
Eur. Phys. J. C (2022) 82:528
https://doi.org/10.1140/epjc/s10052-022-10475-x

Regular Article - Theoretical Physics

Constraint on parameters of a rotating black hole in
Einstein-bumblebee theory by quasi-periodic oscillations

Zejun Wang1, Songbai Chen1,2,a, Jiliang Jing1,2,b

1 Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic
Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, Hunan, People’s Republic of China

2 Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009,
People’s Republic of China

Received: 11 January 2022 / Accepted: 28 May 2022 / Published online: 14 June 2022
© The Author(s) 2022

Abstract We have studied quasi-periodic oscillations fre-
quencies in a rotating black hole with Lorentz symmetry
breaking parameter in Einstein-bumblebee gravity by rel-
ativistic precession model. We find that in the rotating case
with non-zero spin parameter both of the periastron and nodal
precession frequencies increase with the Lorentz symmetry
breaking parameter, but the azimuthal frequency decreases.
In the non-rotating black hole case, the nodal precession fre-
quency disappears for arbitrary Lorentz symmetry breaking
parameter. With the observation data of GRO J1655-40, XTE
J1550-564, and GRS 1915+105, we find that the constraint
on the Lorentz symmetry breaking parameter is more pre-
cise with data of GRO J1655-40 in which the best-fit value
of the Lorentz symmetry breaking parameter is negative.
This could lead to that the rotating black hole in Einstein-
bumblebee gravity owns the higher Hawking temperature
and the stronger Hawking radiation, but the lower possibil-
ity of exacting energy by Penrose process. However, in the
range of 1σ , we also find that general relativity remains to be
consistent with the observation data of GRO J1655-40, XTE
J1550-564 and GRS 1915+105.

1 Introduction

Lorentz invariance has been of great importance in general
relativity and the standard model of particle physics. How-
ever, according to the development of unified gauge theories
and the signals from high energy cosmic rays [1,2], Lorentz
symmetry may spontaneously break in the more fundamental
physics at a higher scale of energy. And then studying Lorentz
violation is also expected to obtain a deeper understanding
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of nature. In general, the direct test of Lorentz violation is
impossible because their high energy scale is unavailable in
the current experimentations. However, recent investigations
also show that some signals related to Lorentz violation could
emerge at lower energy scales so that their corresponding
effects could be observed in experiments [3].

Einstein-bumblebee gravity [4] is a simple effective the-
ory of gravity with Lorentz violation where the spontaneous
breaking of Lorentz symmetry is induced by a nonzero vac-
uum expectation value of bumblebee vector field Bμ with
a suitable potential. The black hole solutions in Einstein-
bumblebee gravity and the corresponding effects of Lorentz
violation have been extensively studied in the past years [5–
15]. Casana et al. firstly found an exact solution of a static
neutral black hole, and discussed its some classical tests [3].
And then, the gravitational lensing [16], the Hawking radia-
tion [17] and quasinormal modes [18] have been addressed
in this black hole spacetime. Moreover, other spherically
symmetric black hole solutions, containing global monopole
[19], cosmological constant [20], or Einstein–Gauss–Bonnet
term [21], and the traversable wormhole solution in the
framework of the bumblebee gravity theory [22] have also
been found. The cosmological implications of bumblebee
gravity model are further investigated in [23] . Furthermore,
the rotating black hole solution [24] is also obtained in
Einstein bumblebee gravity, and the corresponding shadow
[24,25], accretion disk [26], superradiant instability of black
hole [27] and particle’s motion [28] around the black hole are
studied. A Kerr–Sen-like black hole with a bumblebee field
has also been investigated [29]. These investigations are use-
ful for testing Einstein bumblebee theory and detecting the
effects caused by the Lorentz symmetry breaking originating
from bumblebee vector field.

