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Abstract It is well known in the literature that vacuum
fluctuations can induce a random motion of particles which
is sometimes called quantum Brownian motion or quantum
stochastic motion. In this paper, we consider Lorentz Invari-
ance Violation (LIV) in an acoustic spatially flat Friedman–
Robertson–Walker (FRW) geometry. In particular, we are
looking for the LIV effects in the stochastic motion of scalar
and massive test particles. This motion is induced by a mass-
less quantized scalar field on this geometry, which in turn is
derived from an Abelian Higgs model with LIV. Deviations
in the velocity dispersion of the particles proportional to the
LIV parameter are found.

1 Introduction

It is well accepted today that in a complete theory of quantum
gravity a fundamental concept like the Lorentz invariance
(LI), which arises naturally from Lorentz transformations in
special relativity, should be violated in some regime. In gen-
eral, it is quite believed that this violation, also known as
the Lorentz invariance violation (LIV), should appear in the
energy range close to the Planck scale. It was Kostelecky and
collaborators [1] who proposed one of the first effective the-
ories where the LIV was permitted. They developed a model
that extends the standard model into a new one where the LIV
could appear. In this extended model, all sectors are corrected
by small coefficients or parameters which can be adjusted
according to the requirements of the theory under consider-
ation. The search for phenomenological models where the
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LIV could be detectable was developed by many authors [1–
11]. Although no violation has appeared so far, such stud-
ies have proved to be very useful once they enable us to
stipulate the values of the LIV parameters. In this context,
we mention works related to quantum gravity effects at low
energy scales. Among many possibilities we call attention to
studies related directly to string theory [1–3], loop quantum
gravity [12], Horava–Lifshitz theory [13], noncommutativ-
ity [14–17], and also models related to modified gravity [18]
and special relativity [19–21]. All of these approaches are
attempts to search for LIV effects that could be in principle
testable with future technologies.

In this framework, the main purpose of this paper is to
show a different model where LIV effects could appear.
The model consists of an acoustic spatially flat Friedmann-
Robertson-Walker (FRW) geometry derived from an Abelian
Higgs model with LIV in the scalar sector. In this scenario, we
study the motion of a scalar test particle under the influence
of a massless quantized and vacuum fluctuating scalar field.
It is well known in the literature that vacuum fluctuations
can induce a random motion of particles which is sometimes
called quantum Brownian motion,1 or quantum stochastic
motion. So, the type of motion we will deal with in the
present paper is characterized by the calculation of the veloc-
ity dispersion of the particles (〈�v2〉) where a Langevin type
equation is considered and the particles dispersion velocity is
directly associated with the Hadamard function of the quan-
tum fields. Thus, in a LI perspective, this stochastic motion
in Minkowski spacetime is exhibited only when some phys-
ical boundary or non-trivial topology is present [25–42], but
for a time-dependent expanding background, as a FRW type,
it could appear without any boundary intervention and with

1 To avoid confusion with other models which use the same nomen-
clature in but are related to non-equilibrium quantum thermodynamic
models [22–24], we decide to call this effect here as quantum stochastic
motion.
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trivial topology [43–45]. Particularly, for the scalar parti-
cles, which are the kind of particles we are interested in, this
stochastic motion shows up only when they are submitted to
an external classical non-fluctuating force ( fext ). In this sce-
nario, these particles are usually named as ‘bound particles’
once this fext can prevent them to feel locally the expansion.
In a different and more realistic scenario, this external force
could vanish and the particles could follow their geodesics.
In this case, the particles are named ‘free particles’ and their
stochastic motion is null once their velocity dispersion is
zero (〈�v2〉 = 0), i.e., the free particles present a dispersion
identical to the one found in the Minkowski case without
boundaries and with trivial topology. In this context, the main
result of this paper is to show that when we take into account
the LIV model, the quantum stochastic motion appears for
both types of particles discussed above, i.e. 〈�v2〉L I V �= 0,
for bound and free particles. A similar result was found in
Ref. [45] for a (3+1)-dimensional non-commutative Abelian
Higgs model.

So this article is organized as follows: in Sect. 2 we review
some basic results found in Ref. [44] where the study of the
stochastic motion for scalar particles was developed in an
expanding Bose-Einstein condensate (BEC) that mimics the
FRW geometry in the LI context. Then in Sect. 3 we show,
following the steps described in Ref. [9], how to find a similar
acoustic FRW geometry from an Abelian Higgs model with
LIV terms. This new acoustic geometry will be used in Sect. 4
to reanalyze the problem discussed in Sect. 2 but now in a LIV
perspective. In this case, small corrections in the particle’s
velocity dispersion proportional to the LIV parameters are
found when fext �= 0 and fext = 0. In Sect. 5 we discuss the
main results and give the conclusions. In this paper we use
units where h̄ = c = 1.

