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Abstract We derive a general formula for the early time
dependence of a phase space distribution evolving according
to the kinetic Boltzmann equation. Assuming that the early
evolution of the system created in high-energy nuclear col-
lisions can be described by kinetic theory, we calculate the
scaling behaviors for the onset of various characteristics of
the transverse dynamics. In particular, we show that the scal-
ing behavior of the anisotropic flow coefficients vn at early
times does not depend on the details of the collision kernel
or the system composition, while at the same time it differs
from the prediction of fluid dynamics.

1 Introduction

Ultrarelativistic nuclear collisions at the Relativistic Heavy-
Ion Collider (RHIC) and the Large Hadron Collider (LHC)
produce a large number of particles, whose bulk, consisting
of soft hadrons, exhibits many signals of collective dynamical
behavior. The latter, referred to as collective flow, is almost
universally interpreted as the genuine space-time evolution
of the created system. One of the key observables of bulk
collectivity involved is anisotropic flow, i.e. the asymmetry
in the transverse emission pattern of particles [1,2].

The collective dynamical evolution of the bulk is com-
monly modeled as the dissipative expansion of a relativistic
fluid, at least for a significant part of the system history. Such
modeling, possibly supplemented with a dynamical “pre-
equilibrium” stage (see Refs. [3,4] for recent reviews) and
a hadronic afterburner following the fluid-dynamical evolu-
tion, yields a very good description of experimentally mea-
sured soft hadron production in collisions of heavy nuclei.
More surprisingly, it can also satisfactory describe the bulk
in collisions of smaller systems with a large final-state mul-
tiplicity [5].
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The use of fluid dynamics is however more questionable
in such systems with few degrees of freedom [6]. Moreover,
since the overall system lifetime is shorter, the pre- and post-
equilibrium stages become comparatively more important in
the evolution. This has led to a renewed interest in alternative
descriptions of collective flow, in particular in kinetic-theory
models. In this framework, a number of recent studies inves-
tigated anisotropic flow for setups with a simplified initial
geometry [7–13] – to put aside the uncertainties in the ini-
tial state of actual small systems –, revisiting and extending
earlier approaches [14–16].

In this spirit, we consider in this paper a system of degrees
of freedom described by a single-particle phase space distri-
bution f (t, �x, �p) obeying the kinetic Boltzmann equation
[17]

pμ∂μ f (t, �x, �p) = C[ f ], (1)

with C[ f ] the collision term modeling the effect of rescat-
terings, whose dependence on the position �x and momentum
�p we do not denote. As is customary in the study of nuclear
collisions at ultrarelativistic energies, we do not include the
possible influence of a mean field on the left hand side of this
equation. We focus on the development of anisotropic trans-
verse flow and the system geometry at early times, inves-
tigating their respective scaling behaviors as a function of
time and of the average number of rescatterings per particle,
characterized by an inverse Knudsen number.

The time evolution of anisotropic flow and spatial char-
acteristics of the system created in heavy-ion collisions has
already been studied before, either in fluid-dynamical [18–
21] or transport [13,15] calculations, extended over the whole
system lifetime, yet always for specific initial conditions. In
contrast, it was found in Ref. [22] that irrespective of the
initial state, the early-time development of (the azimuthally
symmetric component of) transverse flow seems to be uni-
versal, with a growth linear in time for various classes of
models. Here we do not investigate several classes of models
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but “only” kinetic theory – yet at a quite general level – and
we also do not specify the initial state of the system but leave
it arbitrary.

We begin in Sect. 2 by discussing the time development of
the quantities we are interested in in a collisionless system. In
Sect. 3, we introduce the early-time expansion of the phase
space distribution, following from the Boltzmann equation,
which we later use to derive the behavior of anisotropies in an
interacting system. We then investigate in Sect. 4 the special
case of a two-dimensional system of massless particles with
elastic binary rescatterings, before generalizing in Sect. 5
to the case of a generic kinetic theory, before we discuss
our results (Sect. 6). A few calculations relevant to Sect. 3–
5 are included in appendices. Throughout the paper we set
c = h̄ = 1 and we use a metric with negative signature.

2 Free streaming system

Let us first investigate a non-interacting system, for which
the collision term on the right hand side of Eq. (1) vanishes.
How anisotropic flow and the spatial eccentricities behave
in such a system is well known. Since there are no rescat-
terings, the momentum distribution of the particles cannot
change, in particular the flow harmonics vn . In turn, in the
absence of initial anisotropic flow the spatial eccentricities
monotonously decrease in absolute value, tending towards
0 at large times. We shall nevertheless discuss the case of
such a system in some detail, first, to introduce a few nota-
tions. And secondly, because our results in this section will
prove to be useful when we consider the early-time evolu-
tion of an interacting system, in which the calculations will
be performed in the vicinity of the non-interacting case.

As is well known, the solutions of the collisionless Boltz-
mann equation are free-streaming solutions obeying the func-
tional relation

ff.s.(t, �x, �p) = ff.s.

(
t0, �x − �p

E
(t − t0), �p

)
, (2)

where t0 denotes a reference time, in particular the initial
time of the evolution. Throughout the paper we shall often
denote with a subscript 0 the value at t0 of a function of time
(and possibly other variables), as e.g. f0(�x, �p) = f (t0, �x, �p).
Without loss of generality, we shall take t0 = 0 in our calcu-
lations.

Let g(�x, �p) be a function of the phase space coordinates.
We denote by 〈· · ·〉f.s.

t an average with a free-streaming dis-
tribution ff.s.(t, �x, �p) taken at time t :

〈g(�x, �p)〉f.s.
t ≡

∫
g(�x, �p) ff.s.(t, �x, �p) d3 �x d3�p, (3)

where the integral runs over the whole phase space. More
generally, all averages throughout the paper are performed
over phase space and use a particle-number density as weight.

Using the characteristic relation (2) in the integrand, a
straightforward change of variables allows one to express
〈g(�x, �p)〉f.s.

t in terms of an average at t0:

〈g(�x, �p)〉f.s.
t = 〈

g
(�x + �v t, �p)〉0 , (4)

where �v ≡ �p/E . Note that we drop the the superscript f.s.
when denoting the average in the initial state. With the help
of this identity one can readily derive the time evolution in a
non-interacting system of the spatial “eccentricities” [21,23]

εxn ein�n ≡ −
〈
rn⊥einθ

〉
〈
rn⊥

〉 , (5)

where (r⊥, θ) are polar coordinates in the transverse plane
evaluated in a centered frame, so that the definition is only
interesting for n ≥ 2. For simplicity, we assume that the ini-
tial phase space distribution is isotropic in momentum space
at each point �x .

Setting �2 = 0 for the moment, we being with the “ellip-
ticity”

εx2 ≡
〈
y2 − x2

〉
〈
x2 + y2

〉 , (6)

whose behavior in a free-streaming system has already been
investigated [24]. If each average in Eq. (6) is computed with
a free-streaming solution, relation (4) yields
〈
x2

〉f.s.

t
=

〈
(x + vx t)

2
〉
0

=
〈
x2

〉
0
+ t2

〈
v2
x

〉
0
,

where we used 〈vx 〉0 = 0 as follows from the assumed
isotropy in momentum space. Similarly, one has
〈
y2

〉f.s.

t
=

〈
y2

〉
0
+ t2

〈
v2
y

〉
0
.