Quasi-periodic oscillations can be regarded as a promising
arena to test the nature of the compact objects, which appear
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as peaks in the observed X-ray power density spectrum emit-
ted by accreting black hole binary systems [30,31] and hold
important information about gravity in the strong field region.
Generally, the frequency range of the quasi-periodic oscilla-
tions changes from mHz to hundreds of Hz. There are var-
ious theoretical models proposed to account for such peaks
in power density spectrum, but the essence of quasi-periodic
oscillations is still unclear at present. The relativistic preces-
sion model is a highly regarded model of explaining quasi-
periodic oscillations in which the oscillation frequencies are
believed to associate with three fundamental frequencies of
a test particle around a central object [32–37]. In this model,
the azimuthal frequency νφ and the periastron precession fre-
quency νper of the test particle are explained, respectively, as
the twin higher frequencies quasi-periodic oscillations. And
the nodal precession frequency νnod of the particle is identi-
fied with the low-frequency quasi-periodic peak in the power
density spectrum of low-mass X-ray binaries. Thus, the low-
frequency quasi-periodic signal is assumed to be emitted at
the same orbit of the test particle where the twin higher fre-
quencies signals are generated. Together with the observa-
tion data of GRO J1655-40 [32], the constraint on the black
hole parameters in various theories of gravity have been per-
formed by quasi-periodic oscillations within the relativistic
precession model [38–51]. The main purpose of this paper
is to constrain the Lorentz symmetry breaking parameter for
a rotating black hole in Einstein-bumblebee theory of grav-
ity by using of quasi-periodic oscillations with the obser-
vation data from GRO J1655-40, XTE J1550-564 and GRS
1915+105 [32,51–53].

The paper is organized as follows: In Sect. 2, we will
review briefly the rotating black hole in Einstein-bumblebee
theory of gravity [24]. In Sect. 3, we study quasi-periodic
oscillations in the above black hole spacetime and then make
a constraint on the Lorentz symmetry breaking parameter
with the observation data of GRO J1655-40, XTE J1550-564
and GRS 1915+105. Finally, we present a summary.

2 A rotating black hole in Einstein-bumblebee theory of
gravity

In this section we review briefly a rotating black hole in
Einstein-bumblebee theory [24]. In the framework of the
bumblebee gravity theory, the spontaneous Lorentz sym-
metry breaking is induced by a vector Bμ with a non-zero
nonzero vacuum expectation value. Through a coupling, the
bumblebee vector field Bμ would affect the dynamics of
the gravitational field. The action describing such kind of
Lorentz symmetry breaking is [3–6]

S =
∫

d4√−g

[
1

16π
(R + ξ BμνRμν) − 1

4
BμνBμν

−V (BμB
μ ± b2)

]
, (1)

where ξ is the coupling constant with the dimension M−1

and the bumblebee field strength Bμν = ∂μBν − ∂νBμ. The
potential V , inducing Lorentz violation, has a minimum at
BμBμ ± b2 = 0 (where b is a real positive constant), which
drives a nonzero vacuum value 〈Bμ〉 = bμ with bμbμ =
∓b2. The signs “±”s in the potential determine whether the
field bμ is timelike or spacelike. Then the nonzero vector
background bμ spontaneously breaks the Lorentz symmetry
[3–6]. The extended vacuum Einstein equations in this model
with Lorentz symmetry breaking becomes

Rμν − 1

2
gμνR = Tμν, (2)

with

Tμν = BμαB
α
ν − gμν

(
1

4
BαβB

αβ + V

)
− 2BμBνV

′

+ ξ

8π

[
1

2
gμνBαB

α − BμB
αRαν − BνB

αRαμ

+1

2
∇α∇μ(BαBν) + 1

2
∇α∇ν(B

αBμ) − 1

2
∇2(BμBν)

−1

2
gμν∇α∇β(BαBβ)

]
. (3)

The Einstein equations (2) admits a rotating black hole solu-
tion with a metric [24]

ds2 = −
(

1 − 2Mr

ρ2

)
dt2 − 4Mar

√
l + 1 sin2 θ

ρ2 dtdφ

+ρ2

�
dr2 + ρ2dθ2 + sin2 θ

ρ2

×
[(

r2+(l + 1)a2
)2

−�(l+1)2a2 sin2 θ

]
dφ2,

(4)

where

ρ2 = r2 + (l + 1)a2 cos θ2, � = r2 − 2Mr

l + 1
+ a2. (5)

