8) and (11) from (9) we have

z2(z
†
2 − zθ1 + j1z1 + j2z2) = 0 and (12)

z1(z
†
2 − zθ1 + j1z1 + j2z2) = 0 . (13)

This system describes all possible geodesic equations for any
axially symmetric space-time, having Kerr and Schwarzschild
metrics as particular cases.

3.2 Solutions for all geodesic cases

The four cases which solve the system (12)–(13):

1. z2 = 0 and z1 = 0, are circular orbits for θ = const .
2. z2 = 0 and zθ1 = j1z1, are orbits for θ = const .

3. z1 = 0 and z†
2 = − j2z2, are spherical orbits.

4. z†
2 − zθ1 + j1z1 + j2z2 = 0 is the most general case.

This is an exhaustive classification containing all possible
cases for geodesic motions. Following subsections present
the equations for each alternative and an application to the
Kerr space-time.

3.3 Circular orbit on a plane

In the first case the system (12)–(13) is solved by z2 = 0
and z1 = 0, i.e the radial and the angular coordinate, θ , are
constant. Thus, we obtain bounded orbits confined to a plane
and the set of equations becomes,
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j6z
2
3 + 2z0z3	2 − a1z

2
0 = 0 , (14)

j9z
2
3 + 2z0z3	3 − a2z

2
0 = 0 , (15)

z1 = f ′
1

B
= 0 , and z2 = f2,θ

C
= 0 . (16)

3.4 General orbital motion on a constant plane

The second solution for Eqs. (12)–(13), emerges from the
conditions z2 = 0 and zθ1 = j1z1. Then, the geodesic equa-
tions reduce to

j6z
2
3 + 2z0z3	2 − a1z

2
0 − z1z

†
1 = 0 , (17)

j9z
2
3 + 2z0z3	3 − a2z

2
0 − j1z

2
1 = 0 , (18)

z1 = f ′
1

B
�= 0 and z2 = f2,θ

C
= 0 . (19)

3.5 General orbits on the two-sphere

The third set of solutions we shall consider are general orbits
circumscribed on a 2-sphere (θ − φ), recently reported in
reference [13]. This occurs having z1 = 0 and z†

2 = − j2z2,
and the corresponding geodesic equations are

j6z
2
3 + 2z0z3	2 − a1z

2
0 + j2z

2
2 = 0 , (20)

j9z
2
3 + 2z0z3	3 − a2z

2
0 − z2z

θ
2 = 0 , (21)

z1 = f ′
1

B
= 0 and z2 = f2,θ

C
�= 0 . (22)

3.6 The general case

The last case emerges from z†
2 −zθ1 + j1z1 + j2z2 = 0. This is

the most general case, and the system of geodesic equations
becomes

j6z
2
3 + 2z0z3	2 − a1z

2
0 + j2z

2
2 − z1z

†
1 = 0 , (23)

and j9z
2
3 + 2z0z3	3 − a2z

2
0 − j1z

2
1 − z2z

θ
2 = 0 ; (24)

with z1 = f ′
1

B
�= 0 and z2 = f2,θ

C
�= 0 . (25)

The solution of the equation is

z†
2 − zθ1 + j1z1 + j2z2 = 0 ⇒ z1 = f † and z2 = f θ (26)

with f = f (r, θ) an arbitrary function of its arguments.
Consequently, zθ1 = j1z1 and z†

2 = − j2z2, which in turn
allows us to transform (8) and (9) into

z1z
†
1 = 2z0z3	2 − a1z

2
0 + j2z

2
2 + j6z

2
3 (27)

and

z2z
θ
2 = 2z0z3	3 − a2z

2
0 − j1z

2
1 + j9z

2
3 . (28)

4 Symmetry and geodesic equations

In this section we shall discuss the consequences on imposing
symmetries, i.e. Killing vectors and tensors, on the source
generating the geodesic equations.

4.1 Killing vectors

From the Killing equation

LX gαβ = gδαX
δ
,β + gβδX

δ
,α + gαβ,δX

δ ,

we can identify temporal and axial Killing vectors as

τα = τ0V
α ⇒ τ0 = A and (29)

ξα = ξ0V
α + ξ3S

α ⇔
ξ0 = −ω3

A
and ξ3 =

√
�2

A
. (30)

These Killing vectors provide the energy E = ταZα and
angular momentum l = ξαZα .