Momentum-space isotropy also yields
〈
v2
x

〉
0

=
〈
v2
y

〉
0

= 1

2

〈
v2⊥

〉
0
,

where v⊥ = |v⊥| is the modulus of the transverse velocity,
so that one quickly finds [24]

εx2 (t) = εx2 (t0)

1 + 〈
v2⊥

〉
0 t

2/
〈
r2⊥

〉
0

, (7)

where
〈
r2⊥

〉
0 ≡ 〈

x2 + y2
〉
0. This result is unchanged if the

initial participant-plane angle �2 is not aligned with the x-
axis: in a non-interacting system without initial flow, �2 does
not change with time. As anticipated, (the modulus of) εx2 (t)
decreases with time, with an early-time departure from its
initial value that is quadratic in time:

εx2 (t) � εx2 (t0)

(
1 −

〈
v2⊥

〉
0〈

r2⊥
〉
0

t2
)

for t 	
(〈
r2⊥

〉
0〈

v2⊥
〉
0

)1/2

. (8)
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As we shall now show, the spatial eccentricity εxn in the n-th
harmonic also departs quadratically with time from its initial
value in a free streaming system without initial anisotropic
flow.1 Consider thus

εxn ein�n = −
〈
rn⊥einθ

〉
〈
rn⊥

〉 = − 〈(x + iy)n〉〈
(x2 + y2)n/2

〉 . (9)

In the case of a non-interacting system, invoking Eq. (4) for
the numerator yields

〈
(x + iy)n

〉f.s.
t = 〈[

(x + vx t) + i(y + vyt)
]n 〉

0

= 〈[
(x + iy) + (vx + ivy)t

]n 〉
0 .

Introducing the azimuthal angle ϕ of the velocity (or equiv-
alently the momentum), we can switch back to polar coordi-
nates: x + iy = r⊥eiθ and vx + ivy = v⊥eiϕ . This yields

〈
rn⊥einθ

〉f.s.

t
=

n∑
k=0

(
n

k

)〈
rn−k
⊥ ei(n−k)θ vk⊥eikϕ

〉
0
tk .

Due to the local isotropy in momentum space, every average
of eikϕ with k 
= 0 vanishes, so that the above average is
actually time-independent:
〈
rn⊥einθ

〉f.s.

t
=

〈
rn⊥einθ

〉
0
. (10)

In particular the phase of
〈
rn⊥einθ

〉f.s.
t remains constant, i.e.

the participant-plane angle �n does not rotate in the absence
of interactions, which is quite intuitive.

For the denominator of Eq. (9), we similarly write

〈
rn⊥

〉f.s.
t =

〈[
(x + vx t)

2 + (y + vyt)
2]n/2

〉
0
. (11)

If n is even, the quantity to be averaged can be exactly com-
puted for any t with the binomial theorem. Invoking the
isotropy in momentum space, only the terms with even pow-
ers of both vx and vy remain after averaging. If we only look
at the early-time behavior, a Taylor expansion valid for both
even and odd values of n yields

〈[
(x + vx t)

2 + (y + vyt)
2]n/2

〉
0

�
〈
(x2 + y2)n/2

〉
0

[
1 + O

(〈
v2⊥

〉
0〈

r2⊥
〉
0

t2
)]

,

where the factor multiplying the term in t2 depends on n and
is positive. All in all, one finds

εxn (t) � εxn (t0)

[
1 − O

(〈
v2⊥

〉
0〈

r2⊥
〉
0

t2
)]

for t 	
(〈
r2⊥

〉
0〈

v2⊥
〉
0

)1/2

, (12)

1 To the best of our knowledge, this behavior has not been reported in
the literature before.

similar to Eq. (8).
The results of this section can be extended in a straight-

forward way to the generalized spatial eccentricities [21,23]

εxn,m ein�m,n ≡ −
〈
rm⊥ einθ

〉
〈
rm⊥

〉 . (13)

In a free-streaming system without initial anisotropic flow,
the numerator of the ratio on the right hand side is actu-
ally independent of time. In turn, the denominator increases
with t2, so that eventually one finds the same behavior as in
Eq. (12), with a different factor in front of the term in t2.

3 Interacting system: general idea

In this section we introduce a general early-time expansion of
the phase space distribution of an interacting system obeying
the Boltzmann equation, by carefully exploiting the latter.
This expansion will form the basis of our calculations of the
development of anisotropic flow and spatial eccentricities in
the following two sections.

Consider an arbitrary single-particle phase space distribu-
tion f (t, �x, �p). (Strictly speaking, the distribution needs to
vanish quickly enough as |�x | or |�p| go to infinity to be nor-
malized to the number of particles in the system. In addition,
we assume that it is sufficiently continuously differentiable
for our equations to make sense.) If one is interested in the
early-time evolution starting from a known initial condition
at t = t0, one can begin with the Taylor expansion

f (t, �x, �p) = f0(�x, �p) + t ∂t f (�x, �p)∣∣0

+ t2

2
∂2
t f (�x, �p)∣∣0 + · · · (14)

where f and its successive time derivatives are evaluated
at the initial time t0 = 0. The early-time behavior is thus
governed by these time derivatives.

Making use of the relativistic Boltzmann equation (1), the
first time derivative in Eq. (14) trivially reads

∂t f (�x, �p)∣∣0 = − �p
E

· �∇x f (�x, �p)∣∣0 + 1

E
C[ f ]∣∣0. (15)

If we now differentiate the Boltzmann equation with respect
to time, we obtain an expression for ∂2

t f as a function of
∂t �∇x f and the time derivative ∂tC[ f ] of the collision term.
Exchanging the order of time derivative and gradient in the
term ∂t �∇x f = �∇x∂t f and replacing ∂t f by its expression as
given by Eq. (1), one finds

∂2
t f (t, �x, �p) =

( �p
E

· �∇x

)2

f (t, �x, �p)

− �p
E2 · �∇xC[ f ] + 1

E
∂tC[ f ], (16)
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which can then be evaluated at t0. Given an explicit expres-
sion for the collision termC[ f ], the time derivative ∂tC[ f ]|0
will generically involve ∂t f |0, which can again be replaced
by the right hand side of Eq. (15). We can thus eliminate time
derivatives at t0 in a systematic manner, replacing them by
expressions that only involve the spatial dependence of the
initial distribution f0(�x, �p).

Iterating this approach, one finds

f (t, �x, �p) = f0(�x, �p) + t

(
− �p

E
· �∇x f (�x, �p) + 1

E
C[ f ]

)
0

+ t2

2

((�p · �∇x
)2

E2 f (�x, �p) − �p
E2 · �∇xC[ f ] + 1

E
∂tC[ f ]

)
0

+ t3

3!
(
−

(�p · �∇x
)3

E3 f (�x, �p) +
(�p · �∇x

)2
E3 C[ f ]

− �p
E2 · �∇x∂tC[ f ] + 1

E
∂2
t C[ f ]

)
0

+ t4

4!
((�p · �∇x

)4
E4 f (�x, �p) −

(�p · �∇x
)3

E4 C[ f ]

+
(�p · �∇x

)2
E3 ∂tC[ f ] − �p

E2 · �∇x∂
2
t C[ f ] + 1

E
∂3
t C[ f ]

)
0

+ O(t5). (17)

This lengthy expression can be shortened if one realizes that
the terms that do not involve the collision kernel C[ f ] or
its derivatives are actually the successive time derivatives
of the free-streaming distribution ff.s.(t, �x, �p) that coincides
with f0(�x, �p) at the initial time t0, see Eq. (2). Thus we may
rewrite Eq. (17) as

f (t, �x, �p) = ff.s.(t, �x, �p) + t
C[ f ]∣∣0

E

+ t2

2

(
− �p

E2 · �∇xC[ f ] + 1

E
∂tC[ f ]

)
0

+ t3

3!
((�p · �∇x

)2
E3 C[ f ] − �p

E2 · �∇x∂tC[ f ] + 1

E
∂2
t C[ f ]

)
0

+ t4

4!
(
−

(�p · �∇x
)3

E4 C[ f ] +
(�p · �∇x

)2
E3 ∂tC[ f ]

− �p
E2 · �∇x∂

2
t C[ f ] + 1

E
∂3
t C[ f ]

)
0

+ O(t5). (18)

Note that the first term on the right hand side actually resums
all orders in t , i.e. is automatically valid at any order in t
in the absence of interactions. In the following sections we
shall exploit Eq. (18) to investigate how the early time evo-
lution of geometric eccentricities or anisotropic flow coef-
ficients departs in the presence of rescatterings from their
free-streaming behavior.