Here M is the ADM mass and a is the spin parameter of black
hole. The form of the bumblebee field is bμ = (0, bρ, 0, 0),
and the parameter l = ξb2 depends on the spontaneous
Lorentz symmetry breaking of the vacuum of the Einstein-
bumblebee vector field. The determinant of the metric (4) is
g = −(l + 1)ρ4 sin2 θ and then the metric becomes degen-
erate when l = −1. Thus, in order to maintain its Lorentz
signature, one must have l > −1, which means that the cou-
pling ξ should be restricted to ξ > − 1

b2 . As in the Kerr black

hole case, the singularity lies at ρ2 = 0 and the horizon
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locates at � = 0. However, the horizon radius becomes

r± = M ±
√
M2 − (l + 1)a2, (6)

which depends on the spontaneous Lorentz symmetry break-
ing parameter l. With the increase of the absolute value of
l, the outer horizon radius decreases for the positive l and
increases for the negative one. Thus, comparing with the
usual Kerr black hole, the negative l leads to that the rotating
black hole (4) owns the higher Hawking temperature and the
stronger Hawking radiation [24] . Moreover, for a rotating
black hole (4), its the mass and spin parameter must satisfy
|a|
M ≤ 1√

l+1
. The negative l broadens the range of black hole

spin parameter so that |a| > M , but the positive l shortens the
range of a, which differs quite from the Kerr case in general
relativity.

3 Constraint on parameters of a rotating black hole in
Einstein-bumblebee theory by quasi-periodic
oscillations

In this section, we will apply quasi-periodic oscillations to
make a constraint on parameters of a rotating black hole (4)
in Einstein-bumblebee theory. For a general stationary and
axially symmetric spacetime, the metric of a rotating black
hole with bumblebee field (4) can be written as a common
form

ds2 = gttdt
2 + grrdr

2 + 2gtφdtdφ

+gθθdθ2 + gφφdφ2. (7)

Obviously, the metric coefficients in Eq. (4) are independent
of the coordinates t and φ. Thus, the geodesic motion of par-
ticle in the black hole spacetime (4) exists two conserved
quantities, i.e., the specific energy at infinity E and the con-
served z-component of the specific angular momentum at
infinity Lz , and the forms of E and Lz can be expressed as

E = −pt = −gtt ṫ − gtφφ̇, Lz = pφ = gtφ ṫ + gφφφ̇. (8)

With above two conserved quantities, the timelike geodesics
can be further simplified as

ṫ = gφφE + gtφLz

g2
tφ − gtt gφφ

, (9)

φ̇ = gtφE + gtt Lz

gtt gφφ − g2
tφ

, (10)

grr ṙ
2 + gθθ θ̇

2 = Vef f (r, θ; E, Lz), (11)

where Vef f (r, θ; E, Lz) is the effective potential with the
form

Vef f (r, θ; E, Lz) = E2gφφ + 2ELzgtφ + L2
z gtt

g2
tφ − gtt gφφ

− 1. (12)

Here the overhead dot represents a derivative with respect
to the affine parameter λ. The effective potential determines
the orbit of the particle. The form of potential (12) in the
equatorial plane becomes

Vef f
(
r,

π

2
; E, Lz

)
= [r3 + (r + 2M)(l + 1)a2]E2 − 4aM

√
l + 1ELz − (r − 2M)L2

z

r [r2 − 2Mr + (l + 1)a2] − 1. (13)

Actually, the radial component of the timelike geodesic
equations

d

dλ
(gμν ẋ

ν) = 1

2
(∂μgνρ)ẋν ẋρ, (14)

can be written as [32–35]

d

dλ
(grr ṙ) = 1

2

[
(∂r gtt )ṫ

2 + 2(∂r gtφ)ṫ φ̇

+(∂r gφφ)φ̇2 + (∂r grr )ṙ
2 + (∂r gθθ )θ̇

2
]
. (15)

We here consider only the case where a particle moving along
a circular orbit in the equatorial plane, i.e., r = r0 and θ =
π/2, which means that ṙ = θ̇ = r̈ = 0. Thus, for the circular
equatorial orbit case, Eq. (15) can be simplified as