2 Quantum stochastic motion in an acoustic FRW
geometry: short review

In this section, we review the main results of Ref. [44] where
the stochastic motion of a scalar point particle that was under
the influence of a quantized vacuum fluctuating and massless
scalar field in a FRW geometry was considered. This study
was carried out in a LI framework using a Bose-Einstein
condensate (BEC). In this context, a well-known result is the
possibility to mimic some aspects of a FRW universe using
superfluids with remarkable experimental results [46]. Thus,
in Refs. [44,47–51], a linearization in the basic equation of
motion of an inviscid and irrotational BEC was applied. This
linearization was done in the fluid constituents such as the
field φ = φ0 + φ1, the phase S = S0 + S1, fluid density ρ =
ρ0+ρ1, and with a vanished velocity flow �v = h̄∇φ0/m = 0.
Following this procedure, we can find an equation of motion

similar to a Klein–Gordon equation in curved spacetime

�φ1 = 0, (1)

where � = 1√−g
∂μ(

√−ggμν∂ν) with an effective spatially
flat FRW metric:

ds2
e f f = −c2

0dt
2 + a2

e f f (t)(dx
2 + dy2 + dz2), (2)

where the dimensionless effective scale factor is aef f (t) =
(c0/cs(t))2, with cs(t) = 4π h̄ρ0L(t)/m been the time
dependent sound speed, c0 = cs(t = t0), the sound speed
in certain initial time, and L(t) a time dependent scattering
length. Note that, in order to have an analog of expanding
universe, aef f must increase with time when cs(t) decreases.
As usual, a conformal transformation of the type, dt = adη,
is possible to be made.2 Thus we obtain a conformal FRW
analog geometry represented by:

ds2 = a2(η)
(
−c2

0dη2 + dx2 + dy2 + dz2
)

, (3)

where η is the conformal time.
In this model, the atoms that compound the fluid are treated

as scalar point particles that interact with a quantized mass-
less scalar field, which represents the acoustic perturbations
driven by the phonons in this effective time-dependent geom-
etry. Thus, as was pointed out in Ref. [44], these particles fell
the fluid expansion according to the effective metric (2) or
(3). In this context, the quantized field could induce met-
ric fluctuations. However, the contributions that come from
these fluctuations are usually secondary to the motion of the
point particles considered in these types of models [45].

The equation of motion for a single particle in certain i-
direction is given by

m
Dui

dτ
= f ′i , (4)

where i ∈ {x, y, z}, D/dτ is a covariant derivative, ui is
the coordinate 3-velocity, and m is the particle mass. From
equation above, the left hand side is

m
dui

dt
+ 2m

ȧ

a
ui = f ′i , (5)

where the proper time τ ≈ t , for non-relativistic motion, and
Eq. (2) was used to calculate the Cristofell symbols 
i

αβ =
ȧ/a. In the right hand side of Eq. (5), the force term f ′i can
be split into two parts, as follows: f ′i = f i + f iext . Here, f i

is a term which is directly related with a scalar field and it
can be derived from the Klein–Gordon equation as [52]

f i = qgiν∇νφ1, (6)

where is valid for a flat or conformally flat spacetime [44,52],
the covariant derivative is the partial derivative (∇μφ =

2 For briefness, we write from now on dsef f = ds and aef f = a.
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∂μφ), and q is a scalar charge which gives the strength of the
interaction between particles and the field. The other term,
f iext , is a classical external non-fluctuating force. In fact, f iext
can be considered equal to zero, without loss of generality.
In this case, the particles are called ‘free particles’, in such
way that they follow their own geodesic. However, in some
situations fext can be different from zero, or more conve-
niently fext ≈ ȧ/a, in such a way that the particles do not
feel locally the expansion. In this case they are named ‘bound
particles’. This nomenclature was adopted in Refs. [43–45]
and we will follow it in the present paper.

