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Abstract New method for construction of gauge-invariant
deformed theory from an initial gauge theory proposed in our
previous papers (Buchbinder and Lavrov in JHEP 06:854,
2021; Buchbinder and Lavrov in Eur Phys J C 81:856,
2021) for closed/open gauge algebras is extended to the case
of reducible gauge algebras. The deformation procedure is
explicitly described with the help of generating functions of
anticanonical transformations depending on fields of the ini-
tial gauge action only. The deformed gauge-invariant action
and the deformed gauge generators are described with the
help of the generating functions in a closed and simple form.
As an example of reducible gauge systems we consider the
free fermionic p-form fields or, in another words, the antisym-
metric tensor-spinor fields. It is proved that gauge-invariant
deformation of fermionic p-form fields leads always to non-
local deformed theory which does not contain a closed local
sector. In its turn the model based on two fermionic 2-form
fields and a real massive scalar field admits local interactions
between these fields in local sector of the deformed action.

1 Introduction

Recently, a new approach to gauge-invariant deformation of
gauge theories has been proposed in our papers [1,2]. This
approach is closely related with the Batalin-Vilkovisky (BV)
formalism [3–5] which is the most powerful method for
covariant quantization of general gauge theories. The cen-
tral role in the BV formalism belongs to the classical master
equation formulated in terms of the antibracket. It is a remark-
able fact that the antibracket is invariant under anticanonical
transformations that helps in studying different properties of
gauge theories [6–10]. In this connection, it seems useful
to remind the standard approach to the problem of gauge-
invariant deformation for systems with gauge invariance.

a e-mail: lavrov@tspu.edu.ru (corresponding author)

Construction of consistent interactions among fields with
a gauge freedom or gauge-invariant deformations of a free
gauge system is formulated as follows [11]. Starting point
of deformation procedure is a given theory described by an
action S0 = S0[A] of field A = {Ai } which is supposed to
be invariant under gauge transformations,

S0,i R
i
0α = 0, δAi = Ri

0αξα, (1)

where ξα are arbitrary functions of space-time coordinates.
It is required to construct a final (deformed) action S as

S = S0 + gS1 + g2S2 + · · · , (2)

where g is a deformation parameter, in such a way that initial
gauge generators Ri

0α are deformed,

Ri
0α → Ri

α = Ri
0α + gRi

1α + g2Ri
2α + · · · , (3)

to final gauge generators Ri
α [11,12] so that the deformed

action S is invariant under the deformed gauge symmetry,

S,i R
i
α = 0. (4)

To arrive these results it has been proposed [11,12] to embed
the deformation procedure in the BV formalism as a part of
solutions to the classical master equation for an action S,

(S,S) = 0, (5)

with the boundary condition

S∣
∣
g=0 = S0. (6)

The bridge connecting solutions S to the classical master
equation with the deformed action S is established with the
help of the relation

S∣
∣
antifields = 0 = S. (7)

Solutions to the classical master equation are searched in the
form of Taylor expansion with respect to parameter g,

S = S0 + gS1 + g2S2 + · · · . (8)
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Then, the classical master equation for action S generates
the infinite set of equations

(S0, S0) = 0, (S0,S1) = 0, 2(S0,S2) + (S1,S1) = 0, · · · . (9)

Usually, this system of equations is analyzed with the help
of the cohomological approach [11,12] (see also recent appli-
cations [13,14]). In general, this approach to the deformation
procedure does not give a possibility to present the deformed
action and the deformed gauge generators in an explicit and
closed form. In fact, it was a reason for us to reconsider
the gauge-invariant deformations of gauge systems within
the BV formalism using the invariance of antibracket under
anticanonical transformations [1,2].

The anticanonical transformations by itself can be described
in two ways, namely, in terms of generating functionals or
with the help of generators. Being equivalent on theoretical
level, they might be distinguished in practical applications.
It happened really in our reformulation of the deformation
procedure. The description of anticanonical transformations
with the help of generating functionals is more preferred.
Moreover, it was realized [2] that the deformation prob-
lem can be solved using the so-called minimal anticanonical
transformations in the minimal antisymplectic space when
the corresponding functionals are described with the help
of generating functions depending on fields of initial the-
ory in the number equals to the number of initial fields and
having the same transformation properties as initial fields.
The gauge-invariant deformations in papers [1,2] have been
solved for initial gauge theories with closed/open algebras.
Main goal of present paper is to extend the new approach for
reducible gauge theories.

