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Abstract A Kerr–Sen-like black hole solution results from
Einstein-bumblebee gravity. It contains a Lorentz violating
(LV) parameter that enters when the bumblebee field receives
vacuum expectation value through a spontaneously break-
ing of the symmetry of the classical action. The geomet-
rical structure concerning the singularity of this spacetime
is studied with reference to the parameters involved in the
Kerr–Sen-like metric. We introduce this Einstein-bumblebee
modified gravity to probe the role of spontaneous Lorentz
violation on the superradiance scattering phenomena and the
instability associated with it. We observe that for the low-
frequency range of the scalar wave the superradiance scat-
tering gets enhanced when the Lorentz-violating parameter
� takes the negative values and it reduces when values of �

are positive. The study of the black hole bomb issue reveals
that for the negative values of �, the parameter space of the
scalar field instability increase prominently, however, for its
positive values, it shows a considerable reduction. We also
tried to put constraints on the parameters contained in the
Kerr–Sen-like black hole by comparing the deformation of
the shadow produced by the black hole parameters with the
observed deviation from circularity and the angular deviation
from the M87∗ data.

1 Introduction

In a gravitational system, the scattering of radiation off
absorbing rotating objects produce waves with amplitude
larger than incident one under certain conditions which is
known as rotational superradiance [1–4]. In 1971, Zel’dovich
showed that scattering of radiation off rotating absorbing sur-
faces result in waves with a larger amplitude as ω < m�

where ω is the frequency of the incident monochromatic
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radiation with m, the azimuthal number with respect to the
rotation axis and � is the angular velocity of the rotating
gravitational system. For review we would like to mention the
lecture notes [5], and the references therein. Rotational super-
radiance belongs to a wider class of classical problems dis-
playing stimulated or spontaneous energy emission, such as
the Vavilov–Cherenkov effect, the anomalous Doppler effect.
When quantum effects were incorporated, it was argued that
rotational superradiance would become a spontaneous pro-
cess and that rotating bodies including black holes would
slow down by spontaneous emission of photons. From the
historic perspective, the discovery of black-hole evaporation
[6] was well understood from the studies of black-hole super-
radiance.

Interest in the study of black-hole superradiance has
recently been revived in different areas, including astro-
physics, high-energy physics via the gauge/gravity duality
along with fundamental issues in General Relativity. Super-
radiant instabilities can be used to constrain the mass of ultra-
light degrees of freedom [7–10], with important applications
to dark-matter searches. The black hole superradiance is also
associated with the existence of new asymptotically flat hairy
black-hole solutions [11] and with phase transitions between
spinning or charged black objects and asymptotically anti-
de Sitter (AdS) spacetime [12–14] or in higher dimensions
[15]. Finally, the knowledge of superradiance is instrumental
in describing the stability of black holes and in determining
the fate of the gravitational collapse in confining geometries
[13].

During the last few decades, the standard theories of gen-
eral relativity have been continuing to explain many impor-
tant experimental results. However, there is still some room
to the use of alternative theories of the general theory of
relativity. From a theoretical viewpoint, having an ultravi-
olet complete theory of general relativity is complimentary
as well as supportive. Moreover from the observational point
of view, general relativity has shortcomings to describe some

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10307-y&domain=pdf
mailto:anisur.associates@aucaa.ac.in
mailto:manisurn@gmail.com


411 Page 2 of 17 Eur. Phys. J. C (2022) 82 :411

gravitational phenomena at a large scale such as the dark side
of the universe. These shortcomings automatically demand
modified theories of general relativity. The modifications
may render some imprints in astrophysical phenomena where
it is expected that the strong gravity triggers the events in
the vicinity of celestial bodies like astrophysical black holes
and neutron stars. Black holes can be used as a potential
probe to investigate the possible high-energy modifications
to general relativity in the regime where gravity is sufficiently
strong. In this respect, the use of alternative theories of grav-
ity would be of cardinal importance to study the astrophysical
aspects of black hole. The important astrophysical phenom-
ena namely black hole superradiance is extremely sensitive
to the spacetime geometries linked with it. Recently, sev-
eral investigations have been carried out on superradiance
phenomena and on the issues closely linked to it with the
extended framework of modified theories of gravity [16–
29]. As an extension in this direction, an attempt has been
made here to study the superradiance of the spinning black
holes within the framework of Lorentz-violating gravity. It
is commonly known as the ‘Einstein-bumblebee model’ [30]
which involves the innovative ‘spontaneous Lorentz symme-
try breaking’ principle. From the theoretical point of view,
it arrived from one of the standard issues of quantization of
gravity through string theory. Although the Lorentz symme-
try is the fundamental underlying symmetry of two successful
field theories describing the universe, i.e. GR and the stan-
dard model of particle, however, it is more or less accepted
from all corners that it may break at quantum gravity scales.
The LSB has been introduced through the formulation of an
effective field theory, known as ‘standard model extension
(SME)’, where particle standard model along with GR has
been attempted to bring together in one framework, and every
operator is expected to break the Lorentz symmetry [31–34].
Standard model extension provides essential inputs to probe
LSB both in high energy particle physics and astrophysics.
The SME can be used in analysis of most modern experimen-
tal results indeed. Einstein-bumblebee model is essentially a
simple model that contains Lorentz symmetry breaking sce-
nario in a significant manner in which the physical Lorentz
symmetry breaks down through an axial vector field known as
the bumblebee field. The breaking of the Lorentz symmetry
in a local Lorentz frame takes place when at least one quantity
carrying local Lorentz indices receives a non-vanishing vac-
uum expectation value. In the Einstein bumblebee model, it is
the bumblebee field that receives it. Over the last few years, a
remarkable enthusiasm has been noticed among the physicist
to study the different interesting physical phenomena in the
framework of Einstein Bumblebee model [35–43]. Recently,
the superradiance phenomenon corresponding to Kerr black
hole is studied in [48] in this framework. The black hole solu-
tion considered there was Kerr-like. The study of superradi-
ance phenomena of black holes through the Einstein bum-

blebee model using Kerr–Sen-like black hole solution is a
natural extension. This new investigation is likely to be use-
ful in the study of black holes in the quantum gravity realm
since it would be possible to compare the contribution of LV
to the superradiance phenomenon.