2.1 Bound particles

Let us start reviewing the bound particles case. For this pur-
pose consider that the scalar particles are under the influence
of an external force fext = 2m ȧ

a u
i , in such way that Eq. (5)

reduces to

dui

dt
= f i

m
. (7)

After integrating the equation above and considering a
zero initial velocity, ui (t0) = 0, we can evaluate the disper-
sion for the coordinate velocity of the scalar particle. There-
after, we evaluate the dispersion for the physical 3-velocity,
namely, proper velocity (vi ), in this expanding geometry. The
relation between ui and vi is well known and it is associated
with the coordinate length (r ) and proper length (l), that is,
l = a f r , where the sub-indexes indicates that the scale factor
was evaluated in a final time (t f ), i.e., when the expansion
ceases. Thus, vi = a f ui and taking into account Eq. (6), we
obtain

〈(�vi )2〉 =
q2a2

f

m2

[
∂i1∂i2

∫ η f

ηi

∫ η f

ηi

dη1dη2a
−2(η1)a−2(η2)

× 〈φ1(η1, r1)φ1(η2, r2)〉M
]

r1→r2

. (8)

This is the proper velocity dispersion3 where a change
between coordinate time t and conformal time η was made
and the coincidence limit in the spatial coordinates (r1 →
r2) was taken, after the spatial partial derivatives were
applied. Note that the scalar field φ obeys the relation
〈φ(t1, r1)φ(t2, r2)〉 �= 0, 〈φ(t, r)〉 = 0. The sub-indexes M ,
indicates that the correlation function for the massless scalar
field was evaluated in a 4-dimensional Minkowski spacetime
and by the conformal metric (3) it is related to the FRW cor-
relation function by a conformal factor 
 [53], that comes
from the relation gμν = 
2ημν . From Eq. (3), 
 = a(η),

3 The velocity dispersion was defined as usual: 〈(�vi )2〉 =
〈vi (r1, t1)vi (r2, t2)〉 − 〈vi (r1, t1)〉〈vi (r2, t2)〉.

thus, from Ref. [53], we obtain,

〈φ1(η1, r1)φ1(η2, r2)〉FRW

= 
−1(η1, r1)

−1(η2, r2)〈φ(η1, r1)φ(η2, r2)〉M

= a−1(η1)a
−1(η2)〈φ1(η1, r1)φ1(η2, r2)〉M . (9)

Where 〈φ1(η1, r1)φ1(η2, r2)〉M is the Hadamard function in
Minkowski spacetime, which is given by:

〈φ1(η1, r1)φ1(η2, r2)〉M = 1

4π2

1

[−c2
0(η1 − η2)2 + r2] ,(10)

with r2 = �x2 + �y2 + �z2.
To integrate Eq. (8) we must choose an appropriate effec-

tive scale factor a(η). In many papers [44,45,50,51] the
authors consider an asymptotically bound dimensionless
scale factor to model the effective FRW geometry,4 whose
form is

a2(η) = a2
0 + a2

1 tanh

(
η

η0

)
, (11)

where a2(η) is flat in the asymptotic regions (η → ±∞) and
a0,a1 are dimensionless constants, with the former producing
a displacement of a(η) avoiding the divergence when η = 0
and the latter modifying the space in the limits η → ±∞.
The η0 is a constant parameter with dimension of time that
smooths the transition between the asymptotic limits. Thus,
we can evaluate Eq. (8) using this scale factor. Proceeding
this way, we take Eqs. (10) and (11) in Eq. (8), and to integrate
it we followed the same steps present in Appendix B of Ref.
[43]. Then, the proper velocity dispersion is

〈(�vi )2〉 = 2q2B

π4m2c4
0η

2
0

(
ζ(3) − π4

90

)
, (12)

where

B = c0

4cs f

(
1 − cs f

c0

)2

, (13)

is a dimensionless constant defined in terms of the initial (c0)
and final (cs f ) sound speed, besides ζ(n) is the zeta function.
Note that, when cs f = c0, B = 0 a null dispersion is found.
This is the expected result of a Minkowski spacetime with
trivial topology [27,28,43].

In the Sect. 4 we will re-analyse this problem and will find
extra terms (corrections) to the velocity dispersion coming
from an expanding LIV model similar to Eq. (3).

2.2 Free particles

The second case studied in Ref. [44] was the quantum
stochastic motion of the free particles. As previously pre-

4 Recently, a model that reproduces in the laboratory some features of
an inflationary universe was performed [46] with a scale factor similar
to Eq. (11).
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sented, this case is characterized by the fact that fext = 0.
So, Eq. (5) can be written as

1

a2

d

dt
(a2ui ) = f i

m
, (14)

where f i is given by Eq. (6).
To integrate this equation and to find the proper velocity

dispersion ((�vi )2) we follow the same procedure discussed
in the bound particles section. Thus, the velocity dispersion
is

〈(�vi )2〉 = q2

m2a2
f

∂i1∂i2

×
[∫ η f

0

∫ η f

0
dη1dη2〈φ1(η1, r1)φ1(η2, r2)〉M

]

r1→r2

.