The paper is organized as follows. In Sect. 2, we review
the basic notions of reducible gauge theories and corre-
sponding gauge algebras underlying such gauge systems.
Section 3 is devoted to presentation of the deformed gauge
action and corresponding deformed gauge symmetry in terms
of a single generating function depending on initial fields
only. In Sect. 4, we consider the free fermionic p-form
fields as an example of reducible gauge system subjected to
gauge-invariant deformations. In Sect. 5, local interactions
of fermionic 2-form fields and a real massive scalar field as
the result of suitable deformation of the initial free model
of these fields are constructed. In Sect. 6, we summarize the
results.

In the paper, we systematically use the DeWitt’s con-
densed notations [15] and employ the symbols ε(A) for the
Grassmann parity and gh(A) for the ghost number, respec-
tively. The right and left functional derivatives are marked by
special symbols “←” and “−→” respectively. Arguments of
any functional are enclosed in square brackets [ ], and argu-
ments of any function are enclosed in parentheses, ( ). The
symbol F,i (A) is used for right partial derivative of function
F(A) with respect to Ai .

2 Reducible gauge theories

We consider a gauge theory of the fields A = {Ai }
with Grassmann parities ε(Ai ) = εi and ghost numbers
gh(Ai ) = 0. The theory is described by the initial action
S0[A] and gauge generators Ri

α(A) (ε(Ri
α(A)) = εi +

εα, gh(Ri
α(A)) = 0). The action is invariant under the gauge

transformations

δAi = Ri
α(A)ξα, (10)

where the gauge parameters ξα (ε(ξα) = εα) are the arbi-
trary functions of space-time coordinates. Condition of gauge
invariance is written in the standard form1

S0,i [A]Ri
α(A) = 0, α = 1, 2, ...,m. (11)

It is assumed that the fields A = {Ai } are linear indepen-
dent with respect to the index i however, in general, these
generators may be linear dependent with respect to index α.
Linear dependence of Ri

α(A) implies that the matrix Ri
α(A)

has at the extremals S0, j [A] = 0 zero-eigenvalue eigenvec-
tors Zα

α1
= Zα

α1
(A), such that

Ri
α(A)Zα

α1
(A) = S0, j [A]K ji

α1
(A), α1 = 1, ...,m1, (12)

and the number εα1 = 0, 1 can be found in such a way that

ε(Zα
α1

) = εα + εα1 . Matrices Ki j
α1 = Ki j

α1(A) in (12) can be
chosen to possess the properties:

Ki j
α1

= −(−1)εi ε j K ji
α1

, ε(K j i
α1

) = εi + ε j + εα1 .

The generators Ri
α(A) satisfy the following relations

Ri
α, j (A)R j

β(A) − (−1)εαεβ Ri
β, j (A)R j

α(A)

= −Ri
γ (A)Fγ

αβ(A) − S0, j [A]M ji
αβ(A), (13)

where Fγ
αβ(A) = Fγ

αβ (ε(Fγ
αβ) = εα + εβ + εγ , gh(Fγ

αβ) =
0) are the structure coefficients depending, in general, on
the fields Ai with the following symmetry properties Fγ

αβ =
−(−1)εαεβ Fγ

βα , and Mi j
αβ(A) = Mi j

αβ satisfy the conditions

Mi j
αβ = −(−1)εi ε j M ji

αβ = −(−1)εαεβ Mi j
βα. (14)

In its turn, the set Zα
α1

may be linearly dependent as itself,
so that at the extremals S0,i = 0 there exists the set of zero-
eigenvalue eigenvectors Zα1

α2 = Zα1
α2 (A)

Zα
α1
Zα1

α2
= S0, j L

jα
α2

, α2 = 1, ...,m2 (15)

and numbers εα2 = 0, 1 such that ε(Zα1
α2 ) = εα1 + εα2 . In the

general case the set Zα1
α2 can be redundant and so on. In such

1 To simplify presentation of all relations containing the right functional
derivative of functional S0[A] with respect to field Ai we will use the
symbol S0,i [A] = S0,i .
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a way the sequence of reducibility equations arises:

Zαs−2
αs−1 Z

αs−1
αs = S0, j L

jαs−2
αs , αs = 1, ...,ms; s = 1, .., L ,

(16)

where the following notations are introduced:

Zα1
α0

≡ Ri
α, L jα1

α0
≡ K j i

α , ε(Zαs−1
αs ) = εαs−1 + εααs

. (17)

If the set {ZαL−1
αL } is linear independent then one meets with

a gauge theory of L-stage reducibility.
The set of gauge generators {Ri

α}, eigenvectors {Zαs−1
αs }

and structure functions {L jαs−2
αs } defines the structure of

gauge algebra on the first level. For irreducible theories, the
structure of gauge algebra on the second level is defined by
the set of structure functions {Fγ

αβ} and matrices {Mi j
αβ} in

Eq. (13). For reducible theories, the existence of relations
among the Zαs−1

αs (16) leads to the appearance of new struc-
ture functions. Let us demonstrate this point for a first-stage
reducible gauge theory. To this end, let us multiply the rela-
tion (13) by the eigenvector Zβ

