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Abstract We study a holographic toy model by consider-
ing a probe fermion of finite charge density in an anisotropic
background. By computing the fermionic spectral function
numerically, we observed that the system exhibits some inter-
esting behaviours in the nature of the Fermi surface (FS) and
its evolution when tuning the controlling parameters. We
introduced non-minimal interaction terms in the action for
holographic fermions along with a complex scalar field but
neglecting the backreaction of the fermions field on the back-
ground. Suppression in the spectral weight and deformation
of FS is observed, which are reminiscent of the results seen
in various condensed matter experiments in real materials.

1 Introduction

The study of strongly correlated condensed matter systems
using holographic approach is one of the active field of
research. It provides the necessary tool in understanding the
condensed matter systems from classical gravity theories.
The earlier promising results of holographic method were
those of its application in quark-gluon plasma [1] and in holo-
graphic superconductors. The well-known holographic prin-
ciple [2–4] has been applied as an alternative framework to
understand various complex phenomena; such as non-linear
hydrodynamics [5], non-Fermi liquid behavior [6,7], trans-
port phenomena [8], and high temperature superconductors
[9–11] to point out a few. Since then, several applications
have been found out to study the emergence of Fermi and
non-Fermi liquid behaviours in the fermionic systems [12–
16], and later this method was also implemented as a tools
to study the conductivities and phase transition in high Tc
superconductor, the pseudogap phase, Mott transition [9,17–
19,21] and many more applications in the field of high energy
and nuclear physics. In the recent years, new materials were
discovered and they belong to a class of topological insula-
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tors, and the so-called Weyl and Dirac semimetals. These new
compounds have many interesting features. Some of which
have posted as a challenge to the condensed matter research
community.

Some of the results seen in condensed matter experi-
ments on these new materials, such as those from Angle-
resolved photoemission spectroscopy (ARPES) [22,23] were
quite a challenge for a condensed matter theorist. The study
of electronic properties in these new materials and high-Tc
superconductors, including the band structures, quasiparticle
excitations and the Fermi surface (FS) can be done through
ARPES experiment. However, ARPES shows the presence
of an unconventional pseudo-gap phase and a disconnected
Fermi surface in the spectral function. This partially destruc-
ted Fermi surface is known in literature as the Fermi Arc [24–
28]. The appearance of Fermi arc has also been observed in
the ARPES experiments in different condensed matter sys-
tems such as in the topological insulators, Dirac and Weyl
semi-metals [28–38]. A detailed review on this can be found
in [39]. In all such mentioned systems, Fermi arcs appear as
the surface states. It was speculated that the presence of these
surface states might be caused by some unknown underlying
symmetries or structures in the bulk of the materials. Since
these systems are strongly correlated, it is difficult to pin point
the exact mechanisms that cause these unconventional elec-
tronic properties using conventional approaches. To address
these problems, many have started using AdS/CFT corre-
spondence as a tool that allow us to study the strongly cor-
related systems. In the recent years, lots of experiments and
theories were performed and modelled to shed some light
in understanding of the underlying mechanism behind these
strange properties of the Fermi surface from the perspective
of condensed matter physics [40–43] and other approaches
like the holographic method [44–48]. In the recent pioneer-
ing works [18–20,49,50], they have investigated Mott tran-
sition and the evolution of Fermi arc-like structures, taking
various classical gravity background as the bulk theory. The
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authors in [19,20], by considered a nonminimal coupling
of the form p ψ̄ /Fψ , where the gauge field is coupled with
the fermions field ψ . They observed a transfer of spectral
weight between energy bands as a strength of the coupling p
is increased and also beyond certain critical value of p, a gap
emerges in the spectral function which are the key features
of Mott physics in the condensed matter systems. Later in
[18], by exploring the system symmetries they proposed a
similar modification of the coupling mentioned earlier and
the Fermi-arcs features were seen.