(15)

Note that the scale factor a does not appears in the inte-
grand above. Using Eq. (10) and taking the coincidence limit
after the integration, we find a divergent result. To avoid this
divergence, a renormalization is required. It consists in sub-
tract the Minkowski contribution in the Hadamard function.
Thus, the integrand will be null yielding to the trivial result

〈(�vi )2〉 = 0. (16)

In other words, there is no stochastic motion for free scalar
particles when the LI is preserved.

In the Sect. 4 we will take into account the LIV model
in the expanding geometry. We will find a non-null velocity
dispersion. This indicates that the model proposed in this
paper could be a source to look for LIV effects.

3 Analog model to the FRW geometry in a LIV
perspective

In the previous section, we have reviewed the formalism
related to the quantum stochastic motion of scalar particles.
This motion is induced by the quantum vacuum fluctuations
of a massless scalar field in an expanding time-dependent
background. It was discussed that this background can mimic
some aspects of a FRW geometry when a linearization in the
parameters of the basic equation of a BEC is applied. Since,
as far as we know, the Lorentz invariance is preserved in a
BEC, our goal in this section is to show that a similar time-
dependent expanding background can be accomplished when
we take into account a model where LIV is permitted. For
this purpose, we consider an extension in the Abelian Higgs
model with a term that violates the Lorentz invariance in the
scalar sector. We will follow the procedure present in Sect. 2
of Ref. [9]. Thus, consider a Lagrangian of the type,

L = −1

4
FμνF

μν + |Dμφ|2 + M2|φ|2

−b|φ|4 + kμνDμφ∗Dνφ , (17)

with

kμν =

⎛
⎜⎜⎝

β α α α

α β α α

α α β α

α α α β

⎞
⎟⎟⎠ . (18)

The tensor kμν introduces the Lorentz symmetry breaking
terms, represented by the real parameters α and β, which
were coupled to the scalar field. In this Lagrangian, gravity
is not present and the term Fμν is the Maxwell tensor, Dμ =
∂μ − ieAμ with e and b being interaction terms, and Aμ is
the 4-potential.

In order to simplify the model, we will only consider the
diagonal terms in kμν matrix, i.e. α = 0, β �= 0. A decom-
position of the type: φ(x ′, t ′) = √

ρ(x ′, t ′)exp(i S(x ′, t ′)),
which is known as Madelung representation, can be done
with the prime representing the coordinates in the flat space-
time Lagrangian. Notice that the fluid density is now defined
as ρ = |φ|2. This representation gives us a fluid description
and after substituting φ in Eq. (17) we obtain the correspond-
ing hydrodynamic equations of motion:

− ∂t ′
[
β̃+ρ(Ṡ − eAt ′)

]
+ ∂i ′

[
β̃−ρ(∂ i

′
S − eAi ′)

]
= 0 (19)

and

(β̃+∂2
t ′ − β̃−∂2

i ′)
√

ρ√
ρ

+ β̃+(Ṡ − eAt ′)
2

−β̃−(∂i ′ S − eAi ′)
2 + M2 − 2bρ = 0, (20)

where β̃± ≡ 1 ± β and Ṡ = ∂S
∂t ′ .

Let us now consider a perturbation around the density
given by ρ = ρ0 + ρ1. We also can change the phase for
S = S0 + S1, and consequently we have φ = φ0 +φ1, where
ρ1 � ρ0, S1 � S0, and φ1 � φ0. So for simplicity, M = 0,
equations above become

∂t ′

[(
− bρ0

2β̃−
+ D2ρ0

2β̃−
− β̃+

β̃−
ω2

0

)
Ṡ1 − ω0�v0 · ∇S1

]

+∇ ·
[
−ω0�v0 Ṡ1 +

(
bρ0

2β̃+
− D2ρ0

2β̃+

)
∇S1

− β̃−
β̃+

�v0 · ∇S1�v0

]
= 0. (21)

These fluctuations of the fluid are similar to the BEC case
studied in Sect. 2 and in other analogue gravity models [48].
Furthermore, we obtain a phonon description when these
fluctuations (or equivalently φ1) are quantized, as we shall
see shortly. Note that we have definedD2 = β̃+Dt2+β̃−Di2,
ω0 = −Ṡ0 + eAt and �v0 = ∇S0 + e �A is the local velocity
field. The term D2 is very small and following Ref. [9] it can
be dropped out.
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Following the usual procedure, we can see that Eq. (21)
mimics a Klein–Gordon equation in curved spacetime with
the metric

ds̄2 = bρ0(β̃−)1/2

2cs

×
[
− c2

s

β̃+
dt ′2 + β̃+

β̃−

(
dx ′2 + dy′2 + dz′2

)]
. (22)