α1 . We obtain
(

Riα, j R
j
β − (−1)

εαεβ Riβ, j R
j
α + Riγ F

γ
αβ + S0, j M

j i
αβ

)

Zβ
α1 = 0. (18)

First, note that relations (12) allows us to express R j
β Z

β
α1

as a term proportional to the equations of motion. Second,
by differentiating Eqs. (12) and (11) with respect to A one
obtains that

Ri
β, j Z

β
α1

(−1)ε j (εβ+εα1 ) + Ri
β Z

β
α1, j

= S0, jl K
li
α1

(−1)ε j (εi+εα1 ) + S0,l K
li
α1, j , (19)

S0, j i R
j
α(−1)εlεα + S0,i R

i
α, j = 0. (20)

Then, multiplying Eqs. (19) by R j
α , using the Noether iden-

tities (11) and relations (20), we find

−(−1)εαεβ Ri
β, j R

j
αZ

β
α1

= (−1)εαεα1 Ri
β Z

β
α1, j

R j
α

+S0, j (R
j
α,l K

il
α1

(−1)εαεi − Ki j
α1,l

Rl
α(−1)εαεα1 ).

Returning with this result into (18), one can obtained the
relations

Ri
β

(

(−1)εαεα1 Zβ
α1, j

R j
α − Fβ

αγ Z
γ
α1

) = S0, j Y
ji

α1α

where all terms proportional to the equation of motion have
been collected into Y ji

αα1 . Taking into account the complete-
ness of the set of eigenvectors Zα

α1
, the general solution to

this equation,

(−1)εαεα1 Zβ
α1, j

R j
α−Fβ

αγ Z
γ
α1

=−Zβ
β1
Pβ1

α1α
−S0, j Q

jβ
α1α

,

(21)

defines a new gauge-structure relation similar to Eq. (13).
Therefore, two new structure functions Pβ1

αα1 and Q jβ
αα1 arise

to complete definition of the structure of gauge algebra for
the first-stage reducible theory on the second level. To define

the structure of gauge algebra on the third level, one has to
consider the Jacobi identity for gauge transformations and
some consequences from gauge-structure relations of previ-
ous levels.

In principal, there is no problem in deriving the corre-
sponding gauge algebra for reducible gauge theories of any
stage of reducibility but here we omit further calculations. Let
us remark only that, in general, the structure of gauge alge-
bra looks like a set of infinite number of structure functions
which define infinite number of gauge-structure relations. It
is remarkable fact that all these relations can be collected
within the BV method in a solution to the classical master
equation.

Within the BV formalism, studies of classical aspects of
gauge-invariant deformations can be performed in the mini-
mal antisymplectic space of fields φA and antifields φ∗

A as it
was pointed out in [2]. For reducible L-stage gauge theory
of fields Ai , it contains main chains of the ghost Cαs

s , and
pyramids of the ghost for ghost Cαs

s(ns )
,

φA =
(

Ai ; Cαs
s , s = 0, 1, ..., L ,Cαs

s(ns )
, s = 1, ..., L , ns = 1, ..., s

)

(22)

with the properties

ε(Cαs
s ) = (εαs + s + 1) mod2, s = 0, 1, ..., L ,

ε(Cαs
s(ns )

) = (εαs + s + 1) mod2, s = 1, ..., L , ns = 1, ..., s,

gh(Cαs
s ) = (s + 1), s = 0, 1, ..., L

gh(Cαs
s(ns )

) = s + 1 − 2ns , s = 1, ..., L , ns = 1, ..., s, (23)

and the corresponding set of antifields

φ∗
A =

(

A∗
i ,C

∗
sαs , s = 0, 1, ..., L , C∗

s(ns )αs , s = 1, ..., L , ns = 1, ..., s
)

.

(24)

The statistics of φ∗
A is opposite to the statistics of the cor-

responding fields φA

ε(φ∗
A) = εA + 1,

and the ghost numbers of fields and corresponding antifields
are connected by the rule

gh(φ∗
A) = −1 − gh(φA).

In comparison with original proposal of Ref. [5], we have
slightly (for simplicity and uniformity) changed notation
of pyramids of fields. As an example, for a second-stage
reducible theory, the following identification for the pyra-
mids of fields exists:

C
′α1
1 ≡ Cα1

1(1), C
′α2
2 ≡ Cα2

2(1).