(∂r gtt )ṫ
2 + 2(∂r gtφ)ṫ φ̇ + (∂r gφφ)φ̇2 = 0, (16)

which gives the orbital angular velocity �φ of particle mov-
ing along the circular orbits

�φ = dφ

dt
= −gtφ,r ± √

(gtφ,r )2 + gtt,r gφφ,r

gφφ,r

= ± gtt,r√
(gtφ,r )2 + gtt,r gφφ,r ± gtφ,r

, (17)

here the sign is+(−) for co-rotating (counter-rotating) orbits.
The corresponding azimuthal frequency νφ = �φ/(2π). For
a timelike particle moving along circular orbits in the equa-
torial plane, the timelike conditions gμν ẋμ ẋν = −1 gives
another relationship between ṫ and φ̇

gtt ṫ
2 + 2gtφ ṫ φ̇ + gφφφ̇2 = −1. (18)
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From two independent equations (16) and (18), one can
obtain

ṫ = 1√
−gtt − 2gtφ�φ − gφφ�2

φ

. (19)

Together with Eq. (8), one can find that the specific energy
E and the conserved z-component of the specific angular
momentum Lz are expressed respectively as [32–35]

E = − gtt + gtφ�φ√
−gtt − 2gtφ�φ − gφφ�2

φ

,

Lz = gtφ + gφφ�φ√
−gtt − 2gtφ�φ − gφφ�2

φ

. (20)

The radius of circular orbit r0 in the equatorial plane can be
given by the conditions

Vef f
(
r0,

π

2
; E, Lz

)
= 0,

dVef f (r,
π
2 ; E, Lz)

dr

∣∣∣∣
r=r0

= 0.

(21)

Making use of these two conditions, we can obtain the spe-
cific angular momentum Lz of a particle moving along the
circular orbit r0 in the equatorial plane

Lz = ±
√

3(E2 − 1)[r2
0 + (l + 1)a2] + 4Mr0, (22)

and find that the corresponding circular orbit r0 satisfies

(1 − E2)r3
0 + M(3E2 − 4)r2

0 + 4M2r0

+Ma2(l + 1)(2E2 − 1) − 2aEM
√

(l + 1)W = 0,

(23)

with

W = 3(E2 − 1)r2
0 + 4Mr0 + a2(E2 − 1)(l + 1). (24)

It indicates the radius of circular orbit r0 is a function of
four independent parameters, i.e., M , a, l and the particle’s
energy E . Thus, the circular orbit with certain fixed radius
r0 could exists for a particle in a rotating black hole space-
time (4) in Einstein-bumblebee theory since there are four
adjustable parameters. In Fig. 1, we present the equivalent
surface of the circular orbit radius r0 = 6.5 in the parameter
space a, l and E ( here we set M = 1), which shows that it
is possible for the existence of circular orbit with r0 = 6.5
for fixed l and a through the choice of a proper parameter E .
For the non-rotating black hole (i.e., a = 0), we find that

r0 = [(3E2 − 4) ± E
√

9E2 − 8]M
2(E2 − 1)

, (25)

which is independent of the parameter l. This can be
explained by a fact that the potential (13) does not depend on

l as a = 0. The radius r0 has positive roots as E ≥ 2
√

2
3 and

no any real root as E < 2
√

2
3 . These positive roots increase

with the black hole mass M . With the increase of E , the root
with the sign “+” decreases in the allowable range of E , but

the root with the sign “−” increases as 2
√

2
3 ≤ E < 1 and it

becomes negative as E > 1. For the rotating case with a 
= 0,
we can not obtain the analytical form of r0. From Eq. (23),
we can get the partial derivative of r0 with respect to M , a, l
and E , respectively.