Here we have assumed a non-relativistic limit where the time
dependent sound speed in the fluid is c2

s = bρ0

2w2
0

� 1, and the

background flow is null (�v = 0).
Absorbing the constants above into the coordinates

t ′, x ′, y′, z′ and in ds̄ we find the usual flat metric evaluated
in a Lorentz invariant (LI) context

ds̄2 = −c2
s dt

′2 + dx ′2 + dy′2 + dz′2. (23)

This is clearly different from the metric obtained in Ref. [9],
in which the flux velocity does not vanish, and an acoustic
Kerr-like black hole metric with the LIV corrections is found.
Despite of the LI metric above, we will see that the β factor
present in Eq. (17) influences the equation of motion of the
particles anyway. Finally, to write this metric in FRW form
(3), we simply follow the discussion presented in Sect. 2. In
this case we have a Klein–Gordon equation in curved space-
time with

1√−g
∂μ(

√−gg̃μν∂νφ1) = 0, (24)

where the effective metric tensor is now g̃μν = gμν + kμν .
In the next section we will use this metric to study the

quantum stochastic motion of the scalar particle described in
Sect. 2.

4 Quantum stochastic motion in a FRW acoustic
geometry: LIV effects

In this section, we consider Eq. (24), and follow the same
methodology described in Sect. 2 to find a new f i term. Now,
it will take into account the LIV corrections in the following
way:

f i = q(giμ + kiμ)∂μφ1. (25)

Note that when kμν = 0, Eq. (6) is recovered, which is valid
for a flat or conformally flat spacetime where LI is preserved.
Since we use metric (2), the left hand side of Eq. (5) does not
change. So we have now the following equation of motion

m
dui

dt
+ 2m

ȧ

a
ui = q[a−2(t) + β]∂iφ1 + f iext , (26)

where ȧ = da/dt . This is the equation of motion of the scalar
particle taking into account the LIV effects where β comes
from Eq. (24).

In this context, in the next two sub-sections, we will con-
sider the acoustic metric evaluated in the previous section to
study the stochastic motion of point-like massive scalar parti-
cles in this expanding background that mimics some features
of a spatially flat FRW geometry. Thus, to evaluate the disper-
sion velocity of the particles with mass m of the compounds
(treated as scalar point particles) of the fluid with density ρ,
we will consider again the bound and free particles defined
in Sect. 2.

4.1 Bound particles

Let us start this section with the bound particles case, as
discussed in Sect. 2, a single particle is under the effect of
a classical non-fluctuating force given by: f iext = 2mui ȧ/a.
Thus the equation of motion for the particles reduces to

m
dui

dt
= q[a−2(t) + β]∂iφ1, (27)

where only the spatial derivatives are considered once the
metric gμν and the kμν matrix are diagonal. Thus, the cor-
responding velocity–velocity correlation function using the
LIV effective metric is

〈ui (t1, r1)u
i (t2, r2)〉L I V

= q2

m2

∫ ∫
dt1dt2

{[
a−2(t1) + β

] [
a−2(t2) + β

]}

×∂i1∂i2〈φ1(t1, r1)φ1(t2, r2)〉FRW (28)

Following the procedure presented in Sect. 2, we first
make a conformal transformation involving the coordinate
time t and the conformal time η (dt = adη) and make use of
Eqs. (9) and (3) to obtain the two-point function in the FRW
spacetime in terms of the Hadamard function in Minkowski
spacetime

〈φ1(η1, r1)φ1(η2, r2)〉FRW

= a−1(η1)a
−1(η2)〈φ1(η1, r1)φ1(η2, r2)〉M , (29)

Using Eq. (29) in Eq. (28) together with the change, dt =
adη, we obtain,

〈〈ui (t1, r1)ui (t2, r2)〉〉L I V
= q2

m2

∫
dη2a

−2(η2)

×
∫

dη1a
−2(η1)∂i1∂i2 〈φ1(η1, r1)φ1(η2, r2)〉M

+q2β

m2

∫
dη2

∫
dη1a

−2(η1)∂i1∂i2 〈φ1(η1, r1)φ1(η2, r2)〉M

+q2β

m2

∫
dη1

∫
dη2a

−2(η2)∂i1∂i2 〈φ1(η1, r1)φ1(η2, r2)〉M

+q2β2

m2

∫
dη1

∫
dη2∂i1∂i2 〈φ1(η1, r1)φ1(η2, r2)〉M . (30)