Thus, z0;α = −z0a1Kα − a2z0Lα ⇒ z0 = − E
A , and

z3;α = −(2z0	2 + j6z3)Kα − (2z0	3 + j9z3)Lα , (31)

with z3 = A2l+Eω3
A
√

�2
.

Now the set of equations for the parallel transport of the
vector Zα , can be written as

dt

dλ
= z0

A
+ z3ω3

A
√

�2
,

dr

dλ
= z1

B
, (32)

dθ

dλ
= z2

C
and

dφ

dλ
= z3A√

�2
. (33)

The above equations lead to the following characteristic
expressions:

Bdr

z1
= Cdθ

z2
= �2dφ

A2l + ω3E
. (34)

4.2 Killing tensor

Killing tensors are useful because they also provide con-
served quantities for geodesic motion. The most famous is
obtained for the Kerr space-time where the Killing tensor
leads to the Carter constant [12].

For the stationary axially symmetric space-time, the
Killing tensor ξαβ satisfies ξαβ;μ +ξμα;β +ξβμ;α = 0, which
can be written as

ξαβ = ξ00VαVβ + ξ11KαKβ + ξ22LαLβ

+ξ33SαSβ + ξ03(VαSβ + Vβ Sα) (35)
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Integrating the Killing tensor equation we obtain

ξ00 = ξ(r) + ω2
3

A2 , ξ11 = C2 + ξ(r) , ξ22 = ξ(r) , (36)

ξ33 = ξ(r) + �2

A2 and ξ03 = �ω3

A2 . (37)

We have � = (r2 − 2mr + a2) sin θ and ξ(r) an r -function.
Thus, the general conserved quantity Q for ξαβ is

Q = ξαβ Z
αZβ ⇒ Q;μZμ = 0 . (38)

Since Z has a constant modulus we found

z2
1 + z2

2 = ε + z2
0 − z2

3 and (39)

ξ11z
2
1 + ξ22z

2
2 = Q + 2ξ03z0z3 − ξ00z

2
0 − ξ33z

2
3 , (40)

obtaining that the scalars z1 and z2 are

z1 =
√
g1(r, θ)

C
and z2 =

√
g2(r, θ)

C
, (41)

with

g1(r, θ) = Q − ξ22ε + 2ξ03z0z3

−(ξ00 + ξ22)z
2
0 + (ξ22 − ξ33)z

2
3, (42)

and

g2(r, θ) = ξ11ε − Q − 2ξ03z0z3

+(ξ00 + ξ11)z
2
0 + (ξ33 − ξ11)z

2
3. (43)

The new conserved quantity Q recovers the Carter constant
Qc for the Kerr metric [11,12]

The following sections implement all the previous cases
to the particular example of the Kerr space-times.

5 The Kerr metric

To illustrate the different cases mentioned above, we consider
� = r2 + a2 cos2 θ in the Kerr metric, i.e.

ds2 = −
(

1 − 2mr

�

)
dt2 − 4mar sin2 θ

�
dtdφ

+ �

r2 − 2mr + a2 dr2 + �dθ2

+ sin2 θ

(
r2 + a2 + 2ma2r sin2 θ

�

)
dφ2. (44)

5.1 Kerr killing tensor and geodesic motions

It is easy to verify that, assuming the metric (44), the general
solution of the system (12)–(13), for z1 �= 0 and z2 �= 0 is

zθ1 = j1z1 and z†
2 = − j2z2 . (45)

Thus, the separation constant method devised by Carter is
equivalent to solve the geodesic equations (27) and (28),
for the Kerr metric where Eqs. (42) and (43) become
g1(r, θ) = g1(r) and g2(r, θ) = g2(θ), i.e.

g1(r) = Qc + r2ε

+ E2(r4 + (2mr + r2)a2) + 4mar El + a2l2

r2 − 2mr + a2

and g2(θ) = −Qc − l2

sin2 θ
+ a2(ε + E2) cos2 θ , where Qc

is the Carter constant.