The basic object of the BV formalism is the extended
action S = S[φ, φ∗] satisfying the classical master equation,

(S, S) = 0, (25)

123



429 Page 4 of 9 Eur. Phys. J. C (2022) 82 :429

and the boundary condition,

S[φ, φ∗]
∣
∣
∣
φ∗=0

= S0[A]. (26)

The classical master equation (25) is written in terms of
antibracket which is defined for any functionals F[φ, φ∗]
and H [φ, φ∗] in the form

(G, H) = G
(←−

∂φA
−→
∂φ∗

A
− ←−

∂φ∗
A

−→
∂φA

)

H. (27)

The gauge invariance of the initial action S0[A] leads to
invariance of the action S[φ, φ∗],
δB S = 0, (28)

under the global supersymmetry transformations (BRST
transformations [16,17])

δBφA = (φA, S)μ = −→
∂φ∗

A
S μ, δBφ∗

A = 0, (29)

as a consequence that S satisfies the classical master equation.
Here, μ is a constant Grassmann parameter. We emphasize
that the antibracket is a key element of compact description
of the classical gauge theories within the BV formalism. An
important property of the antibracket (27), is its invariance
with respect to anticanonical transformations of fields and
anti-fields [3,4]. It leads to statement that any two solutions
of classical master equation (25) are related one to another
by some anticanonical transformation.

3 Deformed action

New approach to gauge-invariant deformation of a gauge
theory was proposed in our papers [1,2] for theories with the
closed/open gauge algebras. Here, we are going to generalize
the results for theories when the gauge algebra is reducible.

Classical aspects of the gauge-invariant deformation of
initial theory can be studied in the minimal antisymplectic
space using the minimal anticanonical transformations as it
was proved in [2]. It means that the anticanonical transfor-
mations

φ∗
A = Y [φ,
∗]←−∂φA , 
A = −→

∂
∗
A
Y [φ,
∗], (30)

where Y = Y [φ,
∗] (ε(Y ) = 1, gh(Y ) = −1) is the
generating functional are non-trivial in the sector of minimal
antisymplectic space only

Y [φ,
∗] = 
∗
AφA + A∗

i h
i (A). (31)

Here, hi (A) = hi (ε(hi ) = εi , gh(hi ) = 0) are arbitrary
functions of fields Ai having the same transformation laws
as for Ai .

For simplicity of presentation and notations without loss
of generality of all conclusions and statements, we restrict
ourselves to the case of first-stage reducibility of the initial
action when in (30) and (31) φA = (Ai ,Cα,Cα1), φ∗

A =

(A∗
i ,C

∗
α,C∗

α1
) and
A = (Ai , Cα, Cα1), 
∗

A = (A∗
i , C∗

α, C∗
α1

).
Taking into account the gauge invariance of the initial action
(10) and the boundary condition (26), one can write the action
S = S[φ, φ∗] up to the terms linear in antifields in the form

S = S0[A] + A∗
i R

i
α(A)Cα + C∗

γ

(

Zγ
α1

(A)Cα1
1

−1

2
Fγ

αβ(A)CβCα(−1)εα

)

+ O(φ∗ 2). (32)

Making use of the anticanonical transformations (31) in
the action (32), we obtain the functional S̃ = S̃[φ, φ∗] =
S[
(φ, φ∗),
∗(φ, φ∗)] which satisfies the classical master
equation

(S̃, S̃) = 0, (33)

and has the following form up to the terms linear in antifields

S̃ = S̃0[A] + A∗
i R̃

i
α(A)Cα + C∗

γ

(

Z̃γ
α1

(A)Cα1
1

−1

2
F̃γ

αβ(A)CβCα(−1)εα

)

+ O(φ∗ 2), (34)

where the quantities

S̃0[A]= S0[A + h(A)], R̃i
α(A)=(M−1(A))i j R

j
α(A+h(A)),

F̃γ
αβ(A)=Fγ

αβ(A + h(A)), Z̃α
α1

(A)= Zα
α1

(A+h(A)) (35)

present the deformed initial action, S̃0[A], the deformed
gauge generators, R̃i

α(A), the deformed structure coeffi-
cients, F̃γ

αβ(A), and the deformed eigenvectors, Z̃α
α1

(A). The

matrix (M−1(A))i j is inverse to

Mi
j (A) = δi j + hi, j (A), (36)

The action S̃0[A] is invariant under the gauge transformations
δAi = R̃i

α(A)ξα ,

S̃0,i [A]R̃i
α(A) = 0. (37)

Therefore, the main problem of gauge-invariant deformation
of a given gauge system has the explicit closed solution as
for the deformed action as well as for deformed gauge gen-
erators. Such solutions is described in terms of generating
function h(A) only. The first relations in deformed gauge
algebra for first-stage reducible theories read

R̃i
α, j (A)R̃ j

β(A) − (−1)εαεβ R̃i
β, j (A)R̃ j

α(A)