123



352 Page 6 of 10 Eur. Phys. J. C (2022) 82 :352

Note that the scale factor does not appears in the last term
of Eq. (30). Thus, the integration diverges in the coincidence
limit. This implies that a renormalization is needed. So the
Minkowski contribution must be subtracted from Hadamard
function presented in the last integral, giving a null contribu-
tion. Thus, the remained finite integrals are

〈vi (t1, r1)vi (t2, r2)〉L I V

=
q2a2

f

m2

∫ ∞
−∞

dη2a
−2(η2)

×
∫ ∞
−∞

dη1a
−2(η1)∂1i ∂2i 〈φ1(η1, r1)φ1(η2, r2)〉M

+
q2a2

f β

m2

∫ η f

0
dη2

×
∫ ∞
−∞

dη1a
−2(η1)∂1i ∂2i 〈φ1(η1, r1)φ1(η2, r2)〉M

+
q2a2

f β

m2

∫ η f

0
dη1

×
∫ ∞
−∞

dη2a
−2(η2)∂1i∂2i 〈φ1(η1, r1)φ1(η2, r2)〉M , (31)

where we considered the proper velocity (vi = a f ui ).
Particularizing i to the x direction, the results in the y and

z direction are the same, and taken the partial derivatives with
respect to x1 and x2, we obtain,

〈vi (t1, r1)v
i (t2, r2)〉L I V

= q2a2
f

2π2m2

∫ ∞

−∞
dη2a

−2(η2)

×
∫ ∞

−∞
dη1a

−2(η1)
{
f2(η, r) + 4�x2 f3(η, r)

}

+q2a2
f β

m2

∫ η f

0
dη2

×
∫ ∞

−∞
dη1a

−2(η1)
{
f2(η, r) + 4�x2 f3(η, r)

}

+q2a2
f β

m2

∫ η f

0
dη1

×
∫ ∞

−∞
dη2a

−2(η2)
{
f2(η, r) + 4�x2 f3(η, r)

}
, (32)

where fn was defined as,

fn(η, r) = 1

[c2
0(η1 − η2)2 − r2]n . (33)

Now we use the scale factor given by Eq. (11) and to
evaluate the integral above we follow again a contour inte-
gration presented in appendix B of Ref. [43]. The result of
such integral is:

〈(�vx )2〉L I V = 2q2B

π4m2c4
0η

2
0

(
ζ(3) − π4

90

)

+ 2q2β

3c4
0πm

2η2
0

(
c0

cs f
B

)1/2

Fk(η), (34)

where the coincidence limit was taken in the expression
above and

Fk(η) = 1

2π3

[
ψ(2)

(
ih

π
+ 1

2

)

−ψ(2)

(
2ih + 2iη + π

2π

)]
. (35)

with h = ln(
√
c0/cs f ) and ψ(n) being the nth-polygamma

function. We can re-arrange the terms in Eq. (34) to obtain,

〈(�vx )2〉L I V = 2q2B

πm2c4
0η

2
0

{
1

π3

(
ζ(3) − π4

90

)

+βB− 1
2

3

(
c0

cs f

) 1
2

Re [Fk(η)]

}
, (36)

or, in terms of Eq. (12),

〈(�vx )2〉L I V = 〈(�vx )2〉
+ 2q2βB1/2

3πm2c4
0η

2
0

(
c0

cs f

)1/2

Re [Fk(η)] (37)

where the first term in the right-hand side is Eq. (12) and
the second term is the up to the first order corrections in β

that comes from the LIV model represented by Lagrangian
(17). So the relevant correction contribution comes strictly
from the theory represented by the Lagrangian (17), making
a boost in the velocity dispersion.

Now let us plot Eq. (36). Such a procedure can be done
by defining a new function, G(η), where

G(η) = πm2c4
0η

2
0

2q2B
〈(�vx )2〉L I V

= 1

π3

(
ζ(3) − π4

90

)

+β

[
3

π3

(
ζ(3) − π4

90

)

+ B−1/2

3

(
c0

cs f

)1/2

Fk(η)

]
. (38)

In Fig. 1 we plot the function G(η) defined in Eq. (38),
which is directly related to 〈(�vx )2〉L I V . Here we choose
β = 3.6 × 10−8 as presented in Ref. [54]. Moreover, we
have the constraint that cs f < c0, in order to the expansion
occur. Given some numerical values to the sound speed we
are able to evaluate the dimensionless quantities B and h,
both present in Eq. (38). Thus, we have for the dashed curve
c0/cs f = 1.1, B = 0.00227 and h = 0.0467, whereas for
the solid curve c0/cs f = 1.2, B = 0.00833 and h = 0.0911.