5.2 Kerr circular orbit on a plane

Considering the set of Eqs. (14)–(16) for the metric (44) with
θ = π

2 , Qc = l2 we get:

(ε + E2)r3 − 2mεr2 + (a2(ε + E2) − l2)r

+2m(Ea + l)2 = 0 (46)

and

(4ε + 5E2)mr3 − (6m2(2ε + E2) − a2(ε + E2)

+l2)r2 + m(a2(ε + 4E2) + 6aEl + 8εm2

+2l2)r − 2m2a2(ε − 2E2) − 4aElm2 = 0 . (47)

Equations (46) and (47) determine the radius of the cir-
cumference and related the physical constants. For instance,
when we have the specific case ε = a = 0 we obtain that
r = 3m and l = √

27Em.

5.3 Kerr general orbital motion on a constant plane

Equations (17)–(19) with θ = π
2 , and Q = l2 lead to

z2
1 = (ε + E2)r3 − 2mεr2 + (a2(ε + E2) − l2)r + 2m(aE + l)2

r3 − 2mr2 + a2r
.

(48)

For a null geodesics and a = − l
E we integrate (34) as

r = m +
√
a2 − m2 tan

(√
a2 − m2

a
(φ0 − φ)

)
(49)

where φ0 is a constant of integration.
Now for a time-like geodesic we have

x1(r) + x2(r)

1 − x1(r)x2(r)
= tan(β0(φ − φ0)) , (50)

with

x1(r) = β1 + β2r

β3

√
(E2 − 1)r2 + 2mr − a2

(51)

and x2(r) = β4 + β5r

β6

√
(E2 − 1)r2 + 2mr − a2

; (52)

where βk (k = 1, 2, 3, 4, 5, 6) are functions of the physical
parameters.
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5.4 Kerr general orbits on the two-sphere

In this case, from Eq. (22) we get

(ε + E2)r3 −2mεr2 + (a2(ε + E2) − l2)r

+2m(aE + l)2 = 0 (53)

and

f2,θ = cos θ
√
ã sin2 θ − l2

sin θ
; (54)

where we have redefined ã = a2(ε + E2).
Next, substituting (54) into (34) we obtain

(F2l − Ẽ)

F2
√
ã − l2

arctan

⎡
⎣

√
ã sin2 θ − l2

ã − l2

⎤
⎦

+ arctan

[√
ã sin2 θ − l2

l

]
+ φ0 − φ = 0 , (55)

with Ẽ = 2marlE + a2l and F2 = r2 − 2mr + a2.

5.5 The Kerr general case

The module of Z for the Kerr metric can be written as

(z2
1 + z2

2)C
2 = (ε + E2)a2 cos2 θ − l2

sin2 θ
+ εr2

+ E2(r4 + (r2 + 2mr)a2) + 4marlE + a2l2

r2 − 2mr + a2 . (56)

Substituting (26) into (56) we find

(r2 − 2mr + a2)( f ′)2 + ( f,θ )2 = (ε + E2)a2 cos2 θ − l2

sin2 θ

+εr2 + E2(r4 + (r2 + 2mr)a2) + 4marlE + a2l2

r2 − 2mr + a2 , (57)

which is an equation for the function f with a solution f =
f1(r) + f2(θ) where

( f ′
1)

2 = −Q + r2ε

r2 − 2mr + a2

+ E2(r4 + (2mr + r2)a2) + 4mar El + a2l2

(r2 − 2mr + a2)2

and f 2
2,θ = Q − l2

sin2 θ
+ a2(ε + E2) cos2 θ . (58)

Next, substituting (25) into (34) and considering zθ1 =
j1z1 and z†

2 = − j2z2, we obtain

dθ

f2,θ

= dr

f ′
1(r

2 − 2mr + a2)
and

dφ =
(

(F2 − a2 sin2 θ)l − 2mar E sin2 θ

F4 f ′
1 sin2 θ

)
dr , (59)

where F2 = r2 + a2 − 2mr .