= −R̃i
γ (A)F̃γ

αβ(A) − S̃0, j [A]M̃ ji
αβ(A),

R̃i
α(A)Z̃α

α1
(A) = S̃0, j [A]K̃ ji

α1
(A), (38)

where the functions M̃ ji
αβ(A) and K̃ ji

α1(A) are

M̃ ji
αβ(A)=−(M−1(A))

j
l (M

−1(A))ik M
kl
αβ(A+h(A))(−1)εlεi ,

(39)

K̃ ji
α1(A)=−(M−1(A))

j
l (M

−1(A))ik Z
kl
α1

(A+h(A))(−1)εlεi ,

(40)
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In the same manner, we deduce the relations which define
the structure functions of deformed algebra on the second
level

(−1)εαεα1 Z̃β
α1, j

(A)R̃ j
α(A) − F̃β

αγ (A)Z̃γ
α1

(A)

= −Z̃β
β1

(A)P̃β1
α1α

(A) − S̃0, j [A]Q̃ jβ
α1α

(A), (41)

where

P̃β1
α1α

(A) = Pβ1
α1α

(A + h(A)),

Q̃ jβ
α1α

(A) = (M−1(A))
j
k Q

kβ
α1α

(A + h(A)). (42)

The action (34) is invariant under the BRST transforma-
tions,

δB S̃ = 0, δBφA = (φA, S̃)μ = −→
∂φ∗

A
S̃ μ, δBφ∗

A = 0.

(43)

and, therefore, the deformed theory repeats all basic proper-
ties of the initial system on quantum level.

From the analysis carried out, the following conclu-
sions can be drawn: (1) for any reducible theory with an
gauge-invariant action S0[A] the deformed gauge-invariant
action, S̃0[A], is described by the formula S̃0[A] = S0[A +
h(A)] where h(A) is a generating function of the anti-
canonical transformation, (2) the deformed gauge genera-
tors, R̃i

α(A), are defined through the initial ones, Ri
α(A),

by the relations (35), (3) the chain of deformed eigen-
vectors, Z̃αs−1

αs (A), s = 1, 2, ..., L , is expressed in the
form Z̃αs−1

αs (A) = Zαs−1
αs (A + h(A)), (4) the structure

quantities appearing in relations (16) are deformed by the
rule L̃ jαs−2

αs (A) = (M−1(A))
j
k L

kαs−2
αs (A + h(A)), (5) the

deformed gauge algebra looks like as initial gauge algebra in
which all structure coefficients are replaced by the deformed
ones, (6) the same conclusion is valid for relation between
actions S and S̃ satisfying the classical master equation.

4 On deformation of fermionic p-form fields

As an example of reducible theories, we consider antisym-
metric tensor-spinor fields or, in another words, fermionic
p-form fields, ψa

μ1μ2...μp
, where a is a spinor index and the

μi are space-time indices. The fields ψa
μ1μ2...μp

are totally
antisymmetric in their space-time indices:

ψa
μ1μ2...μp

= ψa[μ1μ2...μp]. (44)

Anti-symmetrization of tensor Aμ1μ2...μp is understood in
standard sense

A[μ1μ2...μp] = 1

p!
∑

σ(μ1μ2...μp)

sgnσ Aσ(μ1)σ (μ2)...σ (μp) (45)

where summation is over all permutations of indicesμ1μ2...μp

and the symbol sgnσ is the sign of given permutation.

The free action for such a field in flat space-time is
described by the functional [18–20] 2

S0[ψ] = −(−1)
p(p−1)

2
∫

dnxψμ1μ2...μp
μ1μ2...μpνν1ν2...νp∂νψν1ν2...νp , (46)

where ψ = ψ†γ 0 and the notation

μ1μ2...μpνν1ν2...νp = γ [μ1γ μ2 · · · γ μpγ νγ ν1γ ν2 · · · γ νp]

(47)

is used. γ -matrices satisfy the standard relations

γ μγ ν + γ νγ μ = 2gμν. (48)

The action (46) can be considered as a direct generalization
of the Rarita-Schwinger action for a fermionic one-form ψa

μ

S0[ψ] = −
∫

dnxψμμνσ ∂νψσ , (49)

which is invariant under the gauge transformations

δψa
μ = ∂μ�a . (50)

The gauge generators

Ra
μb = ∂μδab, δψa

μ = Ra
μb�

b (51)

do not depend on fields ψa
μ, and this simple model belongs

to the class of gauge theories with Abelian irreducible gauge
algebra. The free theory of fermionic 2-form tensor-spinor
fields, ψa

μν , presents a model of first-stage reducible gauge
theory with action

S0[ψ] =
∫

dnxψμν
μνρσδ∂ρψσδ, (52)

being invariant under the following gauge transformations

δψa
μν = 2∂[μ�a

ν], δ�a
μ = ∂μ�a . (53)

The gauge generators

Raσ
μνb = 2∂[μδσ

ν]δab, δψa
μν = Raσ

μνb�
b
σ , (54)

have the zero-eigenvalue eigenvectors

Za
μb = ∂μδab, Raσ

μνb Z
b
σc = 0. (55)

2 Note that in Ref. [18], for the first time, an action for antisymmet-
ric tensor-spinor fields has been constructed as well in AdS space of
arbitrary dimensions.