The article is organized as follows. In Sect. 2 a brief dis-
cussion of Einstein-bumblebee gravity with Kerr–Sen-like
black hole solutionis given. A subsection of Sect. 2 contains
the discussion of Horizon, Ergosphere, and static limit sur-
face. Section 3 is devoted with the superradiance scattering
of scalar field off Kerr–Sen-like black hole. Amplification
factor for superradiance scattering off Kerr–Sen-like black
hole has been calculated in Sect. 4 and a subsection of which
is devoted with the superradiant instability issue for Kerr–
Sen-like black hole. In Sect. 5 Constraining of the parameter
of this black hole is made from the observed data for M87∗.
Final Sect. 6 contains a brief summary and discussions.

2 Exact Kerr–Sen like black hole solution in
Einstein-bumblebee model

Einstein-bumblebee theory is an extension of Einstein’s the-
ory where a vector boson is involved that plays a pivotal
role in the existing symmetry of Einstein’s theory [41–46].
It is an effective classical field theory where the vector field
involved in the theory receives vacuum expectation when
spontaneous braking of an existing symmetry of the action
takes place and a Lorentz violation enters into the theory as
an outcome. Einstein-bumblebee theory is described by the
action

S =
∫

d4x
√−g

[
1

16πGN

(R + �BμBνRμν

)

−1

4
BμνBμν − V

(
Bμ

)]
. (1)

Here �2 stands for the real coupling constant. It controls the
non-minimal gravity interaction to the bumblebee field Bμ

(with the mass dimension 1). The coupling constant �2 has
mass dimension −1.

The action (1) leads to the following gravitational field
equation in vacuum

Rμν − 1

2
gμνR = κT B

μν, (2)

where κ = 8πGN is the gravitational coupling. The bum-
blebee energy momentum tensor T B

μν reads

T B
μν = BμαB

α
ν − 1

4
gμνB

αβBαβ − gμνV + 2BμBνV
′

+�

κ

[
1

2
gμνB

αBβ Rαβ − BμB
αRαν − BνB

αRαμ
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+1

2
∇α∇μ

(
BαBν

)+ 1

2
∇α∇ν

(
BαBμ

)

−1

2
∇2 (BμBν

)− 1

2
gμν∇α∇β

(
BαBβ

)]
. (3)

Here prime(′) denotes the differentiation with respect to the
argument.

Einstein’s equation in the present situation is generalized
to

Rμν − κbμαb
α
ν + κ

4
gμνb

αβbαβ + �bμb
αRαν + �bνb

αRαμ

−�

2
gμνb

αbβRαβ − �

2

[∇α∇μ

(
bαbν

)+ ∇α∇ν

(
bαbμ

)

−∇2 (bμbν

)] = 0 ⇒ R̄μν = 0, (4)

with

R̄μν = Rμν − κbμαb
α
ν + κ

4
gμνb

αβbαβ

+�bμb
αRαν + �bνb

αRαμ − �

2
gμνb

αbβRαβ + B̄μν,

B̄μν = −�

2

[∇α∇μ

(
bαbν

)+ ∇α∇ν

(
bαbμ

)− ∇2 (bμbν

)]
.

(5)

If we now adopt the standard Boyer–Lindquist coordinates
we find that the underlying generalized gravity model admits
a Kerr–Sen-like black hole solution:

ds2 = −
(

1 − 2Mr

ρ2

)
dt2 − 4Mra

√
1 + � sin2 θ

ρ2 dtdϕ

+ρ2

�
dr2 + ρ2dθ2 + A sin2 θ

ρ2 dϕ2, (6)

where

ρ2 = r(r + b) + (1 + �)a2 cos2 θ,� = r(r + b) − 2Mr

1 + �

+a2, A = [
r(r + b) + (1 + �)a2]2 − �(1 + �)2a2 sin2 θ.

(7)

Here a = J
M represents the rotation (Kerr) parameter b =

Q2

M , the Sen parameter related to the electric charge, and �

the Lorentz-violating parameter. M, J, and Q are representing
respectively the mass, angular momentum, and charge of the
black hole. Note that when � → 0 it recovers the usual Kerr–
Sen metric [47].

2.1 Horizon, ergosphere, and static limit surface

The metric is singular when � = 0. The roots of the equation
depend on the parameter M , a, b, and �. Having a maximum
of two real roots, or two equal roots, and no real roots are the
possibilities to occur from the condition � = 0 [49–52]. The

horizons correspond to the two real roots which are given by

r± = M − b

2
±
√

(b − 2M)2 − 4a2(1 + �)

2
, (8)

where ± signs correspond to the outer and inner horizon
respectively. The event horizon and Cauchy horizon are
labelled with reh and rch respectively. We will have a black
hole only when

|b − 2M | ≥ 2a
√

1 + l. (9)

When r− = r+ we have extremal black hole. The parameter
space (a, b) for three different values of Lorentz violating
parameter � = −0.5, 0, and +0.5 are shown here.

Figure 1 shows that parameter space for which we have a
black hole is shrinking with an increase in the LV parameter
�. So increase in � makes the system less probable for having
a black hole and the reverse is the case when LV parameter
� decreases. We now plot the � versus r/M for various dif-
ferent variation of a, b, and �. In the plots when the variation
of one parameter is considered the other two are held fixed.

From Figs. 2 and 3, we readily observe that there exist a
critical value ac for the parameter a for fixed values of bl and
l. Similarly, there is a critical value bc for the parameter b
when the parameter a and l care kept fixed. For fixed values
of the parameter b and a, lc comes out as critical value for the
parameter �. At these critical values two roots of the � = 0
becomes identical which indicate extremal black holes. For
instance, when b = 0.7, l = 0.4 we have ac = 0.54935,
when a = 0.6, l = 0.4 we have bc = 0.580141, and when
a = 0.6, b = 0.7 we have lc = 0.173611. Therefore, for

Fig. 1 Parameter space(a, b) for various values of l
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Fig. 2 The left one gives variation of � for various values of b with a = 0.6 and l = 0.4 and the right one gives variation for various values of a
with b = 0.7 and l = 0.4

Fig. 3 It gives variation of � for various values of l with b = 0.7 and
a = 0.6

a < ac we have black hole and for a > ac we have naked
singularity. Similarly, b < bc indicates existence of a black
hole and for b > bc it is a naked singularity. For l < lc, in
a similar way, we have black hole and l > lc signifies naked
singularity.