Motivated by the features seen in these works [18–20],
in this paper, we will study a holographic toy model simi-
lar to the one considered in our previous work [56], where
we observed an evolution of a pair of Fermi arcs. Here, we
will essentially extend by modifying our previous couplings
with a different one [57], where the bulk dipole coupling is
modified to break the rotational and Lorentz symmetries at
the boundary. Our main objective here is to further study the
evolution of the Fermi surface and their band structure in
presence of the two couplings given in Sect. 3.

In this work, we will consider the Q-lattice [51] as our
holographic lattice background which were constructed with
a complex scalar field that breaks the translational symmetry
in the bulk. While in [56], we have studied the fermionic
spectral function in the Q-lattice background with couplings
of the form p ψ̄ /Fψ and p ψ̄ /F |φ|2ψ . Given the anisotropic
background it will be interesting to study the Fermi surface
evolution due to Fermions bulk couplings parameters given
in Eq. (7) below.

We will organise the discussion in this paper as follows: in
Sect. 2, we have a brief discussion on the important aspects
of the Q-lattice background solution, then in Sect. 3, we write
down the Fermion’s action with our coupling terms and equa-
tions of motion, leading to the spectral function A (ω, k)

which is the most relevant quantity for our discussion. Thus
is followed by Sect. 4, where we present the numerical results
with discussion on each of them. In the last section, we sum-
marize the results and conclude with some futures directions.

2 The Q-lattice geometry

In this section, we will briefly discuss about the Q-lattice
since we had put a detail discussion in [56], we will high-
light only few important points here. Here, the set up for the
Q-lattice background will be a (3 + 1)-dimensional gravity
theory in the bulk that could be mapped to a dual theory at
the boundary in (2 + 1)-dimensions. The full action consists
of Einstein–Maxwell field and a complex scalar field is given

by:

S = 1

κ2

∫
d4x

√−g

[
R + 6

L2 − 1

4
F2 − |∂φ|2 − m2|φ|2

]

(1)

where R is the Ricci scalar, Maxwell’s field strength F =
d A. Finally, κ2 = 16πG and L are the effective reduced
gravitational constant and the AdS radius respectively which
we set to be unity later. As mentioned before, we consider a
complex scalar field φ, which will break the translational
invariance of the boundary field theory. From the above
action (1) we have the following equations of motions

Rμν = gμν

(
−3 + m2

2
|φ|2

)

+ ∂(μφ∂ν)φ
∗ + 1

4

(
2F2

μν − 1

2
gμνF

2
)

∇μF
μν = 0 ,

(
∇2 − m2

)
φ = 0. (2)

To evaluate these equations, we shall take the following
ansatz for the metric and the complex scalar field

ds2 = −gtt (z) dt
2 + gzz(z) dz

2

+ gxx (z) dx
2 + gyy(z) dy

2. (3)

where,

gtt (z) = U (z)

z2 ; gzz(z) = U (z)−1

z2 ; gxx (z) = V1(z)

z2 ;

gyy(z) = V2(z)

z2 , A = (1 − z) a(z)dt,

U (z) = (1 − z) u(z), φ = ei k1 x+i k2 y χ(z). (4)

In particular, the ansatz for the scalar field is chosen to incor-
porate the breaking of translational symmetry by the same
scalar field in both x and y directions. Here, u, V1, V2, a, χ

are all unknown functions which depends on radial coordi-
nate z, and k1, k2 are constants interpreted as wave num-
bers in the lattice. From Eq. (2) above, when combined
with the ansatz, we get four second order coupled ODEs for
V1, V2, a, χ and one first order for u. In general, for none
zero scalar mass m2

φ , the leading behaviour of the complex
scalar field near the AdS boundary (z −→ 0) is given by