123



429 Page 6 of 9 Eur. Phys. J. C (2022) 82 :429

It is clear that the action (46) is disappeared if the dimen-
sion of space-time satisfies the conditions n ≤ 2p. The action
is invariant under reducible gauge transformations. They are

δψa
μ1μ2...μp

= p∂[μ1�
(p−1)a

μ2···μp],

δ�(p−1)a
μ2···μp

= (p − 1)∂[μ2�
(p−2)a

μ3···μp],

δ�(p−2)a
μ3···μp

= (p−2)∂[μ3�
(p−3)a

μ4···μp], ..., δ�(1)a
μ =∂μ�(0)a .

(56)

where �
(k)a

μ1···μk , k = 0, 1, ..., p − 1, is a rank-k antisym-
metric tensor-spinor. From (56), it follows the identification
for gauge generators

R
aν2···νp
μ1μ2···μpb

= p∂[μ1δ
ν2
μ2

· · · δνp
μp]δ

a
b, (57)

and for the set of zero-eigenvalue eigenvectors

Z
aν2···νs−1
μ1μ2···μs−1b

= (s − 1)∂[μ1δ
ν2
μ2 · · · δνs−1

μs−1]δ
a
b, s = 2, 3, ..., p, (58)

in such a way that the relations (12), (15) in general setting
are reading now as

R
aσ2···σp
μ1μ2···μpc Z

cν2···νp−1
σ2···σpb

= 0, Zaσ2···σs−1
μ1μ2···μs−1c Z

cν2···νs−2
σ2···σs−1b

= 0,

s = 3, ..., p. (59)

Therefore, we have the free (p − 1)-stage reducible gauge
theory.

We are going to study consistent deformations of the
action (46) in a way describing above. To do this correctly, we
give the table of ”quantum” numbers of quantities entering
in presentation of action (46) and used later:

Quantity ψ,ψ dnx ∂ν  � ϕ m

ε 1 0 0 0 0 0 0
gh 0 0 0 0 0 0 0
dim (n-1)/2 -n 1 0 2 (n-2)/2 1
ε f 1,-1 0 0 0 0 0 0

where “ε” describes the Grassmann parity, the symbol “gh” is
used to denote the ghost number, “dim” means the canonical
dimension and “ε f ” is the fermionic number. Using the table
of “quantum” numbers, it is easy to establish the quantum
numbers of any quantities met in this section.

Deformation of initial theory is described by the gen-
erating function haμ1μ2...μp

(ψ) having the same “quantum”
numbers as ψa

μ1μ2...μp
. Due to ε f (ψ) = 1 the generating

function hμ1μ2...μp (ψ) should be a polynomial containing in
each their term even number, say 2k, of fields ψ and, there-
fore, odd number 2k − 1 of fields ψ . Such structure of terms
(ψ)2k−1(ψ)2k leads automatically to the relation ε(h) = 1.
Canonical dimension of product of fields is equal to

dim((ψ)2k−1(ψ)2k) = (4k − 1)
(n − 1)

2
. (60)

To arrive at the needed relation dim(h) = (n−1)/2, we have
to use the dimensional quantities ∂ and � = ∂ν∂ν in the term
under consideration. If the term contains l partial derivatives,
then one needs to introduce the operator � in the negative
power (2k−1)(n−1)+l/2. Moreover, the function hμ1μ2...μp

should be an antisymmetric tensor-spinor field. The simple
example of generating function hμ1μ2...μp (ψ) satisfying all
listed requirements and corresponding to the case k = 1 and
l = 1 reads

hμ1μ2...μp (ψ) = 1

�
n
2

ψμ1μ2...μpψν1ν2...νp

×ν1ν2...νpνρ1ρ2...ρp∂νψρ1ρ2...ρp , n > 2p.

