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Abstract Taking into account a fractal structure for the
black hole horizon, Barrow argued that the area law of
entropy is modified due to quantum-gravitational effects
(Barrow in Phys Lett B 808:135643, https://doi.org/10.1016/
j.physletb.2020.135643, 2020). Accordingly, the corrected
entropy takes the form S ∼ A1+�/2, where 0 ≤ � ≤ 1 indi-
cates the amount of the quantum-gravitational deformation
effects. In this paper, based on Barrow entropy, we first derive
the modified gravitational field equations through the Clau-
sius relation. We then consider the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric as the background met-
ric and derive the modified Friedmann equations inspired
by Barrow entropy. In order to explore observational con-
straints on the modified Barrow cosmology, we employ two
different combinations of available datasets, mainly “Planck
+ Pantheon + BAO” and “Planck + Planck-SZ + CFHTLenS +
Pantheon + BAO + BAORSD” datasets. According to numer-
ical results, we observe that the “Planck + Pantheon + BAO”
dataset predicts higher values of H0 in Barrow cosmology
with a phantom dark energy compared to �CDM, so ten-
sions between low redshift determinations of the Hubble con-
stant and cosmic microwave background (CMB) results are
slightly reduced. On the other hand, in the case of dataset
“Planck + Planck-SZ + CFHTLenS + Pantheon + BAO +
BAORSD” there is a slight amelioration in σ8 tension in Bar-
row cosmology with a quintessential dark energy compared
to the standard model of cosmology. Additionally, for a more
reliable comparison, we also constrain the wCDM model
with the same datasets, where our results exhibit a satisfying
compatibility between Barrow cosmology and wCDM.

a e-mail: mahnaz.asghari@shirazu.ac.ir
b e-mail: asheykhi@shirazu.ac.ir (corresponding author)

1 Introduction

The profound connection between thermodynamics and
gravitational field equations has received considerable atten-
tion since the discovery of the thermodynamic properties of
black holes [1–3]. It has been confirmed that the field equa-
tions of general relativity are nothing but an equation of state
for the spacetime [4]. In other words, when the spacetime
is regarded as a thermodynamic system, the law of thermo-
dynamics on the large scale can be interpreted as the law
of gravity. The thermodynamics-gravity conjecture has now
been well explored in the literature [5–13]. The investigation
has been generalized to the cosmological background, where
it has been shown that the Friedmann equations describing
the evolution of the universe can be rewritten in the form of
the first law of thermodynamics and vise versa [14–21]. Fur-
thermore, one can apply this remarkable connection in the
context of braneworld scenarios [22–25].

In the cosmological approach, it is possible to extract the
Friedmann equations of the Friedmann–Lemaître–Robertson–
Walker (FLRW) universe by applying the first law of ther-
modynamics dE = T dS + WdV at the apparent horizon
[20]. It was argued that, in any gravity theory, one can con-
sider the entropy expression associated with the apparent
horizon in the form of the black hole entropy in the same
gravity theory. The only change needed is to replace the
black hole horizon radius r+ in the entropy expression by
the apparent horizon radius r̃A in the entropy expression
associated with the apparent horizon. While it is more con-
venient to apply the Bekenstein–Hawking area law relation
defined as SBH = A/(4G) for the black hole entropy [3,26]
(with the black hole horizon area A = 4πr2+), it should
be noted that there are several types of corrections to the
area law entropy. Two possible corrections that occur due to
quantum effects are known as logarithmic corrections arising
from loop quantum gravity [27–34], and power-law correc-
tions established in the entanglement between quantum fields
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inside and outside the horizon [35–37]. The other appropriate
correction concerning the area law of entropy comes from the
fact that the Boltzmann–Gibbs (BG) additive entropy should
be generalized to non-additive entropy in divergent parti-
tion function systems such as gravitational systems [38–44].
Therefore, it has been argued that the entropy of these sys-
tems should be in the form of non-extensive Tsallis entropy
S ∼ Aβ , where β is the non-extensive or Tsallis parame-
ter [45]. Studies on the non-additive Tsallis entropy and its
applications in cosmology have been carried out in [46–55].

Moreover, it is worth turning our attention to Barrow cor-
rection to area law entropy due to quantum-gravitational
effects [56]. Around 1 year ago, J. D. Barrow considered
an intricate and fractal geometry for the black hole hori-
zon, which leads to an increase in surface area. The modified
entropy relation based on Barrow corrections takes the form
[56]

S =
(

A

A0

)1+�/2

, (1)

where A is the black hole horizon area, A0 is the Planck
area, and the exponent �, which quantifies the quantum-
gravitational deformation, is in the range of 0 ≤ � ≤ 1 [56–
58]. The area law entropy expression is restored by choos-
ing � = 0, which accordingly corresponds to the simplest
horizon structure, while � = 1 expresses the most intricate
surface structure. There are some investigations on Barrow
entropy in the cosmological and gravitational setups [59–75].