Before that, let us further discuss expansion (18). The
coefficient of the linear term in t and the first terms in the fac-
tors within parentheses multiplying the higher-order powers
of t are of the generic form

(−�p · �∇x
)k

Ek+1 C[ f ]∣∣0, (19)

with k ≥ 0. These contributions only involve the initial phase
space distribution f0 and its spatial derivatives, which can be
signaled by writing the collision term C[ f0]. If σ is a typical
cross section for the rescatterings modeled by the collision
term, the terms (19) are of order O(σ ). Equivalently, these
terms are of order O(Kn−1), where Kn denotes a character-
istic Knudsen number built from the mean free path and a
typical length scale of the initial state distribution. Although
the definition of Kn is arbitrary, we shall from now on sys-
tematically use O(Kn−1) instead of O(σ ), since the Knudsen
number is dimensionless while the cross section is not. Since
Kn−1 is roughly speaking a measure of the average number
of rescatterings undergone by each particle in the system, it
is similar to the opacity used in a number of related studies
[8,10,11,13].

Starting from order t2 the expansion (18) contains terms
of the form

(−�p · �∇x
)k

Ek+1 ∂tC[ f ]∣∣0

tk+2

(k + 2)! , (20)

with k ≥ 0. As was already mentioned, the time deriva-
tive ∂tC[ f ] can be computed when the collision kernel is
known, by replacing every ∂t f as in Eq. (15). Accordingly,
the term (20) for a given k will yield two types of contri-
butions: on the one hand, terms involving (k + 1)-th spatial
derivatives of f0 while being of order O(Kn−1), like the
contributions of the form (19). On the other hand, there also
come terms of order O(Kn−2), with spatial derivatives of f0
of order k only. As an example, we present in Appendix A
the calculation of ∂tC[ f ] for a specific choice of collision
kernel.

More generally, transforming the factor in front of the term
of order tk with k ≥ 1 in Eq. (18) so as to express every time
derivative at t0 in terms of spatial gradients of f0 – possibly
entering (iterated) collision kernels –, one finds that the fac-
tor involves contributions at order Kn−1, Kn−2, …(Kn−1)k .
Equation (18) thus implicitly contains a double expansion in
powers of both t and Kn−1, where for consistency only the
powers (Kn−1) j with j ≤ k should appear at order tk . Con-
versely, corrections to the free-streaming distribution of order
(Kn−1) j only come up at order t j and higher in Eq. (18).
Thus, we are in principle able to go beyond the linear order
in Kn−1 to which the (semi-)analytical results existing in the
literature [9,13,14,16,25] are usually restricted.
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4 Early-time behavior of a two-dimensional system of
massless particles with elastic rescatterings

To illustrate how the ideas introduced in the previous section
can be used to derive the early time behavior of quantities
characterizing the expanding system, we shall now choose a
specific ansatz for the collision kernel C[ f ] of the Boltz-
mann equation. Since it is possibly the simplest possible
case, we consider a system of massless particles without spin,
undergoing elastic binary collisions, and propagating in two
dimensions2 only, namely the transverse plane of a nucleus-
nucleus collision. As we discuss below, the latter assump-
tion – which will be relaxed in Sect. 5.1 – together with that
of massless particles significantly simplifies the form of the
Møller velocity3

vrel. =
√

(�v − �v1)2 − |�v × �v1|2 (21)

in the collision integral [17]

C[ f ] = E

2

∫
( f ′ f ′

1 − f f1)vrel.
dσ

d�
d� d2p1, (22)

where we did not denote the arguments of the phase space
distribution before (unprimed) or after (primed) a collision,
while � is the scattering angle and dσ/d� the corresponding
differential cross section. To remain as general as possible,
we do not specify the latter – which in the two-dimensional
case has the dimension of a length –, nor the form of the
initial phase space distribution. Instead of Eq. (22), we shall
also use the equivalent form [17]

C[ f ] = 1

2

∫
( f ′ f ′

1 − f f1)W (p,p1 → p′,p′
1)

× d2p1

(2π)2E1

d2p′

(2π)2E ′
d2p′

1

(2π)2E ′
1
, (23)

with the transition rate W (p,p1 → p′,p′
1), which has the

advantage to be more easily generalized to other types of
rescatterings.

We shall assume that the initial distribution f0(x,p) is
isotropic in momentum space at each point x, so that there
is no initial anisotropic flow in the system. In contrast, the
spatial distribution in the initial state is asymmetric and in
particular depends on the polar angle θ . To represent this
variation with θ , we symbolically write

f0 = f̄0 +
∑
n 
=0

δn f
(n)
0 e−inθ , (24)

where the real-valued functions f̄0 and f (n)
0 are independent

of θ , while δn is a dimensionless complex number charac-

2 Two-dimensional vectors will be denoted in boldface: x, p.
3 We use the notation vrel., although the Møller velocity does not coin-
cide with the relative velocity.

terizing the modulation of period 2π/n in θ . To ensure that
f0 is real-valued, both δ−n = δ∗

n and f (−n)
0 = f (n)

0 should
hold for every n. Clearly, the eccentricity εxn and its general-
izations (13) will be proportional to δn :

εxn,m ∝ δn . (25)

Equation (24) is meant to be schematic and to stand for the
polar dependence of any systematic expansion relying on a
true complete basis of functions on the transverse plane, like
the cumulant [21] or the Bessel–Fourier [26,27] expansions.

4.1 Anisotropic flow

In a kinetic description, anisotropic flow results from the
rescatterings in the system, which convert the asymmetry
of its initial geometry into an an anisotropy in momentum
space. The Fourier coefficients quantifying the momentum-
distribution anisotropies can be obtained from the phase
space distribution:

vn(t) ≡ ∣∣vn(t)∣∣ein�n(t) =

∫
f (t, x,p) einϕp d2x d2p∫

f (t, x,p) d2x d2p
, (26)

where ϕp denotes the azimuth of p. While the integral over x
runs over the whole position space, that over p can either be
over the whole momentum space or restricted to an interval
in |p| (while still running over the whole range for ϕp). In the
following we solely discuss the first possibility (“integrated
flow”), since the second one depends more crucially on the
details of the microscopic interaction rate and of the initial
phase space distribution. Accordingly, we do not consider
directed flow v1, since its integrated value is fixed to its initial
value (here zero) by global momentum conservation.

When the integration runs over the whole phase space,
the denominator of Eq. (26) is simply the total number of
particles in the system. Since we assume in this section that
the latter only has elastic scatterings, this number remains
constant in time.

4.1.1 Leading contribution at early times

Since the denominator of Eq. (26) is constant, the whole time
dependence of vn(t) comes from the numerator, in which
we can now substitute the early-time expansion (18) for
f (t, x,p). The first term from the free-streaming distribu-
tion ff.s. does not contribute to vn(t), since we assumed that
there is no initial anisotropic flow. The next term linear in t
does not contribute either: it consists of the collision kernel
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C[ f0] in the initial state, and every phase space distribution
entering it is isotropic in momentum space.4

The term quadratic in time in expansion (18) is the first
one involving a contribution of the form (19) with k ≥ 1,
namely −(p/E2) · ∇xC[ f ]∣∣0. This term does not contribute
to anisotropic flow at early times: performing first the inte-
gration over the transverse plane in Eq. (26), one encounters
the integral
∫

∇xC[ f ]∣∣0 d2x = 0, (27)

since the collision kernel vanishes at infinity. More generally,
at every order in expansion (18) the terms involving (powers
of) the spatial gradient of C[ f ]∣∣0 or of its time derivatives
will not contribute to the early-time behavior of anisotropic
flow, thanks to a similar argument: the integration over the
transverse plane yields zero at once. Thus the only terms in
Eq. (18) that can eventually contribute to vn(t) at early times
are those of the form (1/E)∂kt C[ f ]∣∣0, without spatial gradi-
ent in front, where the k-th time derivative of the collision
kernel appears at order tk+1.