(61)

In the case of the Rarita–Schwinger action (49) it means

hμ(ψ) = 1

� n
2
ψμψν

νσρ∂σ ψρ, (62)

as well as for the fermionic 2-form tensor-spinor fields (52)
the generating function has the form

hμν(ψ) = 1

� n
2
ψμνψαβαβδσρ∂δψσρ. (63)

Minimal dimension of space-time in the Rarita–Schwinger
model is equal to 3. Therefore, we can conclude that the non-
locality of deformed action comes from the fourth order ver-
tex due to presence of operator 1/� and from the sixth order
vertex because of (1/�)2. As the dimension of space - time
grows, so does the degree of the operator 1/� responsible
for the non-locality of the deformed action. Analogous state-
ment about the non-locality is valid for the deformed model
of fermionic 2-form tensor-spinor fields. In general, any con-
sistent gauge-invariant deformation of antisymmetric tensor-
spinor fields creates a non-local deformed action which has
no some closed local sector. Let us stress once again that
appearance of the operator (1/�) in the generating function
hμ1μ2...μp (ψ) is dictated by the strong motivations, namely:
(1) non-triviality of the deformed gauge action requires to
use a non-local generating functions because generating local
functions with higher derivatives are forbidden by dimension
reasons, (2) generating functions must be non-linear in fields
to reproduce vertexes of interactions, (3) preservation of the
fermionic number restricts possible non-linearity in fields of
the generating functions which must contain odd orders of
fields in its Taylor expansion, (4) compensation for the grow-
ing positive dimension of the terms in the generating function
containing fields can be achieved using the corresponding
positive powers of the operator (1/�). The situation differs
from the case of Abelian vector field or massless bosonic
higher spin fields [1] when the non-locality of generating
functions due to the operator (1/�) is responsible for exis-
tence of the local gauge sectors of deformed actions which
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are gauge invariant under local pieces of the deformed gauge
generators.

5 Interactions of fermionic 2-form fields and scalar field

Now we are going to demonstrate how the introduction of
new degree of freedom in the form of a scalar field may
change the conclusion given in the previous section about
non-local nature of interactions of fermionic p-form fields.

We start with the free action of fermionic 2-form fields,
ψa

μν , and a real massive scalar field, ϕ,

S0[ψ, ϕ] =
∫

dnxψμ1μ2
μ1μ2νν1ν2∂νψν1ν2

+1

2

∫

dnx
(

∂μϕ∂μϕ − m2ϕ2), n > 4 . (64)

The action is invariant under the gauge transformations

δψμν = 2∂[μ�ν], δϕ = 0, (65)

and belongs to gauge fields of first-stage reducibility with
zero-eigenvalue eigenvectors which do not depend on fields
and, therefore, do not transform under deformations described
in section 3. In this case, the identification with general
notations begins with fields Ai = (ψμν, ϕ) and gener-
ating functions of anticanonical transformations hi (A) =
(hμν(ψ, ϕ), h(ψ, ϕ)).

The deformation of initial classical system (64) is deter-
mined by arbitrary choice of generating functions with only
restrictions concerning “quantum numbers” and transforma-
tion rules which should coincide with properties of corre-
sponding fields so that

dim(hμν) = n − 1

2
, gh(hμν) = 0, ε(hμν) = 1, ε f (hμν) = 1,

(66)

dim(h) = n − 2

2
, gh(h) = 0, ε(h) = 0, ε f (h) = 0, (67)

and h must be a real scalar function while hμν must be a
fermionic 2-form fields.

It is not difficult to propose the generating functions of
anticanonical transformations which will be responsible to
generate cubic vertexes in lower order of the deformation
procedure,

hμν(ψ, ϕ) = g(m)
4−n

2
1

�∂α

(

γ αψμνϕ
)

, h(ψ, ϕ) = 0.

(68)

The deformed action, S̃0[ψ, ϕ], can be presented in the form

S̃0[ψ, ϕ]= S0[ψ, ϕ]+2g(m)
4−n
2

∫

dnxψμν
μναβψαβϕ

+(non − local interaction terms). (69)

In deriving (69), the relations

μ1μ2νν1ν2γ μ+μ1μ2μν1ν2γ ν =2μ1μ2ν1ν2gμν

+(terms responsible f or non − local contributions),

(70)

were used. The action

S1[ψ, ϕ] = S0[ψ, ϕ] + Sint [ψ, ϕ],
Sint [ψ, ϕ] = 2g(m)

4−n
2

∫

d4xψμν
μναβψαβϕ (71)

describes the local sector of the deformed initial system. In
its turn, the deformed gauge transformations of fields ψμν

read

δ̃ψμν = δψμν + δ1ψμν + O(g2), (72)

where

δ1ψμν = −g(m)
4−n

2
1

�γ σ ∂σ (ϕδψμν). (73)

Let us consider the variation of action S1[ψ, ϕ] under the
gauge transformations δψμν = δψμν + δ1ψμν ,

δS1[ψ, ϕ] = δ1S0[ψ, ϕ] + δSint [ψ, ϕ] + O(g2). (74)

We have

δ1S0[ψ, ϕ] = −g(m)
4−n

2

∫

d4xψμν
μναβδψαβϕ

+(non − local terms), (75)