In order to rewrite the modified field equations from
Barrow entropy at the apparent horizon of the FLRW uni-
verse, one should replace the entropy in the Clausius relation
δQ = T δS by the entropy expression (1) and consider A as
the apparent horizon area given by A = 4π r̃2

A. Our approach
in the present study is similar to that in [76], which considers
the non-additive Tsallis entropy correction to the area law
relation. However, it should be mentioned that the physical
motivation and principles are completely different between
the two investigations. In particular, the Tsallis non-additive
entropy correction is motivated by generalizing standard ther-
modynamics to a non-extensive one, while the Barrow cor-
rection to entropy originates from the intricate, fractal struc-
ture on the horizon induced by quantum-gravitational effects.

It is worth noting that applying the Bekenstein–Hawking
entropy in the Clausius relation leads to the Einstein field
equations in the standard �CDM model [7]. It is known
that the standard model of cosmology is in excellent agree-
ment with the majority of observational constraints; how-
ever, it suffers from some observational tensions which
inspire investigations beyond the standard model. Specif-
ically, low redshift measurements of the Hubble constant
[77–80] and local determinations of the growth of struc-
ture [81] are inconsistent with the Planck cosmic microwave

background (CMB) observations [82]. Accordingly, in this
paper we study whether the discrepancies between local and
global measurements can be resolved in Barrow cosmology.
Throughout the paper we set kB = c = h̄ = 1 for simplicity.

This paper is structured as follows. In Sect. 2 we derive
modified field equations describing the evolutions of the uni-
verse when the horizon entropy is given by Eq. (1). Numeri-
cal solutions based on Barrow entropy corrections to the field
equations are presented in Sect. 3. Section 4 is dedicated to
constraining Barrow cosmology with observational data. We
summarize our conclusions in Sect. 5.

2 Modified gravitational field equations from Barrow
corrections

In this part, we will derive the corresponding field equations
in the cosmological setup when the entropy associated with
the apparent horizon is in the form of Barrow entropy. In this
respect, we consider a spatially flat FLRW universe with the
background metric given by

ds2 = a2(τ )
( − dτ 2 + dxxx2), (2)

where τ is the conformal time. Also, the perturbed line ele-
ment in linear perturbation theory in the conformal Newto-
nian gauge reads

ds2 = a2(τ )
(

− (
1 + 2	

)
dτ 2 + (

1 − 2

)
dxxx2

)
, (3)

with gravitational potentials 	 and 
. Similarly in the syn-
chronous gauge we have

ds2 = a2(τ )
(

− dτ 2 + (
δi j + hi j

)
dxidx j

)
, (4)

where hi j = diag(−2η,−2η, h + 4η), with scalar perturba-
tions h and η.

Furthermore, we consider that the universe consists of
radiation (R), matter (M) (dark matter [DM] and baryons
[B]), and dark energy (DE), which are assumed to be perfect
fluids, with the energy–momentum tensor defined as

Tμν(i) = (
ρi + pi

)
uμ(i)uν(i) + gμν pi , (5)

where ρi = ρ̄i+δρi is the energy density, pi = p̄i+δpi is the
pressure and uμ(i) is the four-velocity of the i th component
in the universe (and a bar indicates the background level).

Employing the Clausius relation, δQ = T δS, which is
satisfied on a local causal horizon H , we derive the gravi-
tational field equations. Considering the universe as a ther-
modynamic system, we apply the Clausius relation on the
apparent horizon of the universe with radius r̃A, defined as
[83]

r̃A =
(
H2 + K

a2

)−1/2
, (6)
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where H is the Hubble parameter and K = −1, 0, 1 is the
curvature constant corresponding to an open, flat and closed
universe, respectively. Also, the associated temperature with
the apparent horizon is given by

T = κ

2π
, (7)

where κ is the surface gravity at the apparent horizon. As
mentioned before, in the interest of deriving field equations
in Barrow cosmology, we should apply the Borrow entropy
defined in Eq. (1) in the Clausius relation. Thus, δS takes the
form

δS =
(

1 + �

2

)
A−1−�/2

0 A�/2δA. (8)

According to Refs. [4,7], δQ can be written as

δQ = −κ

∫
H

λTμνk
μkνdλdA, (9)

and δA is given by

δA =
∫
H

θdλdA, (10)

with expansion θ defined as

θ = −λRμνk
μkν . (11)