∂r0

∂M

∣∣∣∣
a,l,E

= [(3E2 − 4)r2
0 + 8Mr0 + a2(l + 1)(2E2 − 1)]√W − 2aE

√
l + 1(2Mr0 + W )

[3(E2 − 1)r0 + 2M][(r0 − 2M)
√
W + 2aME

√
l + 1] , (26)

∂r0

∂a

∣∣∣∣
M,l,E

= −2M
√
l + 1[EW − (2E2 − 1)a

√
W (l + 1) + a2E(E2 − 1)(l + 1)]

[3(E2 − 1)r0 + 2M][(r0 − 2M)
√
W + 2aME

√
l + 1] , (27)

∂r0

∂l

∣∣∣∣
M,a,E

= − aM[EW − (2E2 − 1)a
√
W (l + 1) + a2E(E2 − 1)(l + 1)]√

l + 1[3(E2 − 1)r0 + 2M][(r0 − 2M)
√
W + 2aME

√
l + 1] , (28)

∂r0

∂E

∣∣∣∣
M,a,l

= −2aM
√
l + 1[3E2r2

0 + a2E2(l + 1) + W − 2aE
√
W (l + 1)] + 2Er2

0 (r0 − 3M)
√
W

[3(E2 − 1)r0 + 2M][(r0 − 2M)
√
W + 2aME

√
l + 1] . (29)

The above formulas indicate that it is not easy to determine
the signs of these partial derivative determine, which means
that the change of circular orbital radius r0 with M , a, l and
E becomes very complicated in the rotating black hole case.
However, formulas (27) and (28) tell us that the dependent
behavior of r0 on the parameter l is qualitatively similar to
that on the spin parameter a.
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Fig. 1 The equivalent surface of the circular orbit radius r0 = 6.5 in
the parameter space (a, l, E) in the rotating black hole spacetime (4) in
Einstein-bumblebee theory. Here we set M = 1

In Fig. 2, we present the change of circular orbital radius r0

with M , a, l and E for some fixed parameters. For the chosen
parameters, as the particle’s energy E < 1, there exist four
circular orbits: a stable co-rotating orbit, a stable counter-
rotating orbit, an unstable counter-rotating orbit and an unsta-
ble co-rotating orbit, which are marked in the brown, blue,
black and red lines, respectively. While as E ≥ 1, there are
two circular orbits, which correspond to the stable co-rotating
orbit and the stable counter-rotating one, respectively. With
the increase of black hole mass parameter M , the radius
r0 for each circular orbit is an increasing function of black
hole mass parameter M as a = 0.2 and l = 0.5. With the
increasing spin parameter a, the radius r0 for the unstable co-
rotating orbit and the stable counter-rotating orbit increases,
but deceases for the another two orbits. As in the previous
discussion, Fig. 2 also shows that the change of r0 with the
parameter l is similar to that with a. From Fig. 2, as E ≥ 1,
we find that the radius r0 for both of circular orbits decreases
with E . However, as E < 1, the radius r0 for two stable cir-
cular orbits decrease with E , but increases for another two
unstable orbits.

Let us now focus on the stable circular orbits and assume
some small perturbations around a stable circular orbit r = r0

in the equatorial plane [38–51], i.e.,

r(t) = r0 + δr(t), θ(t) = π

2
+ δθ(t). (30)

Inserting the above perturbations into Eq. (11), one can find
that the perturbations δr(t) and δθ(t) satisfy the following
differential equations

d2δr(t)

dt2 + �2
r δr(t) = 0,

d2δθ(t)

dt2 + �2
θ δθ(t) = 0, (31)

with

�2
r = − 1

2grr ṫ2

∂2Vef f
∂r2

∣∣∣∣
r=r0,θ= π

2

,

�2
θ = − 1

2gθθ ṫ2

∂2Vef f
∂θ2

∣∣∣∣
r=r0,θ= π

2

. (32)

The radial epicyclic frequency νr and the vertical epicyclic
frequency νθ can be written as νr = �r/2π and νθ =
�θ/2π , respectively. Inserting metric functions (4) into
Eq. (17) , we can find the azimuthal frequency