Although (1/E)∂kt C[ f ]∣∣0 is not a total spatial gradient,
still it contains (powers of) ∇x – multiplied by a momentum
– when one computes explicitly the time derivative, as exem-
plified in Eqs. (A3)–(A4). Such terms thus couple the spatial
and momentum “components” of the phase space distribu-
tion, via the inner products p · ∇x , under the influence of the
particle rescatterings encoded in the transition rate, which is
why they are crucial for the development of anisotropic flow.
Let us sketch how a contribution to the n-th harmonic vn can
arise in the explicit calculation of Eq. (26).

First, note that einϕp , or equivalently its real and imaginary
parts, can be expressed in terms of powers of the components
of p and in fact involves the n-th power.5 Accordingly, any
non-zero contribution to vn(t) must involve a term in pn from
the early-time expansion of f (t, x,p). In the time deriva-
tive ∂kt C[ f ]∣∣0, such terms trivially appear if k = n, i.e. at
order tn+1. Closer investigation reveals that there are already
terms in pn at order tn – but they do not contribute to vn(t)
at early times. Keeping the discussion to first order in the
inverse Knudsen number, these terms come from combining
an “obvious” (p·∇x )

n−1 in ∂n−1
t C[ f ]∣∣0 with the factor p hid-

den in the Møller velocity (21), which for massless particles
reads

vrel. = 1 − p · p1

E E1
= 1 − cos(ϕp − ϕ1), (28)

4 To be more precise, a dependence on ϕp appears in C[ f0] via the
relative velocity. But it appears in the form ϕp − ϕ1 relative to the
azimuth ϕ1 of the “collision partner” labeled with 1, and thus disappears
in the integration over p1 with a momentum-isotropic distribution f1

∣∣
0.

5 This is of course obvious since einϕp = pn/|p|n , where we identify
the two-dimensional momentum p with a complex number px + i py .

where the second identity only holds in two dimensions (or
if the two particles have the same polar angle along the third
direction). As this expression shows, the term that could con-
tribute to vn(t) at order tn also involves a multiplicative factor
p1, i.e. will yield an odd function of p1 in the integrand of
the collision kernel: this vanishes in the integration over p1,
thus giving no contribution to vn(t). 6

We mentioned above that the terms from expansion (18)
of the form (1/E)∂kt C[ f ]∣∣0 involve contributions of higher
order in the inverse Knudsen number Kn−1. Careful account-
ing based on iterating Eq. (15) shows that at order tn+1 a term
in

(
Kn−1

) j is accompanied by n + 1 − j powers of ∇x (see
Appendix A): if j > 1, this cannot contribute to vn(t). Thus
the higher orders in Kn−1 affect the early time development
of vn at a higher order in t , as we shall discuss in next sub-
section.

From the above discussion, any non-zero contribution to
vn(t) at early times actually comes from a term in expan-
sion (18) that contains the n-th power of the spatial gradient
∇x . By investigating explicit examples, or more formally by
following a similar approach to that developed in Ref. [21],
one finds that this operator (∇x )

n together with the subse-
quent integration over x isolates the component with period-
icity 2π/n in the polar angle θ of the function it acts upon.
In the term in ∂nt C[ f ]∣∣0, these gradients appear in the form
of products [see Eqs. (A3)–(A4)]
[
p · ∇x f0(x,p)

E

]k[p1 · ∇x f0(x,p1)

E1

]n−k

,

with 0 ≤ k ≤ n. Replacing each f0 by its schematic expan-
sion (24), one finds that two kinds of terms contribute to
the n-th polar mode of ∂nt C[ f ]∣∣0: First, terms involving the

symmetric part f̄0 of one factor with the term in δn f
(n)
0

from the other factor, yielding a contribution proportional
to δn . And secondly, terms of the form δkδn−k f

(k)
0 f (n−k)

0
with |k| ≥ 1. Since every δk is proportional to the eccen-
tricity εxk , we recover the known fact [28–31] that vn gets
a linear contribution in εxn together with nonlinear contribu-
tions εxn−kε

x
k . What we show here for the first time is that in

a kinetic-transport approach all contributions to vn(t) grow
with the same power of t at early times, namely tn+1:

vn(t) ∼
early t

Kn−1

⎛
⎝K (1)

n,nε
x
n +

∑
k≥1

K (1)
n,n−k,kε

x
n−kε

x
k

⎞
⎠ tn+1,

(29)

where the scale defining the notion of an early time is given by
the typical transverse size of the system. The overall growth

6 To be thorough, the term in p · p1 from the Møller velocity can con-
tribute to the early time development of vn(t), but it has to multiply not
only a term in (p · ∇x )

n−1, but also a term p1 · ∇x (or an odd power
thereof): such a contribution can only appear at order tn+1 or higher.
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vn(t) ∝ tn+1 in transport computations was already observed
in Ref. [15,16] (and in Refs. [14,32] for v2), where it was
noted that it differs from fluid-dynamical calculations, which
yield the faster increase vn(t) ∝ tn .

Anticipating on the following subsection, let us list which
expected contributions to vn are missing from the scaling
behavior (29) but appear at higher orders in t . First, we
have already mentioned the terms of higher order in the
inverse Knudsen number. Secondly, fluid-dynamical simu-
lations [33,34], numerical solution of the Boltzmann equa-
tion [11] or transport calculations [35] have revealed cubic
contributions in the eccentricities to the flow harmonics, as
e.g. contributions in (εx2 )3 to v2 or v6. Such terms are also
absent from Eq. (29), because in a scenario with only binary
rescatterings and no quantum effects they appear at a higher
order in Kn−1 [9].

4.1.2 Higher order contributions at early times

From the previous subsection we know that at early times
anisotropic flow harmonics are “created” by the terms of the
type (1/E)∂kt C[ f ]∣∣0 in expansion (18). For vn(t), this gives
non-zero contributions starting at k = n, resulting in the
scaling behavior (29) in tn+1. We have also emphasized that
a necessary ingredient is the presence of (at least) n powers
of the spatial gradient ∇x in the expression of ∂kt C[ f ]∣∣0.

What happens if we push expansion (18) to order tn+2,
thus including the term in ∂n+1

t C[ f ]∣∣0? First, the terms of
order Kn−1 contain n + 1 powers of ∇x , which necessarily
multiply n + 1 momentum variables (p, p1…). In addition,
the contribution may include extra momentum factors – for
example from the p · p1 term in the Møller velocity (28) –,
which only come in pairs. Because the momentum variables
come in a number of parity opposite to that of n, such terms
cannot contribute tovn(t): when integrating over all momenta
to obtain the integrated vn , the integrand will turn out to be
odd in at least one of the momentum variables, and thus
yield zero. On the other hand, there can be non-vanishing
contributions to vn(t) of order Kn−1 at order tn+3, tn+5, and
so on.

The derivative ∂n+1
t C[ f ]∣∣0 also includes terms of order

Kn−2, see for instance the second line of Eq. (A3) in the case
n = 0 or Eq. (A5) for n = 1. These terms involve n powers
of ∇x , multiplied with their respective momentum variables.
Thus these terms can yield non-zero contributions to vn(t) at
early times, scaling as tn+2. Moreover, these terms include
products of (powers of gradients of) f with (powers of gradi-
ents of) the collision kernel C[ f ], and thus are “cubic” in the
phase space distribution for the Boltzmann kernel (22)–(23).
Accordingly, one quickly sees that the contributions to vn(t)
at order Kn−2 will not only include linear and quadratic terms
in the initial anisotropies εxn , similar to those in the parenthe-

ses of Eq. (29), but also cubic terms of the type

∑
k,l≥1

K (2)
n,n−k−l,k,lε

x
n−k−lε

x
k ε

x
l , (30)

as for instance contributions in (εx2 )3 to v2 or v6 [9]. However,
contributions to vn(t) that are quartic in the eccentricities –
for instance a contribution in (εx2 )4 to v8 – cannot appear at
order Kn−2 (and thus scales as O(tn+2)), but only at order
Kn−3 (resp. O(tn+3)).