χ(z) = zα− χ(1) + zα+ χ(2) + · · · (5)

where, α± = 3/2 ±
√

9/4 + m2
φ . The leading term χ(1) is

associated with the source of the dual scalar operator in the
boundary theory, whose dimension is Δ = 3−α− = α+. To
this end we study in detail the case when, scalar field mass
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m2
φ = 0, which corresponds to α− = 0 and the correspond-

ing marginal dual scalar operator in the (2+1) dimensional
boundary theory. To construct a numerical black hole solu-
tion, we solve these equations as boundary value problems
with one end at the horizon and the other at the AdS bound-
ary. At the horizon z = 1, we use the regularity conditions by
expanding the fields near the horizon, and at the AdS bound-
ary or UV, we assume the following leading expansion,

u = 1 + O(z), V1 = 1 + O(z), V2 = 1 + O(z) ,

a = μ + O(z) (6)

Once we obtained the boundary conditions, we linearize the
ODEs by discretizing simultaneously both the equations of
motions and the boundary conditions following [52,53] and
then use the iterative Newton–Raphson’s (NR) method fol-
lowing the techniques given in [54,55]. Further, for fixed
mass m2

φ , we found that the solutions are specified in terms
of three dimensionless parameters namely, T/μ, k/μ and
χ(1)/μα− , where T is the temperature of black hole. We
showed some plots of the background solutions in our pre-
vious work [56] and we will use the same numerical back-
ground for analysis of the fermion spectral function later.

3 Fermions: action and the spectral function

As mentioned in the introduction, we will consider the
probe fermions in the anisotropic background solutions dis-
cussed above along with two non minimal couplings and the
fermionic action is given by

Sψ =
∫

d4x
√−giψ̄

(
/D − mψ − i p1 |φ|2 /F − i p2 |φ|2Γ /F

)
ψ

(7)

Here, φ is the same complex scalar field discussed in the lat-
tice solution and mψ is the fermion mass. Expanded expres-
sion of the symbols given in (7) are as follows:

Γ = Γ zΓ t (n̂.Γ ) ,

/D = eμ
c Γ c

(
∂μ + 1

4
ωab

μ Γab − iq Aμ

)

/F = 1

2
Γ abeμ

a e
ν
b Fμν ,

Γ ≡ (Γ x , Γ y).

where, eμ
a , ωab

μ are the vielbeins and spin connection, q is
the charge of the bulk fermions. The first coupling with con-
trolling parameter p1 is the same to what we studied in [56],
however we include here to study the combine effects. While
the second coupling parametrized by p2 is similar the one
studied in the evolution of Fermi Arc from Mott insulator

[18] that breaks rotational and Lorentz symmetries of the
boundary theory. We studied this type of coupling term in
our previous work [57], involving a real scalar field that con-
trols the transition from circular to arc like Fermi surface
controlled by the scalar condensation in the bulk at low tem-
perature. In this paper, we will also look at the effects of these
couplings on fermionic spectrum. The Dirac equation from
the above action is given by:
(

/D − mψ − i p1 |φ|2 /F − i p2 |φ|2Γ /F

)
ψ = 0. (8)

In order to further simplify the Dirac equation, we choose
the following gamma matrices

Γ z =
(−σ 3 0

0 −σ 3

)
, Γ t =

(
iσ 1 0
0 iσ 1

)
,

Γ x =
(−σ 2 0

0 σ 2

)
, Γ y =

(
0 σ 2

σ 2 0

)
(9)

Now, we can expand the Dirac equation (8) together with

rescaling of the field ψ = (gtt gxx gyy)−
1
4 e−iωt+ikx x+iky y

ξ (z,k), where the vector k ≡ (−ω, kx , ky), we have

(
1√

gzz(z)
Γ z ∂z + 1√−gtt (z)

(
Γ t (−iω) − iq At

)

+ 1√
gxx (z)

Γ x (ikx ) + 1√
gyy(z)

Γ y (iky) − mψ

+ ∂z At√−gzz(z)gtt (z)