Now, combining Eq. (59) we get

ldθ

sin2 θ f2,θ

− (a2l + 2maEr)dr

F4 f ′
1

= dφ , (60)

and by introducing

P(r) = a0r
4 + a1r

3 + a2r
2 + a3r + a4 , (61)

we get

f2,θ = −
√
P(cos θ)

sin θ
and f ′

1 =
√
P(r)

r2 − 2mr + a2 . (62)

Next, substituting r = x + b into (61) we get

P(x) = (
√
a0x + b1)

2(x + b2)(x + b3) ; (63)

with

a4 + a3b + a2b
2 + a1b

3 + a0b
4 = b2

1b2b3 , (64)

a3 + 2a2b + 3a1b
2 + 4a0b

3 = b2
1(b2 + b3) + 2

√
a0b1b2b3,

(65)

a2 + 3a1b + 6a0b
2 = (b1 + √

a0b2)(b1 + √
a0b3) (66)

and a1 + 4a0b = 2
√
a0b1 + a0(b2 + b3) . (67)

Consequently first integrals in r and θ of the Eq. (60) can
be obtained as

∫
(κ1x + κ2)dx

(x2 + s1x + s2)

√
(
√
a0x + b1)2(x + b2)(x + b3)

= α1 arctan γ1�(x) + α2 arctan γ2�(x) + α3 arctan γ3�(x) ;
(68)

where �(x) =
√

b2+x
b3+x , where γi and α j , with i = 1, 2, 3 and

j = 0, 1, 2, 3.
Now, implementing the procedure described above for the

polynomial (63) we get

P(r) = (ε + E2)r4 − 2mεr3 + (a2(ε + E2)

−l2)r2 + 2m(aE + l)2r , (69)

and find b = 0, b3 = 0, a0 = ε + E2, b2
1 + 2mε√

ε+E2 b1 +
a2(ε + E2) − l2 = 0 and b2 − 2m(aE+l)2

b2
1

= 0.

Next, integrating the Eq. (60) we get

arctan

[√
ã sin2 θ − l2

ã − l2

]

−
√

ã − l2

b1(a0b2 − b1)
arctan

[√
a0b2 − b1

b1

√
r

r + b2

]
= C1

(70)
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and

arctan

[√
ã sin2 θ − l2

l

]

+ l√
ã − l2

arctan

⎡
⎣

√
ã sin2 θ − l2

l2 − ã

⎤
⎦

−2α1 arctan
[
γ1�

] − α2 arctan
[
γ2�

]
−α3 arctan

[
γ3�

] = C2 (71)

with � =
√

r
b2+r , where G = G(C1,C2) becomes its gen-

eral solution.

6 Conclusions

This work presents a method to classify and solve all geodesic
motion analytically around any stationary axially symmetric
source. The method summarises all these possible geodesic
trajectories into two simple Eqs. (12) and (13), with ease in
obtaining solutions. These distinct solutions allow us to clas-
sify the different trajectories for particles and photons. All the
possible geodesics have been implemented for the Kerr met-
ric, representing the gravitational field produced by a rotating
compact object. In particular, those orbiting on a two-sphere
surface could be especially relevant for describing observa-
tional data ( see [3,18,19] and references therein). Now, it
will be possible to build templates from exact General Rela-
tivistic analytical solutions, i.e. without any approximations
for the orbits of stars [1–3], and the imaging of black holes
[4,5,20]. The method shown here allows us to find solutions
of the form f1(r, θ) = C1 and f2(r, θ) = C2 (equations (70)
and (71)) which complement the standard elliptic integrals
procedure handling in writing down the geodesics trajecto-
ries ( see for example references [21–23] ). It is clear that in
the equations mentioned above (i.e.(70) and (71)), the elliptic
integrals can be avoided only for very particular choices of
αi .

We found the most general for this Killing tensor corre-
sponding to any axisymmetric space-time and its linked con-
stant of motion. The existence this general constant of motion
–along the geodesic– is clear from a simple system of alge-
braic equations (39) and (40). Again, the general expression
for the constant along the geodesic could help to obtain solu-
tions for the geodesic in a more general context where the
Kerr metric may not adequately describe the gravitational
field (see [24] and references therein). This new conserved
quantity recovers the Carter constant for the Kerr metric (
[11,12]).

Although we have considered Kerr space-time a helpful
example, the equations for each case in our classification
are general and valid for any axisymmetric metric. Analytic

solutions for geodesic with more complex Kerr-like sources
describing richer rotational compact objects could fit better
the trajectories of the stars or represent more accurate black
hole imaging or open the possibility of new information from
gravitational wave astronomy.
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