Let us now turn towards the static limit surface (SLS)
where the asymptotic time-translational Killing vector
becomes null which gives

gtt = ρ2 − 2Mr = 0. (10)

The real positive solutions of the above equation give radial
coordinates of the ergosphere given by

rergo± = M − b

2
±
√

(b − 2M)2 − 4a2(1 + �) cos2 θ

2
. (11)

Inside the SLS no observer can stay static and they are bound
to co-rotate around the black hole. The region between the
SLS and the event horizon is called the ergosphere shown
below in Fig. 4. According to Penrose [53,54] energy can be
extracted from black hole’s ergosphere.

Figure 4 shows that the shape of the ergosphere closely
depends on parameters a, b, and l. A careful look reveals
that the size of the ergosphere is enhancing with the increase

in the LV parameter � when a and b remain fixed. The value
of the parameter b also has an influence on the size of the
ergosphere. The size of the ergosphere increases with the
increase in the value of the parameter b as well when a and
l remain unchanged.

Horizon angular velocity is found out to be

�̂ = a
√

1 + l

reh (reh + b) + a2 (1 + �)
. (12)

3 Superradiance scattering of scalar field off
Kerr–Sen-like black hole

To study the superradiance scattering of a scalar field � with
mass μ we consider the Klein-Gordon equation in curved
spacetime
(
	α 	α +μ2

)
�(t, r, θ, φ)

=
[ −1√−g

∂σ

(
gστ√−g∂τ

)+ μ2
]

�(t, r, θ, φ) = 0. (13)

Adopting the separation of variables method on the equation
(13) it is possible to separate it into radial and angular part
using the following ansatz in the standard Boyer–Lindquist
coordinates (t, r, θ, φ)

�(t, r, θ, φ) = Rω jm(r)�(θ)e−iωt eimφ,

j ≥ 0, − j ≤ m ≤ j, ω > 0, (14)

where Rω jm(r) is the radial function and �(θ) is the oblate
spheroidal wave function. The symbols j , m, and ω respec-
tively stand for the angular eigenfunction, angular quantum
number, and the positive frequency of the field, which is
under investigation, as measured by a far away observer.
Using the ansatz (14) the differential equation (13), is found
to get separated into the following two ordinary differential
equations. For radial part the equation reads

d

dr
(�

dRω jm(r)

dr
)
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Fig. 4 The cross-section of event horizon (outer red line), SLS (outer blue dotted line) and ergoregion of Kerr–Sen like black holes

+
(

((r(r + b) + a2(1 + �))ω − am
√

1 + �)2

�(1 + �)

)
Rωlm(r)

−(μ2r(r + b) + j ( j + 1) + a2(1 + �)ω2

−2mωa
√

1 + �)Rωlm(r) = 0, (15)

and for the angular part it reads

sin θ
d

dθ

(
sin θ

d�ω jm(θ)

dθ

)

+
(
j ( j + 1) sin2 θ −

((
a
√

1 + �ω sin2 θ − m
)2
))

�ω jm(θ)

+a2(1 + �)μ2 sin2 θ cos2 θ �ω jm(θ) = 0. (16)

We can have a general solution of the radial equation (15)
using the earlier investigation [55,56]. We have given it as an
Appendix A. However we are intended to study the scatter-
ing of the field � following the articles [58–63], and in this
situation we have used the asymptotic matching procedure
which is explicitly used in [57]. This article however is an
extension of the important works [58–63]. Use of asymptotic
matching also has been found in [48]. This led us to land onto
the required result without using the general solution. Let us
first focus on the radial equation. To deal with the radial equa-
tion according to our need we apply a Regge–Wheeler-like
coordinate r∗ which is defined by

r∗ ≡
∫

dr
r(r + b) + a2(1 + �)

�
,

(r∗ → −∞ at event horizon, r∗ → ∞ at infinity) .

(17)

To transform the equation into the desired shape, we
introduce a new radial function Rω jm (r∗)
= √

r(r + b) + a2(1 + �)Rω jm(r). After a few steps of alge-
bra, we obtain the radial equation with our desired form
where an effective potential took its entry into the picture.

d2Rωlm (r∗)
dr2∗

+ Vω jm(r)Rω jm (r∗) = 0. (18)

The effective potential that has the crucial role on the scat-
tering reads

Vω jm(r) = 1

1 + �

(
ω − mâ

r(r + b) + â2

)2

− �(
r(r + b) + â2

)2

⎡
⎣ j ( j + 1) + â2ω2 − 2mâω + μ2r(r + b)

+
√
r(r + b) + â2 d

dr

⎛
⎝ �(2r + b)

2
(
r(r + b) + â2

) 3
2

⎞
⎠
⎤
⎦ , (19)

where ã = a(1+�)
1
2 . We are intended to study the scattering

of the scalar field � under this effective potential. In this
context, it is beneficial to study the asymptotic behavior of the
scattering potential at the event horizon and at spatial infinity.
In the asymptotic limit the potential at the event horizon looks

lim
r→reh

Vω jm(r) = 1

1 + �

(
ω − m�̃h

)2 ≡ k2
eh, (20)

lim
r→∞ Vω jm(r) = ω2 − lim

r→∞
μ2r(r + b)�(
r(r + b) + ã2

)2
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= ω2

1 + �
− μ̂2 ≡ k2∞, μ̂ = μ√

� + 1
. (21)

Note that at the two extremal points, event horizon and
spatial infinity, the potential asymptotically shows constant
behavior. However, the values of the constants are different
indeed.

We are now in a position to see the asymptotic behavior
of the radial equation. It is found that the radial equation (18)
has the following asymptotic solutions

Rω jm(r) →
⎧⎨
⎩

Aeh
in e

−ikehr∗√
reh(reh+b)+â2

for r → reh

A∞
in

e−ik∞r∗
r + A∞

re f
eik∞r∗

r for r → ∞.

(22)

Here Aeh
in represents the amplitude of the incoming scalar

wave at event horizon(“eh”), and A∞
in is the corresponding

quantity of the incoming scalar wave at infinity(“∞′′). Along
with these, the amplitude of the reflected part of scalar wave
at infinity (“∞′′) is A∞

re f .
Let us now compute the Wronskian for the region adjacent

to the event horizon and at infinity. It is found that Wronskian
for this region is

Weh =
(
Reh

ω jm

dR∗eh
ω jm

dr∗
− R∗eh

ω jm

dReh
ω jm

dr∗

)
, (23)

and the Wronskian at infinity reads

W∞ =
(
R∞

ω jm

dR∗∞
ω jm

dr∗
− R∗∞

ω jm

dR∞
ω jm

dr∗

)
. (24)

The solutions are linearly independent. From the knowledge
of standard theory of ordinary differential equation it can
be understandable that the Wronskian corresponding to the
solutions will be independent of r∗. Thus, the Wronskian
evaluated at horizon does amenable to equate with the Wron-
skian evaluated at infinity. In physical sense, it is reflecting the
flux conservation [5]. It results an important relation between
the amplitudes of incoming and reflected waves at different
regions of interest.