Summarizing, we have found the following scaling behav-
ior of vn(t) at early times, starting from an initial state without
anisotropic flow:

vn(t) ∼
early t

∑
j≥1

(
Kn−1)j ∑

k≥0

a( j)
n,k t

n+2k+ j . (31)

In the case of a system of particles undergoing elastic binary
rescatterings and leaving aside quantum effects from the col-
lision kernel, the coefficient a( j)

n,k , which differ from one har-
monic to the other, may contain products of one, two, till at
most j + 1 spatial eccentricities εxl , see e.g. Eqs. (29) (for
j = 1) and (30) (for j = 2).

4.2 Spatial characteristics

The expansion (18) also allows one to determine to the early-
time development of quantities that characterize the spa-
tial geometry of the system. In contrast to the anisotropic
flow harmonics, these quantities are usually non-zero in the
initial state, and in addition they already evolve in a free-
streaming system, i.e. under the influence of the first term
ff.s. in Eq. (18). The subsequent terms, involving the collision
kernel, thus describe the change in the early-time develop-
ment due to rescatterings. As examples, we shall now discuss
the behaviors of the root-mean-square transverse radius

〈
r2⊥

〉
or the eccentricities εxn defined by Eq. (5).

In this subsection, we shall make extensive use of the
property (valid at any fixed x) [17]

∫ [
a(x) + pμb

μ(x)
]
C[ f ] d2p

E
= 0, (32)

for arbitrary functions a and bμ (with μ ∈ {0, 1, 2}) of posi-
tion. Physically, the identity encodes the conservation of par-
ticle number, energy and momentum in the binary collisions.

4.2.1 Root-mean-square radius

Let us first study how the typical size of the system, which
expands into the vacuum, increases. For that purpose, we can
for instance characterize the system size by the mean-square
(transverse) radius
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〈
r2⊥

〉
t
≡

∫
(x2 + y2) f (t, x,p) d2x d2p∫

f (t, x,p) d2x d2p
. (33)

The idea of the following calculations is readily extended to
other powers of r⊥. From Sect. 2 we know that the mean-
square radius already increases for a free-streaming system,
namely as

〈
r2⊥

〉f.s.

t
=

〈
r2⊥

〉
0
+

〈
v2⊥

〉
0
t2 =

〈
r2⊥

〉
0
+ t2, (34)

where the second identity follows from assuming massless
particles propagating in two dimensions only. Our task is to
determine how rescatterings modify this behavior at early
times.

The denominator in Eq. (33) is the total particle number of
the system and remains constant if only elastic rescatterings
are present in the system. In the following, we thus focus
on the numerator of Eq. (33). Inserting expansion (18) in this
numerator, the linear term in t from the rescatterings involves
an integral of the form
∫

g(x)C[ f ] d2x
d2p
E

, (35)

with g(x) = x2 + y2, independent of momentum, in the
present case. The integral over p at a fixed position x is of
the form (32) – with only a(x) = g(x) being non-zero –
and hence vanishes. Thus there is no contribution linear in
time to the early time development of

〈
r2⊥

〉
t in the classical

Boltzmann scenario, but we can already note that this is not
necessarily true for collision kernels that do not implement
particle-number conservation.

Turning next to the contribution from the term due to col-
lisions in t2 in expansion (18), it also vanishes for a collision
kernel C[ f ] conserving particle number and if the initial
distribution is isotropic in momentum space. First, one can
argue that an integral of the form (35) with any time deriva-
tive ∂kt C[ f ] instead of C[ f ] is also zero when the collision
kernel conserves particle number. Indeed, taking the time
derivative out of the integral over the phase space variables
yields
∫

g(x) ∂kt C[ f ] d2x
d2p
E

= ∂kt

∫
g(x)C[ f ] d2x

d2p
E

= 0,

(36)

since one eventually computes the total time derivative of a
function which is identically zero at any time. This ensures
that the term in ∂tC[ f ]∣∣0 t

2 does not contribute to
〈
r2⊥

〉
t at

early times.
In turn, we argue in Appendix B1 that the other collision-

induced term at order t2 in expansion (18), that involving
(p/E2) · ∇xC[ f ]∣∣0, does not contribute either to the early-

time development of the mean-square radius if the initial
distribution is isotropic in momentum.

Thus the elastic binary rescatterings described by the
Boltzmann collision kernel do not affect the leading con-
tribution to the increase of the root-mean-square transverse
radius

〈
r2⊥

〉
t of the system, which remains dominated by the

free-streaming expansion at early times. The first modifica-
tion from rescatterings to that behavior can generally occur
at order t3 in the expansion (18), and thus are subleading
compared to the ballistic motion of the particles, at least at
early times.

〈
r2⊥

〉
t
=

〈
r2⊥

〉f.s.

t
+ O(t3). (37)

Let us sketch how things behave at order t3 and higher,
and in particular which terms from expansion (18) can yield a
non-zero contribution to

〈
r2⊥

〉
t . First, the term in ∂k−1

t C[ f ]∣∣0
at order tk consistently gives zero for a particle-number con-
serving collision kernel, thanks to Eq. (36). The terms in
(p · ∇x )

k with k ≥ 3 (thus starting at order t4) also yield
zero, irrespective of any assumption on the collision kernel
apart from its being zero at infinity. Indeed, the contributions
of such terms can be integrated by parts over x or y twice, to
get rid of r2⊥, leaving the integral over position space of the
derivative of a function that vanishes at infinity: for instance

∫
x2 (px∂x )k

Ek+1 C[ f ]∣∣0 dx = 2
∫

pkx∂
k−2
x

Ek+1 C[ f ]∣∣0 dx = 0.

Interestingly, the terms involving the second spatial deriva-
tives of either C[ f ]∣∣0 or its time derivatives – e.g. the first
term of order t3 or the second of order t4 in Eq. (18) – also
do not contribute to

〈
r2⊥

〉
t in the special case of massless par-

ticles propagating in two dimensions (or at least such that
pz = 0), as shown in Appendix B2. But this need not be true
more generally.

Thus the only collision-induced terms that can affect the
early-time increase of a two-dimensional gas of massless par-
ticles undergoing elastic binary collisions are those in expan-
sion (18) involving a single power of (p/E)·∇x applied to the
time derivatives of C[ f ] at t = 0. For instance, the second
term of order t3 or the third term of order t4 in Eq. (18).

All in all, if the phase-space distribution is initially
isotropic in momentum at each point in the transverse plane
and if its subsequent evolution preserves particle number,
then rescatterings only affect the growth of the mean square
transverse radius

〈
r2⊥

〉
t at order t3 or higher, i.e. sublead-

ingly compared to the effect of the free-streaming expan-
sion. One can readily check that this behavior also holds for
any moment

〈
rn⊥

〉
t with arbitrary integer n, using the same

arguments.
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4.2.2 Eccentricities

Consider now the spatial eccentricities (5). We have seen in
Sect. 2 that they decrease in an collisionless system without
initial anisotropic flow, symbolically in 1/[1+O(t2)] at early
times. In the previous subsection, we saw that rescatterings
change the behavior of the term in the denominator of Eq. (5)
only at order t3 or higher. Accordingly, we shall now only
investigate the behavior of

〈
rn⊥einθ

〉
t , which remains constant

in time for a free-streaming system, see Eq. (10).
Repeating the steps used in computing

〈
r2⊥

〉
t , one quickly

finds that the contributions to
〈
rn⊥einθ

〉
t in t and t2 vanish.