(−i p1 |φ|2 Γ z t − i p2 |φ|2 Γ Γ z t ) )
ξ(z,k) = 0

(10)

Now using the basis (9) and by splitting the spinors ξ =
(ξ1, ξ2)

T , and ξ j = (β j , α j )
T , with j taking values j = 1, 2,

we get the following coupled radial equations

(
1√
gzz

∂z ± mψ

) (
β1

α1

)
∓ (ω + q At )√−gtt (z)

(
α1

β1

)
+ kx√

gxx

(
α1

β1

)

− ky√
gxx

(
α2

β2

)
+ ∂z At√−gzzgtt

(p1 |φ|2 − p2 |φ|2)
(

α1

β1

)
= 0

(11)(
1√
gzz

∂z ± mψ

) (
β2

α2

)
∓ (ω + q At )√−gtt (z)

(
α2

β2

)
− kx√

gxx

(
α2

β2

)

− ky√
gxx

(
α1

β1

)
+ ∂z At√−gzzgtt

(p1 |φ|2 + p2 |φ|2)
(

α2

β2

)
= 0

(12)

From now on, we follow the standard holographic procedure
for extracting the Green’s function. One can expand these
equations near the horizon (z = 1) to obtain the in-falling
boundary condition given by
(

β j (z,k)

α j (z,k)

)
∼ c j (1 − z)−

iω
4πT . (13)
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Now to extract the boundary Green’s function, one needs the
asymptotic behaviour of the Dirac equations near the AdS
boundary (z → 0) to identify the source and the expectations
values. In this case, the leading behaviour at the boundary is
given by(

β j

α j

)
≈ a j z

mψ

(
1
0

)
+ b j z

−mψ

(
0
1

)
. (14)

We then followed the usual prescription used in [14,15,18] to
obtain the Green’s function by extracting the coefficients a j

and b j and because the couplings considered here, we have
a mixing of various spinorial components, thus we use two
different sets of linearly independent boundary conditions
that can be written in the form B = SA and expanded as

(
β I

1 β I I
1

β I
2 β I I

2

)
=

(
s11 s12

s21 s22

) (
α I

1 α I I
1

α I
2 α I I

2

)
, (15)

Now the retarded Green’s function is defined as

GR(ω, kx , ky) = −i

(
s11 s12

s21 s22

)
· γ t (16)

with gamma matrices in our basis as γ t = iσ1. Now from
the retarded Green’s function we can get quantity of interest,
i.e., the spectral function A (ω, kx , ky) given by

A(ω,k) = Im
[
TrGR(ω,k)

]
. (17)

where k ≡ (kx , ky). In the section that follows we will study
the properties of A (ω,k). The importance of this spectral
function is that it directly relates to real condensed matter
experiments.

4 Numerical results and discussion

In this section, we are going to look at the qualitative prop-
erties of the spectral function A(ω,k) defined in (17) above,
which reflect on the nature of Fermi surface (FS) and the
dispersion spectrum by varying the coupling p1, p2 and also
the background parameters. For our numerical purposes, we
defined the Fermi level with small offset from ω = 0. In
our previous work [56], we have explored the affects of tem-
perature and the source χ(1) on the Fermi surface with and
without couplings, also more analysis on fermions spectral
function due to the Q-lattice can be found in these papers
[58,59]. Here we show the results only for scenarios when
the coupling parameters are non-vanishing.