∣∣∣A∞
re f

∣∣∣2 = ∣∣A∞
in

∣∣2 − keh
k∞

∣∣∣Aeh
in

∣∣∣2 . (25)

The above equation transpires that if keh
k∞ < 0 i.e., ω < m�̂eh ,

the scalar wave will be superradiantly amplified, because in

this situation, the relation
∣∣∣A∞

re f

∣∣∣2 >
∣∣A∞

in

∣∣2 holds explicitly.

4 Amplification factor Z jm for superradiance

We now rewrite the radial equation (15) as

�2 d
2Rω jm(r)

dr2 + �
d�

dr
· dRω jm(r)

dr

+
(((

r(r + b) + â2
)
ω − âm

)2

1 + �

−�
(
μ2r(r + b) + j ( j + 1) + â2ω2 − 2mâω

) )
Rω jm(r) = 0.

(26)

We now turn to derive the near-region as well as the far-
region solution and try to find out a single solution matching
the near-region solution at infinitely with the far-region solu-
tion at its initial point such that this single solution works in
the vicinity of the cardinal region. We apply the change of
variable x = r−reh

reh−rch
. Using this change of variable equation

(26) under the approximation âω  1 turns into

x2(x + 1)2

(� + 1)2

d2Rω jm(x)

dx2 + x(x + 1)(2x + 1)

(� + 1)2

dRω jm(x)

dx

+
(
P2x4

1 + �
+ B2

1 + �
− j ( j + 1)

� + 1
x(x + 1)

− μ̂2P2

ω2 x3(x + 1) − μ̂2r2
ehx(x + 1) − 2μ̂2reh P

ω
x2(x + 1)

− μ̂2Pb

ω
x2(1 + x) − μ̂2brehx(1 + x)

)
Rω jm(x) = 0,

(27)

where P = (reh − rch) ω and B = (ω−m�̂)
reh−rch

r2
eh . For near-

region we have Px  1 and μ̂2r2
eh  1 and hence the above

equation reduces to

x2(x + 1)2 d2Rω jm(r)

dx2 + x(x + 1)(2x + 1)
dRω jm(r)

dx

+
(
(� + 1)B2 − j ( j + 1)(� + 1)x(x + 1)

)
Rω jm(r) = 0.

(28)

The approximation
(
μ̂2r2

eh  1
)

is originated from the con-
sideration that the Compton wavelength of the boson partici-
pating in the scattering process is much smaller than the size
of the black hole. The general solution of the above equation
in terms of associated Legendre function of the first kind
Pν

λ (y) can be written down as

Rω jm(x) = cP2i
√

1+�B√
1+4 j ( j+1)(l+1)−1

2

(1 + 2x). (29)

We now use the relation

Pν
λ (z) = 1

�(1 − ν)

(
1 + z

1 − z

)ν/2

2

F1

(
−λ, λ + 1; 1 − ν; 1 − z

2

)
. (30)
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It enables us to express Rω jm(x) in terms of the ordinary
hypergeometric functions 2F1(a, b; c; z):
Rω jm(x) = c

(
x

x + 1

)−i
√

�+1B

2

F1

(
1 − √

1 + 4(� + 1) j ( j + 1)

2
,

1 + √
1 + 4(� + 1) j ( j + 1)

2
;

1 − 2i
√

� + 1B;−x

)
. (31)

As we have mentioned, we require a single solution using
the matching condition at the desired position where the two
solutions mingle with each other. In this respect, we need to
observe the large x behavior of the above expression. The
Eq. (31) for large x (x → ∞) turns into

Rnear-large x ∼ c

⎛
⎝ �(

√
1 + 4(� + 1) j ( j + 1))�(1 − 2i

√
� + 1B)

�
(

1+√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
)

�
(

1+√
1+4(�+1) j ( j+1)

2

) x
√

1+4(�+1) j ( j+1)−1
2 (32)

+ �(−√
1 + 4(� + 1) j ( j + 1))�(1 − 2i

√
� + 1B)

�
(

1−√
1+4(�+1) j ( j+1)

2

)
�
(

1−√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
) x

−
√

1+4(�+1) j ( j+1)+1
2

⎞
⎠
. (33)

For the far-region, we can use the approximations x + 1 ≈ x
and μ̂2r2

eh  1. We may drop all the terms except those
which describe the free motion with momentum j and that
reduces equation (26) to

d2Rω jm(x)

dx2 + 2

x

dRω jm(x)

dx

+
(
k2
l − j ( j + 1)(� + 1)

x2

)
Rω jm(x) = 0, (34)

where kl ≡ P
√

1+�
ω

√
ω2 − μ2. Equation (34) has the general

solution

Rω jm, far = e−ikx

⎛
⎝d1x

√
1+4(�+1) j ( j+1)−1

2 M

(
1 + √

1 + 4(� + 1) j ( j + 1)

2
, 1 +√

1 + 4(� + 1)l(l + 1), 2ikl x

)

+ d2x
−

√
1+4(α+1) j ( j+1)+1

2 M

⎛
⎝1 − √

1 + 4(� + 1) j ( j + 1)

2
, 1 −√

1 + 4(� + 1) j ( j + 1), 2ikl x

⎞
⎠
⎞
⎠ , (35)

where M(a, b, y) refers to the confluent hypergeometric
Kummer function of first kind. In order to match the solution
with (33), we look for the small x behavior of the solution
(35). For small x(x → 0), the Eq. (35) takes the form

Rω jm, far-small x ∼ d1x
√

1+4(�+1) j ( j+1)−1
2 +d2x

− 1+√
1+4(�+1) j ( j+1)

2 .