Again, the term in t and one of the terms in t2 [that with the
time derivative of the collision kernel in expansion (18)] are
zero thanks to particle-number conservation – technically,
invoking Eqs. (35)–(36) with g(x) = rn⊥einθ . The remaining
term in t2 is also zero if the initial phase space distribution
is isotropic in momentum space, thanks to Eq. (B3) – which
plays here the role played by relation (B1) in the calculation
of

〈
r2⊥

〉
t .

Therefore any change of
〈
rn⊥einθ

〉
t from rescatterings

comes at order t3 or higher. Since this is also the order at
which rescatterings affect the evolution of

〈
rn⊥

〉
t , it will also

hold for their ratio, namely the spatial eccentricities (5) [and
their generalized version (13)]:

εxn (t) ∼
early t

εxn (t)
∣∣f.s. + O(t3), (38)

where εxn (t)
∣∣f.s. denotes the time dependence of the eccentric-

ity εxn in a free-streaming system with the same initial phase
space distribution, as computed in Sect. 2. This means that at
early times the effect of rescatterings on εxn (t) is subleading
compared to that of the free-streaming expansion.

As a final remark, one would intuitively expect a connec-
tion between the early time behaviors of εxn (t) and vn(t): a
non-zero anisotropic flow coefficient vn clearly affects the
spatial eccentricity εxn , in particular the azimuthally asym-
metric numerator

〈
rn⊥einθ

〉
t . However, we argued in the previ-

ous section and the present one that different terms in Eq. (18)
are responsible for the respective onsets of vn(t) and εxn (t).
From that observation we would tentatively conclude that in
the absence of initial anisotropic flow, the early time behav-
iors of spatial and momentum anisotropies are not related, or
at least not obviously.

5 Generalizations

In this section we discuss how the early-time behavior of the
anisotropic flow harmonics [Eq. (31)] and the spatial eccen-
tricities [Eq. (38)] change when one departs from the two-

dimensionless system of massless “classical” particles with
elastic binary rescatterings assumed in Sect. 4.

5.1 3-dimensional expansion

What happens if the system expands in 3 dimensions instead
of 2 in the previous section? Clearly, this should slow down
the transverse expansion, since

〈
v2⊥

〉
is now in general smaller

than 1, so that the characteristic time scale
√〈

r2⊥
〉
/
〈
v2⊥

〉
increases (by a factor

√
3/2, in case the velocity distribu-

tion is also isotropic along the third direction). But the actual
question is, whether the scaling behaviors found in Sect. 4
are modified or not.

Looking back at the reason why vn(t) grows in tn+1 at
early times in the absence of initial anisotropic flow, we see
that the arguments that were used never involved the dimen-
sionality of the space into which the system is expanding.
Instead, the proof rather relied on the necessity to have a
term that contains n powers of the transverse momentum p
and that is not odd in any of the other momenta appearing
in the collision kernel.7 That these requirements are not ful-
filled at any order tk with k ≤ n remains true in the case of
a three-dimensional expansion, and thus the scaling behav-
ior (31), including the dependence on the inverse Knudsen
number, still holds. Of course the coefficients a( j)

n,k do depend
on whether the system is expanding in two or three dimen-
sions. But their generic dependence on the initial spatial
eccentricities is unchanged: for instance, the a(1)

n,k , which are

the relevant coefficients at order Kn−1, only depend linearly
or quadratically on the initial {εxl }.

Similarly, the space dimension did not play any role in
our reasoning at orders O(t) and O(t2) in the calculation
of the mean square radius (or more generally

〈
rn⊥

〉
t ) and the

spatial eccentricities εxn . We actually encountered a term that
vanishes only for the special case of massless particles prop-
agating in two dimensions (or with pz = 0), but only at
order O(t3), i.e. subleading with respect to the free-streaming
behavior. So here again, the scaling law (38) determined in
Sect. 4.2 is still valid in the three-dimensional case.

5.2 Massive particles

Another assumption of Sect. 4 was that of considering mass-
less degrees of freedom. This hypothesis leads to a simpler
expression of the Møller velocity (21) [see Eq. (28)], which
is helpful when dealing with explicit semi-analytical exam-
ples [36]. However this feature is actually irrelevant for our

7 In particular, the longitudinal components of the momenta play no
role in the reasoning. Accordingly, whether the longitudinal motion of
the system is boost invariant or not does not affect the scaling behaviors.
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derivations of the scaling behavior of anisotropic flow and
the eccentricities.

Indeed, the Møller velocity of massive particles with
momenta �p, �p1 can only depend on �p via the inner prod-
uct �p · �p1,8 just like in the massless case. To contribute to the
early-time development of a flow harmonic vn(t), a factor
(�p · �p1)

k from expanding vrel. has to multiply a contribu-
tion (�p1 · �∇x )

k to match the k powers of �p1 from the Møller
velocity, and another contribution (�p · �∇x )

n−k , to obtain the
necessary n powers of �p. That is, n powers of the spatial gra-
dient �∇x should appear in the relevant term in expansion (18),
and this is only possible at order O(tn+1) or higher. Accord-
ingly, the scaling behavior (31) remains valid in the case of
massive particles.

It is also clear that the early-time behavior (38) of the
spatial eccentricities remains valid too if the particles are
massive. Indeed, the arguments to establish that the possible
contributions from scatterings at orders O(t) and O(t2) are
zero were very general ones (particle number conservation,
momentum isotropy of the initial distribution) and totally
irrespective of any detail of the collision kernel – apart from
its conserving particle number.

Let us also mention in this subsection another possible
modification of the composition of the system that does not
affect the scaling behaviors (31) and (38). Until now we only
considered systems consisting of a single species of parti-
cles. In heavy ion collisions, it is certainly more realistic
to consider a mixture of several species that can not only
self-interact but also interact with each other. One should
then introduce several phase space distributions, which obey
coupled Boltzmann equations [17]. If the number of par-
ticles of each species remains constant, i.e. if all possible
scattering processes are elastic, then one can check that the
scaling behavior (31) of the anisotropic-flow coefficients is
unchanged, since the arguments used to derive it still hold.
One then finds that the flow coefficients vn(t) of a given
species depend not only on the initial eccentricities of that
species itself, but also on those of the other species, which
may be interesting if different particle species have differ-
ent initial geometrical profiles due to different production
mechanisms [25].

5.3 Inclusion of quantum statistics in the collision kernel

In this subsection and the the next we investigate how modi-
fying the form of the collision kernelC[ f ] affects the scaling
behaviors of the flow harmonics vn(t) and the eccentricities
εxn of Sect. 4.

The first modification we consider consists in incorporat-
ing quantum effects – Pauli blocking or Bose enhancement

8 The square modulus �p2 “does not know” about the azimuth ϕp, and
thus cannot contribute to anisotropic flow.

– into the binary collision kernel (22)–(23), via the usual
substitution

f ′ f ′
1 − f f1 → f ′ f ′

1FF1 − f f1F
′F ′

1 (39)

in the integrand, where F(t, �x, �p) ≡ 1 ± f (t, �x, �p).
Now, the extra terms introduced in the collision kernel by

the substitution (39) do not introduce any extra power of �p or
the spatial gradient �∇x , and thus they cannot modify the scal-
ing behavior (31) of the flow harmonics. Similarly, the mod-
ified collision term still conserves particle number, and also
leaves the early-time behavior (38) qualitatively unchanged.

However, as was already noted in Ref. [9] the longer form
of the collision kernel due to the change (39) does induce a
modification, namely in the dependence of the coefficients
a( j)
n,k in Eq. (31) on the initial spatial eccentricities {εxl }.