Note that, comparing the result found in Sect. 2, where
LI is preserved, the LIV decreases the value of the velocity
dispersion when the particles are bounded for some external

123



Eur. Phys. J. C (2022) 82 :352 Page 7 of 10 352

Fig. 1 Dispersion for bounded
particles for different values for
the sound speed and
β = 3.6 × 10−8. The dispersion
decreases when LIV is
considered

force. Decreasing, then, the uncertainty about this quantity.
For large values of η we see that G(η) goes to a constant.
In fact, as our time variable is found in Eq. (35), taking the
limit where η → ∞, we have a constant value given by the
polygamma function.

4.2 Free particles

In this section we will study the free particles case ( f iext =
0). The equation of motion (26) for a single particle can be
expressed in the following way

1

a2

d

dt
(a2ui ) = q

m
[a−2(t) + β]∂iφ1, (39)

when β = 0, we recover an equation valid for a flat or con-
formally flat spacetime with LI preserved.

The corresponding velocity–velocity correlation function
is now

〈ui (t1, r1)u
i (t2, r2)〉L I V

= q2

m2a4
f

∫ ∫
dt1dt2a

2(t1)a
2(t2)

×
{[

a−2(t1) + β
] [

a−2(t2) + β
]}

×∂i1∂i2〈φ1(t1, r1)φ1(t2, r2)〉FRW (40)

Taking the following transformation in time, dt = adη,
we obtain the expression,

〈ui (t1, r1)ui (t2, r2)〉L I V
= q2

m2a4
f

[∫ η f

0
dη2

∫ η f

0
dη1∂1i ∂2i 〈φ1(η1, r1)φ1(η2, r2)〉M

+ β

∫ η f

0
dη2

∫ ∞
−∞

dη1a
2(η1)∂1i ∂2i 〈φ1(η1, r1)φ1(η2, r2)〉M

+ β

∫ η f

0
dη1

∫ ∞
−∞

dη2a
2(η2)∂1i ∂2i 〈φ1(η1, r1)φ1(η2, r2)〉M

+ β2
∫ ∞
−∞

dη2a
2(η2)

×
∫ ∞
−∞

dη1a
2(η1)∂1i ∂2i 〈φ1(η1, r1)φ1(η2, r2)〉M

]
. (41)

Note that, the first term in the right hand side has no scale
factor in the integrand. So a renormalization procedure is
needed in this term. Thus, the first integral does not con-
tributes and we have,

〈ui (t1, r1)ui (t2, r2)〉L I V
= q2

m2a4
f

[
β

∫ η f

0
dη2

×
∫ ∞
−∞

dη1a
2(η1)∂1i ∂2i 〈φ1(η1, r1)φ1(η2, r2)〉M

+ β

∫ η f

0
dη1

∫ ∞
−∞

dη2a
2(η2)∂1i∂2i 〈φ1(η1, r1)φ1(η2, r2)〉M

+ β2
∫ ∞
−∞

dη2a
2(η2)

×
∫ ∞
−∞

dη1a
2(η1)∂1i ∂2i 〈φ1(η1, r1)φ1(η2, r2)〉M

]
. (42)

Now putting Eq. (9) into Eq. (42) choosing i = x , the
result for y and z is the same, and writing in terms of the
proper velocity (vi ), where vi = a f ui , we obtain,

〈vi (t1, r1)v
i (t2, r2)〉L I V

= q2β

2π2m2a2
f

∫ ∞

−∞
dη2a

2(η2)

∫ ∞

−∞
dη1a

2(η1)

×
{
f2(η, r) + 4�x2 f3(η, r)

}

+ q2β

2π2m2a2
f

∫ η f

0
dη2

×
∫ ∞

−∞
dη1a

2(η1)
{
f2(η, r) + 4�x2 f3(η, r)

}

+ q2β2

2π2m2a2
f

∫ η f

0
dη1
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×
∫ ∞

−∞
dη2a

2(η2)
{
f2(η, r) + 4�x2 f3(η, r)

}
. (43)

with fn given by Eq. (33).
Making use of Eq. (11) and taking the coincidence limit

we are able to make first an integration by parts and then
apply the same contour integration of the previous sections
to obtain,

〈(�vx )2〉L I V = 2q2βC

3πm2c4
0η

2
0

Re [Fk(η)]

+ 2q2β2B

π4m2c4
0η

2
0

ζ(3), (44)

with

Fk(η) =
14ζ(3) + ψ(2)

(
iη
π

+ 1
2

)

2π3 (45)

andC = 1
2

(
1 − cs f

c0

)
. Again, the relevant contribution is the

first-order correction in β that comes from Lagrangian (17).
This contribution produces a boost in the velocity dispersion
that would vanish if β = 0.