Thus, considering Eqs. (7), (8) and (9), the Clausius relation
takes the form

κ

∫
H

(−λ)Tμνk
μkνdλdA

= κ

2π

(
1 + �

2

)
A−1−�/2

0

∫
H

(−λ)Rμνk
μkν A�/2dλdA,

(12)

→
∫
H

(−λ)

(
− 2πTμν +

(
1 + �

2

)
A−1−�/2

0 Rμν A
�/2

)

× kμkνdλdA = 0. (13)

Then, for all null vectors kμ we find

− 2πTμν +
(

1 + �

2

)
A−1−�/2

0 Rμν A
�/2 = f gμν, (14)

where f is a scalar. Thus, according to energy–momentum
conservation (∇μTμν = 0), we must have

∇μ

((
1 + �

2

)
A−1−�/2

0 Rμν A
�/2 − f gμν

)
= 0, (15)

→
(

1 + �

2

)
A−1−�/2

0

(
1

2

(
∂νR

)
A�/2 + Rμν∂

μA�/2
)

= ∂ν f. (16)

Considering Eq. (16), the left-hand side is not the gradient of a
scalar, which means that this corresponds to non-equilibrium
behaviour of thermodynamics, and the Clausius relation is
not satisfied. Thus, the Clausius relation should be replaced
by the entropy balance relation [7]

δS = δQ

T
+ di S, (17)

where di S is the entropy produced inside the system caused
by irreversible transformations of the system [84]. Then, in
order to resolve the contradiction with energy–momentum
conservation, we assume di S as the following form

di S =
(

1 + �

2

)
A−1−�/2

0

∫
H

(−λ)∇μ∇ν A
�/2kμkνdλdA.

(18)

Substituting di S in relation (17) results in

∫
H

(−λ)

((
1 + �

2

)
A−1−�/2

0 Rμν A
�/2 − 2πTμν

−
(

1 + �

2

)
A−1−�/2

0 ∇μ∇ν A
�/2

)
kμkνdλdA = 0.

(19)

Again, for all null vectors kμ we should have

(
1 + �

2

)
A−1−�/2

0 Rμν A
�/2 − 2πTμν

−
(

1 + �

2

)
A−1−�/2

0 ∇μ∇ν A
�/2 = f gμν. (20)

Then, considering energy–momentum conservation, and
after doing some calculations, we obtain

(
1 + �

2

)
A−1−�/2

0

(
1

2

(
∂νR

)
A�/2 − ∂ν�A�/2

)
= ∂ν f.

(21)

Here, we can choose the scalar L as L = RA�/2, which
reads

∂L

∂R
= A�/2,

∂νR = ∂R

∂xν
= ∂R

∂L

∂L

∂xν
= A−�/2∂νL ,

→ (
∂νR

)
A�/2 = ∂νL . (22)

Therefore, the scalar f becomes

f =
(

1 + �

2

)
A−1−�/2

0

(1

2
L − �A�/2

)

=
(

1 + �

2

)
A−1−�/2

0

(1

2
RA�/2 − �A�/2

)
. (23)
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Thus, the modified field equations in Barrow cosmology can
be written as

Rμν A
�/2 − ∇μ∇ν A

�/2 − 1

2
RA�/2gμν + �A�/2gμν

= 4π

2 + �
A1+�/2

0 Tμν, (24)

in which for a flat spacetime, we have

A�/2 = (4π)�/2
( a′

a2

)−� = (4π)�/2H−�,

(25)

where a prime indicates a deviation with respect to the con-
formal time. In this way, we derive the modified Einstein field
equations based on Barrow corrections to area law entropy
caused by quantum-gravitational effects on the apparent hori-
zon of the FLRW universe. Considering � = 0, the standard
field equations in Einstein gravity will be recovered. The (00)

and (ii) components of gravitational field equations (24) at
background level take the form
( a′

a2

)−�
{(a′

a

)2−�

(
a′′

a
−2

(a′

a

)2
)}

=8πG

3
a2

∑
i

ρ̄i ,

(26)

( a′

a2

)−�
{

− 2
a′′

a
+

(a′

a

)2 + �

[
− a′′

a
+ a′′′

a′ −
(a′′

a′
)2

− �

(
a′′

a′ − 2
a′

a

)2]}
= 8πGa2

∑
i

p̄i , (27)

where we have defined A0 as

A0 = (
4π

)(�−2)/(2+�)
((

2 + �
)
8πG

)2/(2+�)

.