(36)

The solution (33) and (36) are susceptible for matching, since
these two have common region of interest. The matching of
the asymptotic solutions (33) and (36) enables us to compute
the scalar wave flux at infinity resulting in

d1 = c �(
√

1+4(�+1) j ( j+1))�(1−2i
√

�+1B)

�
(

1+√
1+4(�+1) j ( j+1)

2

)
−2i

√
α+1B

)
�
(

1+√
1+4(�+1) j ( j+1)

2

)
,

(37)

d2 = c �(−√
1+4(�+1) j ( j+1))�(1−2i

√
�+1B)

�
(

1−√
1+4(�+1) j ( j+1)

2

)
−2i

√
α+1B

)
�
(

1−√
1+4(�+1) j ( j+1)

2

) .

(38)

We expand Eq. (35) around infinity which after expansion
results

d1
�(1 + √

1 + 4(� + 1) j ( j + 1))

�
(

1+√
1+4(�+1) j ( j+1)

2

) k
− 1+√

1+4(�+1) j ( j+1)
2

l

(
(−2i)−

1+√
1+4(�+1) j ( j+1)

2
e−ikl x

x
+ (2i)−

1+√
1+4(�+1) j ( j+1)

2
eikl x

x

)

+d2
�(1 − √

1 + 4(� + 1) j ( j + 1))

1−√
1+4(�+1) j ( j+1)

2

k

√
1+4(�+1) j ( j+1)−1

2
l

(
(−2i)

√
1+4(�+1) j ( j+1)−1

2
e−ikl x

x
+ (2i)

√
1+4(�+1) j ( j+1)−1

2
eikl x

x

)
. (39)
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With the approximations 1
x ∼ P

ω
· 1

r , e±ikl x ∼
e±i

√
(1+�)(ω2−μ2)r , if we match the above solution with the

radial solution (22)

R∞(r) ∼ A∞
in
e−i

√
ω2
1+�

−μ̂2r∗

r
+ A∞

re f
ei
√

ω2
1+�

−μ̂2r∗

r
,

for r → ∞
we get

A∞
in = P

ω

(
d1(−2i)−

1+√
1+4(�+1) j ( j+1)

2
�(1+√

1+4(�+1) j ( j+1))

�
(

1+√
1+4(�+1) j ( j+1)

2

) k
− 1+√

1+4(�+1) j ( j+1)
2

l d2(−2i)
√

1+4(�+1) j ( j+1)−1
2

�(1−√
1+4(�+1) j ( j+1))

�
(

1−√
1+4(�+1) j ( j+1)

2

) k

√
1+4(�+1) j ( j+1)−1

2
l

)
,

and

A∞
re f = P

ω

(
d1(2i)−

1+√
1+4(�+1) j ( j+1)

2
�(1+√

1+4(�+1) j ( j+1))

�
(

1+√
1+4(�+1) j ( j+1)

2

) k
− 1+√

1+4(�+1) j ( j+1)
2

l + d2(2i)
√

1+4(�+1) j ( j+1)−1
2

�(1−√
1+4(�+1) j ( j+1))

�
(

1−√
1+4(�+1) j ( j+1)

2

) k

√
1+4(�+1) j ( j+1)−1

2
l

)
.

Substituting the expressions of d1 and d2 from Eq. (38) into
the above expressions we have

A∞
in = c(−2i)−

1+√
1+4(�+1) j ( j+1)

2√
(1 + �)(ω2 − μ2)

· �(
√

1 + 4(� + 1) j ( j + 1))�(1 + √
1 + 4(� + 1) j ( j + 1))

�
(

1+√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
) (

�
(

1+√
1+4(�+1) j ( j+1)

2

))2

×�(1 − 2i
√

α + 1B)k
1−√

1+4(�+1) j ( j+1)
2

l + c(−2i)
√

1+4(�+1) j ( j+1)−1
2√

(1 + �)(ω2 − μ̂2)

× �(1 − √
1 + 4(� + 1) j ( j + 1))�(−√

1 + 4(� + 1) j ( j + 1))(
�
(

1−√
1+4(�+1) j ( j+1)

2

))2
�
(

1−√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
)�(1 − 2i

√
� + 1B)k

1+√
1+4(�+1) j ( j+1)

2
l , (40)

and

A∞
re f = c(2i)−

1+√
1+4(�+1) j ( j+1)

2√
(1 + �)(ω2 − μ2)

· �(
√

1 + 4(� + 1) j ( j + 1))�(1 + √
1 + 4(� + 1) j ( j + 1))

�
(

1+√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
) (

�
(

1+√
1+4(�+1) j ( j+1)

2

))2

×�(1 − 2i
√

α + 1B)k
1−√

1+4(�+1) j ( j+1)
2

l + c(2i)
√

1+4(�+1) j ( j+1)−1
2√

(1 + �)(ω2 − μ̂2)

× �(1 − √
1 + 4(� + 1) j ( j + 1))�(−√

1 + 4(� + 1) j ( j + 1))(
�
(

1−√
1+4(�+1) j ( j+1)

2

))2
�
(

1−√
1+4(�+1) j ( j+1)

2 − 2i
√

� + 1B
)�(1 − 2i

√
� + 1B)k

1+√
1+4(�+1) j ( j+1)

2
l . (41)

The amplification factor ultimately results out to be

Z jm ≡
∣∣∣A∞

re f

∣∣∣2
∣∣A∞

in

∣∣2 − 1. (42)

Equation (42) is a general expression of the amplification
factor obtained by making use of the asymptotic matching

method. When

∣∣∣A∞
re f

∣∣∣2
|A∞

in |2 acquires a value greater than unity

there will be a gain in amplification factor that corresponds
to superradiance phenomena. However, a negative value of
the amplification factor indicates a loss that corresponds to
the nonappearance of superradiance. To study the effect of
Lorentz violation on the superradiance phenomena, it will be
useful to plot Z jm versus Mω for different LV parameters.
In Fig. 6, we present the variation Z jm versus Mω for the
leading multipoles J = 1, and 2 taking different values (both
negative and positive) of LV Parameter. From the Fig. 5 along

with Fig. 6, it is evident that superradiance for a particular j
occurs when the allowed values of m are restricted to m > 0.
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Fig. 5 Variation of amplification factors with � for non-superradiant multipoles with μ̂ = 0.1, b = 0.1, and â = 0.4

Fig. 6 Variation of amplification factors with � for various multipoles with μ̂ = 0.1, b = 0.1, and â = 0.9

For negative m amplification factor takes negative value
which refers to the nonoccurrence of superradiance (Fig. 7).
The plots also show transparently that with the decrease in
the value of the LV parameters the superradiance process
enhances and the reverse is the case when the value of the
LV parameter decreases. In Fig. 8 we have also studied the

effect of the parameter b = Q2

M on the superradiance sce-
nario. It shows that the superradiance scenario gets dimin-
ished with the increase in the value of the parameter b. In [44]
we have noticed that the size of the shadow decreases with the
increase in the value of both the parameters l and b. The only
difference is that l can take both positive values, however, b
as per definition can not be negative. Therefore, an indirect
relation of superradiance with the size of the shadow is being

revealed through this analysis. A decrease in the value of b
and l indicate the increase in the size of the shadow.