As discussed above the complex scalar field can break
translational invariance in both x and y directions, depend-
ing on k1 and k2. Let us first study for k2 = 0 and consider
only k1. Fixing the background scalar mass m2

φ = 0, then

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1 Density plot of A (kx , ky) by varying the value of p1. Here,
we fixed p2 = 0.3 and mψ = 0, q = 1. Left to right: are for
p1 = −0.2,−0.3, −0.4, . The top, middle and bottom panel corre-
spond to T/μ = 0.02, 0.009, 0.001 with m2

φ = 0 and source χ(1) = 2
respectively

the leading constant χ(1) which represents the source of dual
boundary operator of the bulk complex scalar field can be
varied and we have seen in [56] and references therein, as
we increase the strength of the source, the weight of spectral
function reduces along kx where translational symmetry is
broken. Since the spectrum of our first couplings control by
p1 is known from our previous discussion in [56], we directly
show the combined effects of p1 and p2 in Fig. 1. One can
immediately notice in Fig. 1 that for low temperature (bottom
panel) the combine effects yields two arcs like spectrum, and
the peak of FS is more sharp in comparison to that of higher
temperature (top panel) where the inner arc vanishes. Fur-
ther, the stretched Fermi surface that appeared in the spectral
function because of the anisotropic background for large χ(1)

values, now its amplitude is suppressed and more prominent
along negative kx -direction specially at low temperature, due
to the second coupling. However, from previous analysis at
lower temperature, the effects of p1 induces a second Fermi
surface that is partially destroyed along x-direction which is
the signature of second coupling. Whereas, along ky direc-
tion, the spectral function indicates the existence of sharp
Fermi surface with a large density of states. The sharp peak
in the spectral function, essentially indicate the presence of
stable quasi-particle with longer lifetime. Similarly, from the
energy momentum dispersion shown in Fig. 2, we see the
presence of gapless spectra which is anisotropic in nature
and the surface state induces by p2 connecting the lower and
upper band.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Energy–momentum dispersion with p1, p2 set to non-zero
and mψ = 0, q = 1, T/μ = 0.009,m2

φ = 0, k1/μ =
0.8,andk2/μ = 0. Top and middle panel are along ω − kx (ky =
0) and ω − ky (kx = 0) plane, while the bottom panel is along
ω − ky (kx = −1). From left to right the parameters [ (p2, p1) ] =
[ (0.3,−0.2), (0.3,−0.3), (0.3,−0.4)] respectively

From the emergence of these interesting behaviour in the
spectral function from our couplings p1 and p2, firstly we
can think of the effects of the source χ(1) as a doping param-
eter in the pseudogap region and secondly, for both the cou-
plings, we know from the work in [18,19], the appearance
of these Fermi arcs can be understood in the context of pole-
zero duality [21]. In terms of the two diagonal entries of
the boundary fermions Green’s function Gi j (ω,k), the FS
appears at two poles which exist at G11(ω = 0, |k f |) and
G22(ω = 0,−|k f |). Now the presence of p2 coupling, when-
ever the pole/zero of G11 coincides with zero/pole of G22, we
get a reduced spectral weight along −kx or +kx depending
on the sign of p2 that appears as Fermi arcs. The presence
of these pairs of FS in the spectral function indicates that
the scalar field plays a crucial role in not mixing the indi-
vidual spectra of p1 and p2. Hence we eventually have two
Fermi surfaces on changing p1, p2. Notice that in our plots,
we choose the mass of scalar field to be mφ = 0, because
for non-zero masses, the way our scalar field manifest itself
in the coupling terms, its effects will be highly suppressed.
However, we plotted for non-zero fermion mass in Fig. 3.
Again here for same charge q and background parameter we
see a similar spectrum to that in the case of zero mass shown
above.

So far we have consider only k1, now let us turn on k2.
As shown in our previous work [56], depending on whether
k1 > k2 or k1 < k2, the fermionic spectrum is gapped along
kx or ky . We consider the case when k2 > k1 and the plots are
shown in Fig. 4. In the top panel we fixed p1 = 1 and vary
boundary source χ(1) of the bulk scalar field φ. As the source
χ(1) is increased, in addition to being stretch from circular
shape to an elliptical shape, we see an emergence of a second
FS of smaller peaks. Some similarity is seen when we vary
p2 instead and fixing χ(1) = 2. Here also we observed a
new kind of spectrum which is different from that observed
in [18,57] with similar couplings. It was earlier shown in
[60] the presence of multiple FS in holographic model with
no Fermi arcs and then recently in [61,62], the Fermi fea-
tures were seen triggered by the effective mass term and the
lattice effects in their holographic models. It is to be noted
here that though both our studies and theirs are somewhat
similar in terms of the features in suppression of the spectral
function and the Fermi surfaces, our couplings and the one
considered in [61] should correspond to a different boundary
field theory with a different kind of underlying mechanism.
Moreover, the evolution of these Fermi arcs without includ-
ing superconductivity as discussed in [49,50], it could pro-
vide an interesting framework for studying the Fermi arcs in
the pseudogap phase and cuprates.