Also, the background level equations in terms of the Hubble
parameter are given by

H2−� − �H−�H ′ 1

a
= 8πG

3

∑
i

ρ̄i , (28)

H−�

{(
� − 2

)
H ′ 1

a
− 3H2

+ �

(
H ′′

H
− (

1 + �
)(H ′

H

)2
)

1

a2

}
= 8πG

∑
i

p̄i . (29)

Then, from (28) and (29), the first modified Friedmann equa-
tion can be derived as

H2−� = 1

1 + 2�

8πG

3

∑
i

ρ̄i . (30)

It is also convenient to rewrite the Friedmann equation in
terms of the total density parameter defined as �tot =

ρ̄tot/ρcr, where ρcr = 3H2/(8πG) and ρ̄tot = ∑
i ρ̄i . Hence,

Eq. (30) can be written as

�tot = (
1 + 2�

)
H−�. (31)

It should be noted that in the limit � → 0, the Friedmann
equation takes the standard form in general relativity.

Defining the total equation of state parameter wtot as
wtot = p̄tot/ρ̄tot, the accelerated expansion of the universe
in Barrow cosmology is satisfied when wtot < −(1 + �)/3.
Taking into account the fact that 0 ≤ � ≤ 1, Barrow correc-
tions predict a more negative equation of state parameter in
an accelerating universe (for example, for � = 1 we obtain
wtot < −2/3), while in the limit � → 0, the accelerated
expansion condition in standard cosmology will be restored.

Taking into account the modified field equations (24) to
linear order of perturbations, in the conformal Newtonian
gauge (con) we have

( a′

a2

)−�
{

3
a′

a

′ + k2
 + 3

(a′

a

)2
	

− 3

2
�

(
a′′

a′ − 2
a′

a

)(

′ + 2

a′

a
	

)}

= −4πGa2
∑
i

δρi(con), (32)

( a′

a2

)−�
{
k2
′ + a′

a
k2	 − 1

2
�

(
a′′

a′ − 2
a′

a

)
k2	

}

= 4πGa2
∑
i

(
ρ̄i + p̄i

)
θi(con), (33)


 = 	, (34)

( a′

a2

)−�
{

2
a′′

a
	 −

(a′

a

)2
	 + a′

a
	 ′ + 2

a′

a

′ + 
′′

+ k2

3

(

 − 	

) + �

{
	

[
�

(
a′′

a′ − 2
a′

a

)2

− a′′′

a′ + a′′

a

+
(a′′

a′
)2

]
+ 	 ′

(
a′

a
− 1

2

a′′

a′

)
+ 
′

(
2
a′

a
− a′′

a′

)}}

= 4πGa2
∑
i

δpi(con), (35)

while in the synchronous gauge (syn) we can write

( a′

a2

)−�
{
a′

a
h′ − 2k2η − 1

2
�h′

(
a′′

a′ − 2
a′

a

)}

= 8πGa2
∑
i

δρi(syn), (36)
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Fig. 1 The CMB power spectra (upper left) and their relative ratios with respect to �CDM (upper right) for different values of �. Lower panels
show the analogous diagrams for the matter power spectrum

( a′

a2

)−�

k2η′ = 4πGa2
∑
i

(
ρ̄i + p̄i

)
θi(syn), (37)

( a′

a2

)−�
{

1

2
h′′ + 3η′′ + a′

a
h′ + 6

a′

a
η′ − k2η

− 1

2
�

(
a′′

a′ − 2
a′

a

)(
h′ + 6η′

)}
= 0, (38)

( a′

a2

)−�
{

− 2
a′

a
h′ − h′′ + 2k2η + �

(
a′′

a′ − 2
a′

a

)
h′

}

= 24πGa2
∑
i

δpi(syn). (39)

Choosing � = 0 would result in standard field equations at
the perturbation level in Einstein gravity.

Furthermore, considering energy–momentum conserva-
tion, continuity and Euler equations would not be affected by
Barrow corrections, and so conservation equations are iden-
tical to those in general relativity. In the rest of the paper, we
explore Barrow cosmology in the synchronous gauge; hence,
conservation equations for matter and dark energy compo-
nents take the form

δ′
M(syn) = −θM(syn) − 1

2
h′, (40)

θ ′
M(syn) = −a′

a
θM(syn), (41)

δ′
DE(syn) = −3

a′

a

(
c2
s,DE − wDE

)
δDE(syn) − 1

2
h′(1 + wDE

)

− (
1 + wDE

)(
1 + 9

(a′

a

)2(
c2
s,DE − c2

a,DE

) 1

k2

)
θDE(syn),

(42)

θ ′
DE(syn) = a′

a

(
3c2

s,DE − 1
)
θDE(syn) + k2c2

s,DE

1 + wDE
δDE(syn).