4.1 Superradiant instability for Kerr–Sen-like black hole

From Eq. (15) we have

�
d

dr

(
�
dRω jm

dr

)
+ ξ Rω jm = 0, (43)

where for a slowly rotating black hole (âω  1)

ξ ≡
((
r(r + b) + â2

)
ω − mâ

)2

1 + �

+�
(

2mâω − l(l + 1) − μ2r(r + b)
)

.
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Fig. 7 Variation of amplification factors with â for various multipoles with μ̂ = 0.1 and b = 0.1. For left ones � = −0.5 and for right ones � = 1

Fig. 8 Variation of amplification factors with b for various multipoles with μ̂ = 0.1 and â = 0.7. For left ones � = −0.5 and for right ones � = 1
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Demanding the black hole bomb mechanism, we should have
the following solutions for the radial equation (43)

Rω jm ∼
{
e−i(ω−m�̂)r∗ as r → reh (r∗ → −∞)

e−
√

μ2−ω2r∗
r as r → ∞ (r∗ → ∞)

The above solution represents the physical boundary condi-
tions that the scalar wave at the black hole horizon is purely
ingoing while at spatial infinity it is decaying exponentially
(bounded) solution, provided that ω2 < μ2. With the new
radial function

ψω jm ≡ √
�Rω jm,

the radial equation (43) becomes
(

d2

dr2 + ω2(1 + �) − V

)
ψω jm = 0.

with

ω2(1 + �) − V = ξ (1 + �) + M2 − â2 + b2

4 − bM

�2 ,

which is the Regge–Wheeler equation. By discarding the
termsO (

1/r2
)

the asymptotic form of the effective potential
V (r) reads

V (r) = μ2 (1 + �) − (1 + �)
4Mω2

r
+ (� + 1)

2Mμ2

r
.

To realize the trapping meaningfully by the above effective
potential it is necessary that its asymptotic derivative be posi-
tive i.e.V ′ → 0+ as r → ∞[33]. This along with the fact that
superradiance amplification of scattered waves occur when
ω < m�̂ we get the regime

μ√
2

< ω2 < m�̂,

in which the integrated system of Kerr–Sen bumblebee black
hole and massive scalar field may experience a superradiant
instability, known as the black hole bomb. The dynamics
of the massive scalar field in Kerr–Sen like black hole will
remain stable when μ ≥ √

2m�̂ (Fig. 9).

5 Constraining from the observed data for M87∗

This section is devoted to constraining the parameters from
the observed data for M87∗. After the announcement of the
capturing of the shadow there have been several attempts to
constraint the parameters used in different modified theo-
ries of gravity [48,65–67]. However, before going towards
constraining parameters let us give a brief description of the
photon orbit in this Kerr–Sen-like spacetime background and
see how the shadow gets deformed with the additional param-
eters of this Lorentz violating spacetime.

Fig. 9 Parameter space(m�-μ) for massive scalar field where colored
area represents region with stable dynamics and non-colored area rep-
resents region with unstable dynamics

5.1 Mathematical formulation of the deviation from
circularity

The Hamiltonian for a massless particle like the photon is
given by

H
(
xτ , pτ

) = 1

2

[
gτν pτ pν −

(
p0

√
−g00

)2
]

. (44)

The standard definitions xτ = ∂H/∂pτ , and ṗτ = ∂H/∂xτ

renders the equations of motion for the photon. Then the null
geodesics in the bumblebee rotating black hole spacetime in
terms of ξ are given by

ρ2 dr

dλ
= ±√

R, ρ2 dθ

dλ
= ±√

�,

(1 + �)�ρ2 dt

dλ
= A − 2

√
1 + �Mraξ,

(1 + �)�ρ2 dφ

dλ
= 2

√
1 + �Mra + ξ

sin2 θ

(
ρ2 − 2Mr

)
,

(45)

where λ is the affine parameter and

R(r) =
[
r(r + b) + (1 + �)a2

√
1 + �

− aξ

]2

−�
[
η + (ξ − √

1 + �a)2
]
,�(θ) = η

+(1 + �)a2 cos2 θ − ξ2 cot2 θ. (46)
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In the Eqs. (45) and (46), we introduce two conserved param-
eters ξ and η as usual which are defined by

ξ = Lz

E
and η = Q

E2 , (47)

where E , Lz , andQ are the energy, the axial component of the
angular momentum, and the Carter constant respectively.
The radial equation of motion can be cast into the known
form(

ρ2 dr

dλ

)2

+ Vef f = 0. (48)

The effective potential Vef f in this situation is written down
as

Vef f = −
[
r(r + b) + (1 + l)a2

√
1 + l

− aξ

]2

+�
[
η + (ξ − √

1 + la)2
]

−
[
r(r + b) + a2(1 + l)

]2

1 + l
.

(49)

Note that it has explicit dependence on the LV factor � and
a. So it is natural that the structure the of photon orbit will
depend on the parametersa and l. The unstable spherical orbit
on the equatorial plane is given by the following equations

θ = π

2
, R(r) = 0,

dR

dr
= 0,

d2R

dr2 < 0, and η = 0.

(50)

For more generic orbits θ �= π/2 and η �= 0, the solution of
Eq. (50) r = rs , gives the r− constant orbit, which is also
called spherical orbit and the conserved parameters of the
spherical orbits can be expressed in the following form

ξs = a2 (1 + l) (2M + 2rs + b) + rs
(
2r2

s + 3brs + b2 − 2M (3rs + b)
)

a
√

1 + l (2M − 2rs − b)
,

ηs = −
r2

s

(
−8a2 (1 + l) M (2rs + b) + (

2r2
s + 3brs + b2 − 2M (3rs + b)

)2
)

a2 (1 + l) (2M − 2rs − b)2 .