Note that a non-null dispersion was obtained which is
different from the result found in Sect. 2. This is perhaps the
most important result of the present paper, since this model
shows a fundamental effect coming from the LIV theory.

Now let us plot Eq. (44). Proceeding this way, define a
new function, G ′(η), where

G ′(η) = 3πm2c4
0η

2
0

2q2 〈(�vx )2〉L I V = CβFk(η) (46)

The solid and dashed curves was plotted with C =
0.04545 and C = 0.08333, respectively, with the speed ratio
c0/cs f = 1.1 and 1.2. It was used β = 3.6 × 10−8 in both
cases. Note that this result is consistent with the free case
described in Sect. 2 only when η = 0, since a null dispersion
is found. However, as the time increases, the dispersion is
no longer zero, which disagrees with Sect. 2. This result is a
direct consequence of the LIV. Thus, in the LIV scenario par-
ticles that follows their geodesics (free particles) can posses a
stochastic motion due to quantum fluctuations. So LIV holds
a fundamental influence in the non-trivial quantum effect
described in this paper.

5 Summary and discussion

In the present paper, we have considered the stochastic
motion of scalar test particles coupled to a massless fluctuat-
ing scalar field in an acoustic spatially flat FRW geometry. In
this context, in Sect. 2, we reviewed the main results present
in Ref. [44], where to model this geometry, it was considered
a fluid (BEC) where the LI was preserved. In this context,

we studied stochastic motion in two distinct situations: in
the first one, we have considered an external classical and
non-fluctuating force acting on the particles in this geometry.
This force prevented them from feel locally the expansion.
We named them as bound particles. In the second situation,
no external force was acting on the particles, in this case,
they are free and follow their geodesics, and therefore they
were named free particles. In particular, for the case studied
in this section, the stochastic motion exists only for bound
particles since for the free particles the dispersion vanishes
(〈�v2〉 = 0) [43,44].

In Sect. 3, following the same steps of Ref. [9], we showed
that it is also possible to find an acoustic spatially flat FRW
geometry where the LI is broken, i.e., in a LIV context. Then,
in Sect. 4, we studied the same problem described in Sect. 2
using the metric found in Sect. 3. Thus, comparing the results
found in Sect. 2 with the ones found in Sect. 4, we observed
that for bound particles the LIV corrections decrease their
velocity dispersion and also the uncertainty on the motion.
We can see this fact from Eq. (37) and Fig. 1. The reader can
note that the curve for the dispersion decreases in the limit of
long times. Another point worth mentioning is the dispersion
relation between the sound speed in the beginning (c0) and
the end of the expansion (cs f ). A change in the ratio (c0/cs f )
causes a shift that might increase or decrease the dispersion.
Nonetheless, the most important result in this paper is for
the free particles in the LIV framework. This case is more
realistic than the bound particles, and a null dispersion was
found when the LI is taken into account. However, as can
be seen, in Eq. (44) and in Fig. 2, when LIV is considered
a non-null dispersion is found. We interpret this as a direct
consequence of the LIV, and the dependence with the initial
and final sound speeds is also illustrated in Fig. 2.

Another important point related to our model appears in
the β corrections presented in Eqs. (37) and (44). This term
comes from Lagrangian (17), and it appears directly in the
particle’s equation of motion. Nevertheless, the acoustic met-
ric plays a fundamental role in our results, not only because
it is derived directly from Eq. (17) but also because in dis-
persion calculations the scale factor that appears in the inte-
grands allows us to obtain finite and non-zero results.

As expected from a theory with LIV, the corrections found
in the velocity dispersion of the particles are very small,
and consequently, their detection is not an easy task. How-
ever, our model shows that the LIV plays a fundamental role
related to the robustness of the motion of the particles, as
in the case of the free particles, whereas the non-zero result
obtained disagrees with the one previously found in the liter-
ature, where the Lorentz invariance is preserved. Since exper-
imental tests for quantum gravity effects are hard to find, the
present model denotes a mean where such effects could be
explored. Besides, the quantum stochastic motion is a subtle
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Fig. 2 Dispersion for free
particles for different values for
the sound speed and
β = 3.6 × 10−8. The dispersion
increases when LIV is
considered

and non-trivial quantum scenario effect that is, per se, a topic
of interest.
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