νφ = 1

2π

M1/2

r3/2
0 + a∗M3/2

√
l + 1

, (33)

where a∗ ≡ a/M . It is easy to find that the azimuthal fre-
quency νφ decreases with the Lorentz symmetry breaking
parameter l for the rotating case. From Eq. (17), one can find
that this behavior of νφ with l is dominated by the deriva-
tives gφφ,r and gtφ,r which increase with l in the equatorial
plane. As a = 0, one can find that νφ is independent of the
parameter l. Similarly, substituting metric functions (4) into
Eqs.(19) and (32), one has

νr = νφ

[
1

l + 1
− 6M

(l + 1)r0
+ 8a∗M3/2

√
l + 1r3/2

0

− 3a∗2 M
2

r2
0

]1/2

,

(34)

νθ = νφ

[
1 − 4a∗√l + 1M3/2

r3/2
0

+ 3a∗2(l + 1)
M2

r2
0

]1/2

. (35)

Obviously, in the rotating case a 
= 0, the frequencies νr
and νθ depend on the Lorentz symmetry breaking parame-
ter l. However, in the non-rotating case, one can find that
only the frequency νr is related to the parameter l since νθ

is identical with νφ in this case with a = 0 and they are
not functions of the parameter l. The properties of above
three frequencies make it possible to constrain effect from
the Lorentz symmetry breaking by quasi-periodic oscilla-
tions. As l = 0, it is easy to find that these three frequencies
reduce to those in the usual Kerr black hole spacetime [32–
35]. It is well known that the effective potential (12) plays
an important role in determining the circular orbit’s radius of
particle and the corresponding frequencies of motions. From
Eq. (32), the frequencies νr and νθ are determined by the sec-
ond derivatives of the effective potential (12) together with a
factor related to metric function and ṫ2. In Fig. 3, we show the

change of the partial derivatives
∂2Vef f

∂r2 |θ= π
2

,
∂2Vef f

∂θ2 |θ= π
2

, and

the factors 1
grr ṫ2

|θ= π
2

, 1
gθθ ṫ2

|θ= π
2

with l for fixed r0 = 6.5. It

is shown that the absolute value of
∂2Vef f

∂r2 |θ= π
2

increases with

l, but the factor 1
grr ṫ2

|θ= π
2

decreases. However, the effect of

the second derivative
∂2Vef f

∂r2 |θ= π
2

is suppressed by the factor

123



528 Page 6 of 11 Eur. Phys. J. C (2022) 82 :528

Fig. 2 The change of the circular orbit radius r0 with the black hole parameters M , a, l and the particle’s energy E in the rotating black hole
spacetime (4) in Einstein-bumblebee theory. In each panel, the red or black line denotes the unstable orbit, the blue or brown line corresponds to
the stable orbit

1
grr ṫ2

|θ= π
2

, which leads to that the frequency νr decreases with

the parameter l. Since both the absolute value of
∂2Vef f

∂r2 |θ= π
2

and 1
grr ṫ2

|θ= π
2

increase with a, it is easy to obtain that the
frequencies νr increases with a. Moreover, from Fig. 3, we

also find that the second derivative
∂2Vef f

∂θ2 |θ= π
2

dominates the
change of frequency νθ and results in that νθ is a decreasing
function of l and a. Furthermore, the periastron and nodal
precession frequencies can be expressed as

νper = νφ − νr , νnod = νφ − νθ , (36)

respectively.
In Fig. 4, we plot the change of the frequencies νφ , νper

and νnod for the rotating black hole spacetime in Einstein-
bumblebee theory (4). It is shown that in the case with a 
= 0
the azimuthal frequency νφ decreases with l as in the previ-
ous discussion. Comparing Fig. 3 with Fig. 4, one can find
that the frequencies νr and νθ decrease more rapidly than νφ ,
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Fig. 3 The change of the second partial derivatives − ∂2Vef f
∂r2 |θ= π

2
, − ∂2Vef f

∂θ2 |θ= π
2

, and the coefficients 1
grr ṫ2

|θ= π
2

, 1
gθθ ṫ2

|θ= π
2

and the frequencies νr ,
νθ with the parameter l in the rotating black hole spacetime in Einstein-bumblebee theory. Here we set M = 1 and r = 6.5