Up till now, we have discussed only the spectra produced
by the two couplings. Let us try to relate these results to real
condensed matter systems. Firstly, the emergence of these
pair of Fermi surfaces are mostly our interesting features out
of our numerics as these kind of spectra have been observed
in the ARPES experiments measuring the spectral function
in real condensed matter systems such as those of Topologi-
cal insulators (TI), Dirac and Weyl semi-metals [28,29,36].
Also, for superconductivity, these types of interactions terms
provides us a holographic model in the pseudogap region in
the phase diagram where these Fermi arcs are seen. They
are connected through the suppression in the weight spectral
function. Similar to our observation, the presence of these
kind of arcs in pairs, was also discussed in a theoretical model
in [63]. While in the case of Dirac and Weyl semi-metals,
Fermi arcs emerges out as surface states which connect the
two Dirac points in three-dimensional bulk crystals. From
the energy band dispersion shown in Fig. 2 in our models,
we can see the presence of non-trivial gapless surface states
that were also observed in experiments. Details discussion
on these topics can be found in these articles [31–34,36]
and references therein. Since our holographic system at the
boundary is (2 + 1) dimensions, we can think of these pairs
of Fermi arcs as the surface states of a (3 + 1) dimensional
bulk material. Thus the observations from our holographic
models are reminiscent to those of real materials in terms of
the band spectrum and surface states known as Fermi arcs.
There have been other holographic models also, such as those
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Fig. 3 Here we plotted the spectral density for non-zero fermion mass
mψ = 1/4 and charge q = 1 with the background parameters T/μ =
0.02, 0.009, 0.001 (top to bottom), k1/μ = 0.8,k2/μ = 0, m2

φ = 0

and χ(1) = 2 respectively. We fixed the coupling parameters p2 = 0.3
and vary p1 = −0.2, −0.3, −0.4

Fig. 4 Here we plotted the spectral density with fermion massmψ = 0
and charge q = 1. In the top panel, we fixed T/μ = 0.009, coupling
p2 = 1. and vary source χ(1) = ( 0.5, 1.0, 1.5, 1.8 ) with k1/μ = 0.2,
k2/μ = 0.8, and m2

φ = 0 respectively. In the bottom panel, we vary
the coupling p2 taking values p2 = 0.1, 0.5, 0.8, 1.2 while we fixed
χ(1) = 2

in [64–66], which attempted to address these interesting and
rich phenomena observed in topological insulators and semi-
metals.

5 Conclusion

In this paper, we have studied the fermion spectral func-
tion A(ω,k) in anisotropic Q-lattice background where, the
probe fermion is coupled with two non-minimal dipole-type
couplings. We discussed some of the interesting features pro-

duced by the couplings. Our observation of the spectral func-
tion from the numerics of our holographic models seems to
encode the unconventional properties that were observed in
real condensed matter systems, such as the gapless spectra in
the energy–momentum dispersion and the presence of Fermi
arcs, also the appearance of doubled FS connecting the two
nodes seen in Dirac–Weyl semimetals and topological insula-
tors. Though we are not in anyway claiming that our models
to represent the exact match with actual condensed matter
systems, however we hope that in future, this kind of holo-
graphic approach might give us some hints in understanding
the strongly coupled systems.
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