Indeed, since products of three or four distribution functions
now appear in the integrand of C[ f ], the coefficients a(1)

n,k
can now include terms depending cubically or quartically on
the initial eccentricities. For instance, the early-time expan-
sion v2(t) or v6(t) can now have a term in (εx2 )3 at leading
order Kn−1, or v4(t) a contribution in (εx2 )4. In practice, this
will only be the case if the initial state is dense enough for
quantum corrections to become relevant.

5.4 Alternative collision kernel

Another type of modification of the collision kernelC[ f ] has
a higher impact on the scaling behaviors of Sect. 4, namely
if we drop the assumption that the rescatterings in the sys-
tem are elastic. Instead, one can include inelastic two-to-two
(2 ↔ 2) processes (if the system consists of several species),
as well as particle-number changing processes: for instance
1 ↔ 2 gluon splitting or fusion processes [37,38] or 2 ↔ 3
parton processes [39].

Indeed, in Sect. 4.2 we invoked several times particle-
number conservation to cancel terms when deriving the scal-
ing behaviors of the mean square radius

〈
r2⊥

〉
t [Eq. (37)] or of〈

rn⊥einθ
〉
t , and as a result of the spatial eccentricities, Eq. (38).

If particle number is not conserved, then the early-time evolu-
tion of every average

〈
rn⊥

〉
t or

〈
rn⊥einθ

〉
t and therefore of εxn (t)

will generally include linear and quadratic terms in t , both at
order Kn−1, which represents a significant modification of
the free-streaming evolution.

Turning to the anisotropic flow coefficients vn(t), their
early-time behavior is also affected if the collision kernel
does not conserve particle number, although much less than
the spatial eccentricities. As a matter of fact, particle-number
conservation plays no role in the time dependence of the
numerator of Eq. (26), which determined the overall scaling
of vn(t) in Sect. 4.1. On the other hand, the denominator of
Eq. (26) is obviously no longer constant if particle number
is not conserved, which has to be taken into account. By
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integrating expansion (18) first over �x (so that total-gradient
terms vanish) and then over �p (where only terms even in all
momenta can contribute), one finds using the same arguments
as in Sect. 4.1 that the total particle number behaves at early
times like

N (t) ∼
early t

N0 +
∑
j≥1

(
Kn−1)j ∑

k≥0

b( j)
k t2k+ j , (40)

where N0 denotes its initial value. Combining this behav-
ior with that of the numerator and reorganizing the double
expansion in powers of Kn−1 and t , one finds that vn(t) still
obeys a scaling law of the form (31), with modified coeffi-
cients a( j)

n,k – apart from the leading coefficienta(1)
n,0 of the term

in Kn−1tn+1, which is the same as if N (t) stayed constant.

5.5 Initial anisotropic flow

Eventually, a last key ingredient in Sect. 4 was the hypothe-
sis of vanishing initial anisotropic flow. This assumption may
naturally be released, not only out of mathematical curiosity,
but also for several physically motivated reasons: If t0 still
represents the initial time of the fireball expansion, one may
consider that anisotropic flow is already present due to initial-
state correlations, as investigated for instance in AMPT in
Ref. [40], or that the finite particle multiplicity unavoidably
leads to (small) flow harmonics. Or t0 may instead repre-
sent a later time in the system evolution, say the time at
which the description changes from fluid dynamics to a trans-
port approach, in which case the presence of anisotropic flow
results from the preceding evolution.

In any case, if the assumption of initial momentum
isotropy is released, then one should beware that the free-
streaming behaviors are modified. Indeed, in the absence of
rescatterings each coefficient vn(t) remains at its initial value,
whether it vanishes or not. In turn, the spatial eccentricities
no longer decrease as found in Sect. 2. For instance, one can
see than an initial vn will spoil relation (10) and lead to a
time-dependent average

〈
r⊥einθ

〉f.s.
t instead.

That being told, the scaling behaviors (31) and (38), now
viewed as describing the departure from the free-streaming
behaviors, will generally no longer hold. Thus we have
seen in Sect. 4.1 that the assumption of vanishing initial
anisotropic flow was necessary to cancel the influence on
the flow harmonics of the term linear in t in expansion (18).
If there is some initial anisotropic flow vn(t0), then vn(t)
may depart linearly from that value at (shortly) later times
t , as was found on a toy example in Ref. [41]. Similarly, in
Sect. 4.2 initial momentum isotropy was a necessary ingre-
dient to cancel one of the terms in t2 contributing to the mean
square radius

〈
r2⊥

〉
t or the asymmetry

〈
r2⊥einθ

〉
t , so that depar-

ture from momentum isotropy will generally lead to terms at
order O(t2) in the scaling behavior (38).

6 Discussion

The main result of this paper is that in a system described
by the kinetic Boltzmann equation with a particle-number
conserving collision kernel, and with transverse momentum
isotropy in the initial state, the anisotropic flow coefficients
vn(t) resp. the spatial eccentricities εxn (t) scale according
to Eq. (31) resp. Eq. (38) at early times. In the case of the
harmonics vn , we also detailed the dependence on the average
number of rescatterings per particle, characterized here by the
inverse Knudsen number Kn−1.

These behaviors are quite generic, since they follow from
writing the early-time expansion of the phase space distri-
bution as a Taylor series (18) and invoking general princi-
ples. They thus hold whether the system is expanding in two
or three dimensions, and whether it consists of massless or
massive classical or quantum particles. Simplifying the col-
lision kernel, for instance using the popular relaxation time
approximation [8,11,13,42], should also not spoil the scal-
ing behaviors (31), (38), at least as long as conservation laws
are properly implemented. The only exceptions we encoun-
tered are twofold, namely if there is already anisotropic flow
in the initial state or if the particles can undergo inelastic col-
lisions. Actually, the latter possibility only affects the scal-
ing of eccentricities, not that of the flow harmonics, whose
behavior is thus more robust.

The early-time scaling vn(t) ∝ tn+1 of momentum
anisotropies in transport calculations was already observed
in special cases before: in numerical simulations with a given
initial phase distribution in Ref. [15], and in analytical cal-
culations restricted to leading order in Kn−1 with another
specific initial profile [16]. Here we have shown that this
scaling behavior is very general if there is no initial flow.

The most studied anisotropic-flow harmonic at ultrarel-
ativistic energies, both experimentally and theoretically, is
elliptic flow, for which Eq. (31) yields

v2(t) ∝
early t

Kn−1 t3, (41)

at lowest order in t . This behavior should be contrasted with
the findings in fluid dynamics, either in simulations [18–21]
or using general arguments [22], which give v2(t) ∝ t2 at
early times.9 The mismatch between the scaling exponents
predicted by kinetic theory and fluid dynamics was already
noted in Ref. [15] but only for two-dimensional expansions.
In this paper we showed that the difference remains for
kinetic theory in three dimensions. This implies that there is
no “universal behavior” for the development of momentum

9 Strictly speaking, the measure of the momentum anisotropy is some-
times v2 itself, and sometimes related to the asymmetry T xx − T yy of
the energy-momentum tensor, which necessitates no particlization of
the fluid. The latter also scales as t3 for the system investigated in the
present paper [36].
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anisotropies – in contrast to that found for radial transverse
flow [22] – but rather that different classes of theories (kinetic
theory or fluid dynamics) may lead to different behaviors.
If there exist “late-time attractor solutions” for truly three-
dimensional dynamical scenarios without cylindrical sym-
metry, as was found empirically for one-dimensional motion
in both strong and weak coupling regimes [43–46], then it
would be interesting to see how this could be reconciled with
the different behaviors of anisotropic flow at early times.

The results reported in the present paper are admittedly
rather formal, because we deliberately aimed at staying as
general as possible, with minimal assumptions on the initial
phase-space distribution and the collision kernel. This is what
allows us to derive generic results. In a companion paper
[36] we shall present comparisons with numerical simula-
tions, including a few straightforward generalizations – for
instance, looking at energy-weighted anisotropies. Accord-
ingly, we shall be able to illustrate the effect of including
higher-order terms in t and/or Kn−1 from expansion (18).
The price to pay is that we use a single, simple setup (two-
dimensional system of massless particles, toy initial profile)
and thus lose the generality of the present paper.