Fig. 4 The change of the frequencies νφ , νper and νnod with the parameter l in the rotating black hole spacetime in Einstein-bumblebee theory.
Here we set M = 1 and r = 6.5

Table 1 Data of quasi-periodic oscillations and black hole mass for GRO J1655-40, XTE J1550-564, and GRS 1915+105, respectively

νφ νper νnod M/M

GRO J1655-40 441 ± 2 [32] 298 ± 4 [32] 17.3 ± 0.1 [32] 5.4 ± 0.3 [42]

451 ± 5 [32] – 18.3 ± 0.1 [32]

XTE J1550-564 276 ± 3 [51] 184 ± 5 [51] – 9.1 ± 0.61 [52]

GRS 1915+105 168 ± 3 [51] 113 ± 5 [51] – 12.4+2.0
−1.8 [53]
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Table 2 Best-fit values and their range of 1σ for the black hole parameters with the metric (4) from GRO J1655-40, XTE J1550-564, and GRS
1915+105, respectively

M/M a∗ l r/M

r1 = 5.6194+0.0346
−0.0334

GRO J1655-40 5.4002+0.0478
−0.0562 0.2976+0.0233

−0.0119 −0.1048+0.1678
−0.1316

r2 = 5.5154+0.0476
−0.0474

XTE J1550-564 9.100+0.2450
−1.1443 0.3697+0.4536

−0.0436 −0.2053+6.7573
−0.3635 5.4030+0.1010

−0.4050

GRS 1915+105 12.4000+0.7400
−3.3580 0.3080+3.7760

−0.3192 1.3083+9.5717
−2.0134 6.101+0.2566

−1.4794

which yields that both of the periastron and nodal precession
frequencies (νper and νnod ) increase with the Lorentz sym-
metry breaking parameter l. Thus, the changes of νper and
νnod with l are determined by the effective potential com-
bined with the factor related to metric function and ṫ2. We
also find that as a = 0 the nodal precession frequency νnod
is zero for arbitrary l as expected. With the increase of the
spin parameter a, the frequencies νφ and νper decrease, but
the frequency νnod increases.

According to the relativistic precession model, three
simultaneous quasi-periodic oscillations frequencies are gen-
erated at the same radius of the orbit in the accretion flow. For
a rotating black hole spacetime (4) in Einstein-bumblebee
gravity, there are three parameters to describe black hole
spacetime. Thus, we have to resort to the χ2 analysis and
fit the values of these variables. Here, we adopt the observed
data from black hole sources exhibiting high frequency quasi-
periodic oscillations, which are listed in Table 1. From the
current observations of GRO J1655-40, there are two set of
data about these frequencies (νφ, νper, νnod) [32,38].

Two set of frequencies can be regarded to be emitted by
the relativistic particles moving along the orbits with the dif-
ferent radius r1 and r2, respectively. Moreover, the mass of
the black hole is also independently measured by a dynam-
ical method [42]: Mdyn = 5.4 ± 0.3M. For the black hole
sources XTE J1550-564 and GRS 1915+105, there are only
the high frequencies data and the low frequency parts is lack-
ing. With the data listed in Table 1, we can constrain the
parameters of a rotating black hole spacetime (4) in Einstein-
bumblebee gravity through the relativistic precession model
as in Ref. [38]. Together with the χ2 analysis, we can fit the
parameters of black hole (4) in Einstein-bumblebee gravity.

The best-fit values and their range of 1σ for the black hole
parameters are listed in Table 2.

The Table 2 shows that the circular orbit of quasi-periodic
oscillations lies in the strong gravitational-field region of the
black hole. In Fig. 2, we show the contour levels of 1σ , 2σ

and 3σ for the black hole parameters M , a and l with differ-
ent observed black hole sources. Comparing with the con-
straint results obtained by data of three black hole sources,
presented in Table 2 and Fig. 2, we find that the 1σ region

of l obtained by GRO J1655-40 data is the most narrow and
it also lies in the 1σ regions obtained by the other two black
hole sources, which means that the constraint on the Lorentz
symmetry breaking parameter l is more precise with data of
GRO J1655-40. The main reason may be that there are more
available observation data of quasi-periodic oscillations for
GRO J1655-40.