(51)

The two celestial coordinates which are used to describe the
shape of the shadow that an observer see in the sky, can be
given by

α(ξ, η; θ) = lim
r→∞

−rp(ϕ)

p(t)
= −ξs csc θ,

β(ξ, η; θ) = lim
r→∞

rp(θ)

p(t)
=
√(

ηs + a2 cos2 θ − ξ2
s cot2 θ

)
,

(52)

where (p(t), p(r), p(θ), and p(φ)) are the tetrad components
of the photon momentum with respect to locally non-rotating
reference frames [68].

5.2 Constraining with respect to deviation from circularity
data: �C ≤ 0.10

We now proceed towards constraining the parameters involved
in this spacetime metric from the available experimental find-
ings of the M87∗ as a new window for testing gravity in the
strong-field regime has been opened after the announcement
of the news of capturing the image of supermassive black hole
M87∗ at 1.3 mm wavelength with the angular resolution of
20 µas. The angular diameter of the shadow of M87∗ was
fund to be θd = 42 ± 3 µas and the deviation from circular-
ity was �C ≤ 10 which was consistent with the Kerr black
hole’s image as predicted from the theory of General Rela-
tivity [69–74]. Let us first proceed to constrain the param-
eter from the observation of M87∗ concerning �C ≤ .10.
We have considered Kerr–Sen-like black holes, which have
additional parameters b, l along with the Kerr black hole
parameters, and the parameters b and l produce deviation
from Kerr geometry with a considerably good configura-
tion. It is also found that the LV parameter quantitatively
influences the structure of the event horizon by reducing its
radius significantly than that of the Kerr black hole [44], for
a given b and a, and the resulting increase in ergosphere area
is thereby likely to have an impact on energy extraction [44].
The boundary of the shadow is described by the polar coor-
dinate (R(φ), φ) with the origin at the center of the shadow
(αC , βC ), where αC = |αmax+αmin |

2 and βC = 0. If a point
(α, β) over the boundary of the image subtends an angle φ

on the α axis at the geometric center, (αC , 0) and R(φ) be
the distance between the point (α, β) and (αC , 0), then the
average radius Ravg of the image is given by [64]

R2
avg ≡ 1

2π

∫ 2π

0
dφR2(φ), (53)

where R(φ) ≡
√

(α(φ) − αC )2 + β(φ)2, and φ

= tan−1 β(φ)
α(φ)−αC

With the above inputs, the circularity deviation �C is
defined by [52],

�C ≡ 2

√
1

2π

∫ 2π

0
dφ

(
R(φ) − Ravg

)2
. (54)

In the figures below, the deviation from circularity �C is
shown for Kerr–Sen-like black holes for inclination angles
θ = 90◦ and 17◦ respectively (Figs. 10, 11).
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Fig. 10 The left one is for � = 0.1 and the right one is for b = 0.1 where the inclination angle is 90◦. The black solid lines correspond to �C = 0.1

Fig. 11 The left one is for � = 0.1 and the right one is for b = 0.1 where the inclination angle is 17◦

We compare the shadows produced from the numeri-
cal calculation by the Kerr–Sen-like black holes with the
observed one for the M87∗ black hole. For comparison, we
consider the experimentally obtained astronomical data for
the circularity deviation � ≤ 0.10 in this subsection. The
next section is devoted to constrain the parameter from obser-
vation of angular diameter θd = 42 ± 3 µas [69–74].

5.3 Constraining from the observation of angular diameter
θd = 42 ± 3 µas

We now consider the shadow angular diameter which is
define by

θd = 2

d

√
A

π
, (55)

where A = 2
∫ r+
r− βdα is the shadow area and d = 16.8 Mpc

is the distance of M87∗ from the earth. These relations enable

us to accomplish a comparison between the theoretical pre-
dictions for Kerr–Sen-like black-hole shadows and the exper-
imental findings of the Event Horizon Telescope collabora-
tion. In the figures below, the angular diameter θd is shown
for Kerr–Sen-like black holes for inclination angles θ = 90◦
and 17◦ respectively (Figs. 12, 13).

6 Summary and discussions

In this article, we have studied the superradiance phenom-
ena of the scalar field scattered off Kerr-sen-like black holes
along with the study of some salient features of the Kerr-sen-
like Lorentz violating spacetime. The LV parameter enters
into the Kerr–Sen-like background via a spontaneous sym-
metry breaking when the pseudovector field of the bumblebee
field receives a vacuum expectation value. The Kerr–Sen-
like spacetime is a solution to Einstein’s bumblebee gravity
model. Along with the parameter M , a (which are contained
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Fig. 12 The left one is for � = 0.1 and the right one is for b = 0.1 where the inclination angle is 90◦.The black solid lines correspond to
θd = 39 µas

Fig. 13 The left one is for � = 0.1 and the right one is for b = 0.1 where the inclination angle is 17◦. The black solid lines correspond to
θd = 39 µas

in the Kerr spacetime metric) the Kerr–Sen-like metric has
two more parameters, b and the LV parameter �.The presence
of these four parameters has a crucial role in the spacetime
geometry associated with the matric. Depending on the value
of the parameter we can have non-extremal and extremal
cases. We can even have a naked singularity. We observed
that the parameter space formed by a and b that corresponds
to black hole singularity is getting reduced with an increase
in the value of the LV parameter. We have also observed that
the size of the ergosphere gets enhanced with the increase in
the value LV parameter. The increase in the value of b also
results in an increase in the size of the ergosphere like the
increase in the value of �.

If we look towards the superradiance phenomena of
the scalar field scattered off Kerr–Sen-like black holes we
find that the LV effect has a great influence on the super-
radiance phenomena. How the superradiance phenomena
and the instability associated with it get influenced by the

Lorentz violation effect is studied in detail. We consider the
Klein–Gordon equation in the Kerr–Sen-like background and
employ asymptotic matching of the scalar wave, and estab-
lish transparently from the Eq. (25) that in the low-frequency
limit, i.e., for ω < m�̂eh , the scalar waves show the super-
radiant mode, i.e. it becomes amplified in a superradiant
manner. The numerical computation, however, shows that for
m ≤ 0 the massive scalar field has a non-superradiant mode.
For m ≥ 0 it is superradiant. The role of the LV parameter in
the superradiant phenomena as we have observed is as fol-
lows. The superradiant process enhances with the decrease
in the value of the LV parameter and reverse is the case when
the LV parameter increases irrespective of the sign of the
value of this parameter please vide Fig. 6.