Eventually, one should naturally ask whether the differ-
ent scaling behaviors of say v2(t) in kinetic theory vs. fluid
dynamics are relevant for heavy-ion phenomenology. The
main issue is clearly that experimentally only the final val-
ues of the flow harmonics, and to a lesser extent the spatial
eccentricities, are directly accessible. In collisions of heavy
nuclei, one may hope that accessing some characteristics of
the early-time dynamics of the bulk could become feasible
by studying particles that decouple early from the system, as
e.g. photons or dileptons pairs in an appropriate invariant-
mass interval [47]. The onset of “pre-flow” anisotropies of
the bulk in large systems may also be relevant for determin-
ing the initial condition to the subsequent fluid-dynamical
evolution. Accessing the early-time behavior may be more
feasible in “small systems”, since in that case the evolution
lasts less long, so that the final flow values are possibly more
influenced by the early stage. One should however remember
that the characteristic time scale of the early-time evolution
also becomes smaller in such systems.
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Appendix A: Time derivative of the collision kernel: an
example

To illustrate the procedure for eliminating the time deriva-
tives of the collision term C[ f ], we take as an example the
kernel (23), which we recast in the shorter form

C[ f ] = 1

2

∫
p1,p′,p′

1

( f ′ f ′
1 − f f1)W (p,p1 → p′,p′

1), (A1)

in which the precise form of the integration measure in
momentum space is no longer written. Differentiating this
kernel with respect to time yields at once

∂tC[ f ] = 1

2

∫
p1,p′,p′

1

[
(∂t f

′) f ′
1 + (∂t f

′
1) f

′ − (∂t f ) f1

−(∂t f1) f
]
W (p,p1 → p′,p′

1). (A2)

If we now invoke the Boltzmann equation (1), we can re-
express every time derivative of the phase space distribution
in the integrand, which leads to

∂tC[ f ] = 1

2

∫
p1,p′,p′

1

(
− p′ · ∇x f ′

E ′ f ′
1 − p′

1 · ∇x f ′
1

E ′
1

f ′

+ p · ∇x f

E
f1 + p1 · ∇x f1

E1
f

)
W (p,p1 → p′,p′

1)

+ 1

2

∫
p1,p′,p′

1

(
C[ f ′]
E ′ f ′

1 + C[ f ′
1]

E ′
1

f ′

− C[ f ]
E

f1 + C[ f1]
E1

f

)
W (p,p1 → p′,p′

1).

(A3)

The first integral on the right hand side is of order Kn−1, while
the second one is of order Kn−2, as mentioned in Sect. 3.

Iterating the procedure, one finds that the k-th time deriva-
tive ∂kt C[ f ] will involve the k-th power of the spatial gra-
dient, (∇x )

k , at order Kn−1, together with lower powers
(∇x )

k− j at order
(
Kn−1

) j+1 for all 1 ≤ j ≤ k. For instance,
the second time derivative reads
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∂2
t C[ f ] = 1

2

∫
p1,p′,p′

1

[(
p′ · ∇x

)2
f ′

E ′2 f ′
1 +

(
p′

1 · ∇x
)2
f ′
1

E ′2
1

f ′

−
(
p · ∇x

)2
f

E2 f1 −
(
p1 · ∇x

)2
f1

E2
1

f

]
W (p,p1 → p′,p′

1)

+
∫
p1,p′,p′

1

(
p′ · ∇x f ′

E ′
p′

1 · ∇x f ′
1

E ′
1

− p · ∇x f

E

p1 · ∇x f1
E1

)

× W (p,p1 → p′,p′
1) + O(Kn−2, Kn−3), (A4)

where we only wrote the term of (leading) order Kn−1. The
term of order Kn−2 is

∫
p1,p′,p′

1

(
− p′ · ∇x f ′

E ′
C[ f ′

1]
E ′

1
− p′

1 · ∇x f ′
1

E ′
1

C[ f ′]
E ′

+ p · ∇x f

E

C[ f1]
E1

+ p1 · ∇x f1
E1

C[ f ]
E

)
W (p,p1 → p′,p′

1)

+
∫
p1,p′,p′

1

(
− p′ · ∇xC[ f ′]

E ′2 f ′
1 − p′

1 · ∇xC[ f ′
1]

E ′2
1

f ′

+ p · ∇xC[ f ]
E2 f1 + p1 · ∇xC[ f1]

E2
1

f

)
W (p,p1 → p′,p′

1),

(A5)

while that of order Kn−3 includes in its integrand contribu-
tions of the type C[ f ]C[ f1] and C[C[ f ]], both multiplying
the transition rate W .

Appendix B: Calculation of contributions to the early-
time development of spatial characteristics

1. Contributions at order O(t2)

Let us show that the integral
∫

(x2 + y2)
p · ∇x

E2 C[ f ]∣∣0 d2p d2x, (B1)

which enters the early-time behavior of the mean square
radius

〈
r2⊥

〉
t at order t2, vanishes when the initial distribu-

tion is isotropic in momentum.
Performing integration by parts over the spatial variables

using the fact that C[ f ]∣∣0 vanishes at large distances, the
integral becomes

−2
∫

xpx + ypy
E2 C[ f ]∣∣0 d2p d2x.

The integral over momentum is then vanishing at every x:
Replacing C[ f ] by its explicit expression, one obtains an
integral over all momenta of an integrand which is always
odd in p or p1 (when the Møller velocity is involved), since
f0 is isotropic in momentum space.

The same reasoning gives∫
(x2 + y2)n/2 p · ∇x

E2 C[ f ]∣∣0 d2p d2x = 0, (B2)

resp.∫
rn⊥einθ p · ∇x

E2 C[ f ]∣∣0 d2p d2x = 0, (B3)

which is relevant for the average
〈
rn⊥

〉
t resp.

〈
rn⊥einθ

〉
t at order

t2.

2. Influence of mass on the early-time development of
〈
r2⊥

〉
t

In this appendix we detail how the particle mass affects the
integral

∫
(x2 + y2)

(
p · ∇x

)2

E3 C[ f ]∣∣0 d2p d2x, (B4)

which appears when one investigates the behavior of the
mean-square radius

〈
r2⊥

〉
t at order t3 (see Sect. 4.2).

Writing (p · ∇x )
2 = p2

x∂
2
x + 2px py∂x∂y + p2

y∂
2
y , one can

first handle the term in p2
x∂

2
x by performing two successive

integrations by parts over x . Since C[ f ]∣∣0 or its derivative
∂xC[ f ]∣∣0 vanish as |x | → ∞ – the system has a finite initial
size –, one finds
∫

(x2 + y2)
p2
x

E3 ∂2
x C[ f ]∣∣0 dx = 2

p2
x

E3

∫
C[ f ]∣∣0 dx .

With the help of the similar result for the term in p2
y∂

2
y , the

contribution from the two corresponding terms to the inte-
gral (B4) becomes

2
∫ p2

x + p2
y

E2 C[ f ]∣∣0

d2p
E

d2x. (B5)

If the particles are massless, the ratio in the integrand equals
1, and the integral over p vanishes for a particle-number-
conserving collision kernel, thanks to property (32).

Eventually, the mixed term in ∂x∂y does not contribute to
the integral (B4) either. Indeed, the integral over the spatial
variables are readily performed and yield C[ f ]∣∣0 (or one of
its spatial derivatives) at infinity, where it vanishes.

Altogether, we have thus showed that the integral (B4)
vanishes for a two-dimensional system of massless particles.
This is no longer necessarily true for massive particles, or if
they propagate in three dimensions.
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