δSint [ψ, ϕ] = g(m)
4−n

2

∫

d4xψμν
μναβδψαβϕ. (76)

From Eqs. (75), (76), it follows that the local action S1[ψ, ϕ]
describes interactions between fermionic 2-form fields and
real massive scalar field and is invariant in the first order
of deformation parameter under the gauge transformations
δψμν up to non-local terms. We see that construction of a
local gauge theory of interacting antisymmetric spin-tensor
fermionic fields meets with certain difficulties even if one
introduces new degrees of freedom in the form of massive
scalar field: although, in contrast with case which was studied
in the previous section, the deformed action contains a local
part but it is not invariant under local gauge symmetries.
We can conclude that up to now, description of interactions
of fermionic p-form fields in terms of a local gauge theory
remains open problem.

6 Conclusion

In the present paper, we have extended the new approach pro-
posed in [1,2] for gauge theories with closed/open algebras
to the procedure of gauge-invariant deformations of classical
reducible gauge theories. The deformation procedure of an
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initial theory with gauge freedom can be embedded into solu-
tions to the classical master equation of the BV formalism
[11,12]. Instead of using the cohomological approach to find
solutions to the classical master equation in the form of Taylor
expansion with respect to a deformation parameter [11,12], it
was proposed to take into account the invariance of the clas-
sical master equation under anticanonical transformations. It
allows to convert a given initial gauge theory presented in the
BV formalism through an action satisfying the classical mas-
ter equation and the boundary condition involving the initial
gauge action into solutions to the classical master equation
containing full information about deformed gauge-invariant
theory [1,2].

Using analysis of anticanonical transformations in pro-
cess of gauge-invariant deformation of solutions to the clas-
sical master equation in the minimal antisymplectic space
[1,2], we have made use of a single generating function
h(A) depending on fields of initial theory A only. It means
that non-trivial part of the generating functional Y has the
form A∗h(A). In general, the generating functional Y of anti-
canonical transformations may contain terms of higher order
in antifields (A∗)m(C∗)n(C∗

1 )k Hm,n,k(A). Using Hm,n,k(A)

when at least the indexm > 1 does not change the structure of
deformation in the initial configuration space but leads only
to redefinition of structure functions in the deformed gauge
algebra. It is well-known fact that the structure functions of
any gauge algebra are not define uniquely [3,4]. In fact, this
arbitrariness has been fixed by special type of anticanonical
transformations in our method. The deformation of initial
action has the form of replacement in the initial action the
gauge field A by the field A + h(A). In particular, it means
that the generating function h(A) should be a non-local one
or/and should contain higher derivatives because otherwise
one meets with trivial deformation when the deformed theory
is classically equivalent with the initial gauge system. In gen-
eral, the deformed gauge theory is non-local but sometimes
it may happen that there exists a local gauge-invariant sector
as a part of full theory. At the present, we have two important
examples of such situation, namely, the deformation of free
Abelian gauge theory allows to reproduce the Yang-Mills
theory as well as the suitable non-local deformation of free
theory of massless bosonic higher spin fields [21] leads to
generation of all local cubic vertexes known in the literature
[22–25] (for discussions of the non-locality of higher order
vertexes, see [26–31]).

The deformation of gauge generators is described by the
same function h(A) in the form of shift A → A + h(A)

of the argument of initial gauge generators followed by
rotation defining by the inverse matrix to the Mi

j (A) =
δi j + hi, j (A). The deformation of zero-eigenvalue eigen-
vectors is described as the shift A → A + h(A) in their
arguments. We have calculated some lower relations in the

deformed reducible algebra with deformed structure coeffi-
cients in the case of first-stage reducibility. Generalization
to arbitrary L-stage reducible gauge algebra looks like as a
technical task. We emphasize that the deformed gauge alge-
bra belongs to the same class of reducible algebras as for the
initial gauge algebra.

We have studied the free fermionic p-form fields as an
example of reducible gauge theory subjected to suitable
gauge-invariant deformation. We have proved that consistent
self-interactions of these fields are always described by non-
local vertexes. Therefore, if we deal with fermionic p-form
fields only then there is no possibility to construct a local
gauge theory of interactions between these fields. In prin-
ciple, adding new degree of freedom to a given dynamical
system may change some properties of deformed theories.
In fact, it was a reason for us to consider the model of free
fermionic 2-form fields and a massive scalar field subjected to
a non-local gauge-invariant deformation leading to existence
of cubic vertexes in the deformed action. It was shown that
in the first order with respect of the deformation parameter
the deformed action contains a local part with cubic interac-
tions of fields but, unfortunately, it is not invariant under local
gauge symmetries. So, construction of a local gauge theory,
containing interactions between completely antisymmetric
spin-tensor fields, remains unsolved.
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