Our observation also transpires that the superradiant pro-
cess gets influenced by the parameter b also. From Fig. 8, it
is clear that the superradiance enhances with the decrease of
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the positive value of the parameter b. Note that b = Q2

M . So
it cannot be negative.

Extending the issue of the black hole bomb, the analyti-
cal study of superradiant instability is made. Figure 9 related
to the study of superradiant instability reveals that the LV
parameter remarkably affects the instability regime. In the
background with negative LV Parameter, the scalar field has
more chances to acquire unstable dynamics and for the pos-
itive values of the LV parameter, these chances are less.
Therefore, the LV has a significant influence on the superradi-
ance scattering phenomena and the corresponding instability
linked with it.

In his article we have also tried to put constraints on param-
eters contained in the Kerr–Sen-like spacetime metric from
the observation of M87∗, and observed that the circularity
deviation δC ≤ 0.1 [69–74] is satisfied exhaustively for the
entire (a − l) and (b − l) parameter space at θ = 170 incli-
nation angle but at inclination angle θ = 900 it is satisfied
for a finite (a − l) and (b − l) space. The angular diameter
satisfies θd = 42±3 µas within the 1σ region [69–74]over a
finite (a− b) and (a− l) space. However, when we compare
with angular diameter θd = 42 ± 3 µas data it is found that
agreeable (a−b) parameter space is smaller than the (a− l)
parameter space and it is more restricted.

Besides we should make some comments in connection
with the recent article [75]. The comment of the article
although does not target our study of superradiance directly,
the b = 0 limit of our metric has to pass through this unfavor-
able situation. In fact, the comment made in [75] is all about
the inconsistency of the black hole solution obtained in [42]
which is a special case: b=0 of the metric used here. Even
if that inconsistency is taken as granted in the metric devel-
oped in [42], it has been pointed out in the article [76], that
in the slow rotating limit a → 0 the metric has a consistent
outcome. With this limit, the metric turns into a true slowly
rotating black hole solution of Einstein-bumblebee gravity
[77]. Moreover, for a = b = 0, one lands onto the flaw-
less Schwarzschild-like solution of the Einstein-bumblebee
gravity presented in [43].
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Appendix A

Following the procedure as followed in [55] the general solu-
tion of Eq. (15) is given by

R(z) = M√
�(1 + 1)

e
1
2 αz(z − 1)

1
2 (1+γ )z

1
2 (1+β)

×
{
C1HeunC (α, β, γ, δ, η, z) + C2z

−β

HeunC (α,−β, γ, δ, η, z)
}

(56)

with

2Md = r+ − r−, z = − 1

2Md
(r − r+)

α = 4dM
(
μ2 − ω2

)1/2 √
1 + l

β =
√

1 − 4A

M2 ,

γ =
√

1 − 4C

M2 , δ = − 2d

M2 (B + D)

η = 1

2
+ 2Bd

M2

where

A = 1

4d2

[
4M4ω2(1 + l)(d + 1)2 +

(
Mb − b2

4

)
ω2(1 + l)

+â2m2(1 + l)

+4âωmMb(1 + l) + M2d2 +
(

2Mbω2
(
Mb − b2

4

)
(1 + l)

−4M2
(
Mb − b2

4

)
ω2(1 + l) − 4âωmM2(1 + l)

)
(d + 1)

+ (
M2b2 − 4M3b

)
ω2(d + 1)2(1 + l)

]

B = 1

4d3

[
4M4ω2(d + 1)2(2d − 1)(1 + l)

+ (
M2b2 − 4M3b

)
ω2 (d2 − 1

)
(1 + l)

−
(
Mb − b2

4

)
ω2(1 + l)

−â2m2(1 + l) − 4âωmMb(1 + l) − M2d2

−
(

2Mbω2
(
Mb − b2

4

)
(1 + l)

−4M2
(
Mb − b2

4

)
ω2(1 + l)

− 4âωmM2(1 + l)
)+ 2d2(d + 1)

(−2M3bω2(1 + l)

+μ2M3b(1 + l)
)+ 2d2

(
−2M2ω2(1 + l)

(
Mb − b2

4

)

− μ2M4(d + 1)2(1 + l) − (
â2ω2 + j (1 + j)

)
M2(1 + l)

)]

C = 1

4d2

[
4M4ω2(d − 1)2(1 + l)
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+ (
M2b2 − 4M3b

)
ω2(d − 1)2(1 + l)

+
(
Mb − b2

4

)
ω2(1 + l) + â2m2(1 + l)

+4âωmMb(1 + l) + M2d2

−(d − 1)

(
2Mbω2

(
Mb − b2

4

)
(1 + l)

−4M2
(
Mb − b2

4

)
ω2(1 + l)

−4âωmM2(1 + l)
)]

D = 1

4d3

[
4M4ω2(d − 1)2(2d + 1)(1 + l)

− (
d2 − 1

) (
M2b2 − 4M3b

)
ω2(1 + l)

+
(
Mb − b2

4

)
ω2(1 + l) + â2m2(1 + l)

+4âωmMb(1 + l) + M2d2

+2Mbω2
(
Mb − b2

4

)
(1 + l) − 4M2

(
Mb − b2

4

)
ω2(1 + l)

−4âωmM2(1 + l) + 2d2(d − 1)
(−2M3bω2(1 + l)

+μ2M3b(1 + l)
)+ 2d2

(
2M2ω2(1 + l)

(
Mb − b2

4

)

+μ2M4(d + 1)2(1 + l) + (
â2ω2

+ j (1 + j)) M2(1 + l)
)− 2μ2M4(1 + l)

]
.

In the limit z → 0 ⇒ r → r+ we have

R(r) = M√
�(1 + 1)

[
C1

{
− 1

2Md
(r − r+)

} 1
2 (1+β)

+C2

{
− 1

2Md
(r − r+)

} 1
2 (1−β)

]
,

and in the limit z → ∞ ⇒ r → ∞ we land onto

R(r) = M√
�(1 + l)

[
C1e

−i
√

ω2−μ2
√
l+l(r−r+)zk

+C2e
i
√

ω2−μ2
√

1+l(r−r+)z−k
]

where

k = −δ/α.

The solution of near and far region should agree with the
solution used hare in our study of superradiance. However it
is an involved mathematical issue and it is beyond the scope
of this article.
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