According to the constraint from GRO J1655-40, the best-
fit value of l = −0.1048 is negative, which means that
the spacetime described gravitational field in the Einstein-
bumblebee gravity (4) should allow |a|/M > 1 for a black
hole. It implies that the range of black hole spin parameter
a is larger than that in the Kerr case in general relativity.
Comparing with the usual Kerr black hole spacetime, the
negative l leads to that both the outer ergosurface radius
routerg and the outer horizon radius r+ increase, but the
width between the outer ergosurface and the outer horizon
routerg − r+ = a2 sin2 θ√

M2−(l+1)a2+
√

M2−(l+1)a2 cos2 θ
decreases

for fixed θ , which yields the lower possibility of exact-
ing energy by Penrose process for a rotating black hole in
Einstein-bumblebee gravity (4). Moreover, the negative l
means that the black hole (4) owns the higher Hawking tem-
perature and the stronger Hawking radiation than the Kerr
black hole. From Table 2 and Fig. 2, we find that the case
of l = 0 still lies in the range of 1σ obtained by three black
hole sources, which means that general relativity remains
to be consistent with the observation data of quasi-periodic
oscillations frequencies.

4 Summary

With relativistic precession model, we have studied quasi-
periodic oscillations frequencies in a rotating black hole in
Einstein-bumblebee gravity (4). The black hole owns three
parameters: mass M , spin a and the Lorentz symmetry break-
ing parameter l. We find that in the case witha 
= 0 both of the
periastron and nodal precession frequencies ( νper and νnod
) increase with the Lorentz symmetry breaking parameter l,
but the azimuthal frequency νφ decreases. In the non-rotating
black hole case, the nodal precession frequency νnod is zero
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Fig. 5 Constraints on the parameters of the rotating black hole in
Einstein-bumblebee theory (4) from current observations of QPOs
within the relativistic precession model. The top, middle and bottom
rows correspond to the constraint from GRO J1655-40, XTE J1550-

564, and GRS 1915+105, respectively. The red, blue and gray regions
in the panels represent the contour levels 1σ , 2σ and 3σ , respectively.
The black dots denote the best-fit values of black hole parameters

for arbitrary l since νθ = νφ in this case and they are indepen-
dent of the parameter l. With the increase of the spin param-
eter, the frequencies νφ and νper decrease, but the frequency
νnod increases. With the observation data of GRO J1655-
40, XTE J1550-564, and GRS 1915+105, we constrain the
parameters of the rotating black hole in Einstein-bumblebee
gravity (4), respectively. Our results show that the constraint
on the Lorentz symmetry breaking parameter l is more pre-

cise with data of GRO J1655-40. According to the constraint
from GRO J1655-40, one can find that the best-fit value of
the Lorentz symmetry breaking parameter l is negative. Com-
paring with the usual Kerr spacetime, the negative l leads to
that the black hole (4) in Einstein-bumblebee gravity owns
the higher Hawking temperature and the stronger Hawking
radiation than the Kerr black hole, but the lower possibility of
exacting energy by Penrose process. However, in the range of
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1σ , general relativity (where l = 0) remains to be consistent
with the observation data of GRO J1655-40, XTE J1550-564
and GRS 1915+105.
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5 Appendix

In this section, we present the derivation of the equation (23)
for the circular orbit r0. The effective potential (13) can be
written as

Vef f ≡ A(r)

B(r)
− 1, (37)

with

A(r) ≡ [r3 + (r + 2M)(l + 1)a2]E2 − 4aM
√
l + 1ELz

−(r − 2M)L2
z ,

B(r) ≡ r [r2 − 2Mr + (l + 1)a2]. (38)

From the conditions (21) of the circular orbit, one can obtain

A(r0) = B(r0), A(r0)B
′(r0) − A′(r0)B(r0) = 0. (39)

It means that A′(r0) = B ′(r0), which gives directly the equa-
tion (22). Substituting it into the above equations (39), one
can get the equation (23) satisfied by the circular orbit r0 in
the equatorial plane.
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