(43)

In the next section, we study Barrow cosmology using a
modified version of the Boltzmann code CLASS1 [85],
in which we have included the Barrow parameter � that
quantifies deviations from standard cosmology. Moreover,
in order to constrain cosmological parameters from current

1 Cosmic linear anisotropy solving system.
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Fig. 2 Matter density contrast diagrams in terms of conformal time in
Barrow cosmology compared to �CDM

observations, we employ the Markov chain Monte Carlo
(MCMC) method by making use of the MontePython code
[86,87].

3 Numerical analysis

In order to study the Barrow cosmology model numerically,
we modify the CLASS code according to the Barrow cos-
mology field equations described in Sect. 2. In this direction,
we consider Planck 2018 results [82] for the cosmological
parameters, which read �B,0h2 = 0.02242, �DM,0h2 =
0.11933, H0 = 67.66 km

s Mpc , As = 2.105 × 10−9, and
τreio = 0.0561, and also for the dark energy fluid we choose
wDE = −0.98 (to avoid divergences in dark energy pertur-
bations) and c2

s,DE = 1.
Figure 1 displays the CMB temperature anisotropy and

matter power spectra diagrams in Barrow cosmology com-
pared to �CDM (it should be noted that the case � = 0
corresponds to the wCDM model, where it consists of cold
dark matter and a dark energy fluid with a constant equation
of state).

Matter power spectra diagrams show an enhancement in
structure growth in the Barrow cosmology model, which is
inconsistent with low redshift measurements of galaxy clus-
tering. The evolution of matter density contrast illustrated in
Fig. 2 would also reflect the increase in the growth of struc-
tures in Barrow cosmology.

On the other hand, considering the Friedmann equation
(30), it is possible to explore the expansion history of the
universe in Barrow cosmology as demonstrated in Fig. 3.
According to this figure, it can be understood that the current
value of the Hubble parameter in Barrow cosmology is more
compatible with its local determinations in comparison with
the �CDM model.

Moreover, in Fig. 4 we show the evolution of dark energy
density, which illustrates an enhancement in ρ̄DE of Barrow
cosmology in comparison with the �CDM model, and con-
sequently confirms the increase in the current value of the
Hubble parameter in the Barrow model.

Fig. 3 Hubble parameter in terms of conformal time in Barrow cos-
mology compared to �CDM

Fig. 4 The evolution of dark energy density in terms of conformal time
in Barrow cosmology compared to �CDM

4 Comparison with observational data

In this section, we put constraints on the parameters of Bar-
row cosmology by applying an MCMC approach through
the Monte Python code [86,87]. The set of cosmological
parameters used in MCMC analysis consists of {100 �B,0h2,
�DM,0h2, 100 θs , ln(1010As), ns , τreio, wDE, �}, where
�B,0h2 and �DM,0h2 represent the baryon and cold dark
matter densities relative to the critical density, respectively,
θs is the ratio of the sound horizon to the angular diame-
ter distance at decoupling, As stands for the amplitude of
the primordial scalar perturbation spectrum, ns is the scalar
spectral index, τreio is the optical depth to reionization, wDE is
the dark energy equation of state parameter, and � indicates
the Barrow parameter. Furthermore, we have four derived
parameters including the reionization redshift (zreio), the mat-
ter density parameter (�M,0), the Hubble constant (H0), and
the root-mean-square mass fluctuations on scales of 8 h−1

Mpc (σ8). Considering preliminary numerical studies, we
choose the prior range [0, 0.015] for the Barrow parameter,
and additionally, we set no prior range on wDE.

The following likelihoods are utilized in the MCMC
method: the Planck likelihood with Planck 2018 data (con-
taining high-l TT, TE, EE, low-l EE, low-l TT, and lensing)
[82], the Planck-SZ likelihood for the Sunyaev–Zeldovich
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Table 1 Best-fit values and 68% and 95% confidence level intervals for cosmological parameters of �CDM, wCDM, and Barrow cosmology,
considering dataset (I)

Planck + Pantheon + BAO

�CDM wCDM Barrow cosmology

Parameter Best fit 68% & 95% limits Best fit 68% & 95% limits Best fit 68% & 95% limits

100 �B,0h2 2.246 2.245+0.013+0.027
−0.014−0.028 2.238 2.239+0.014+0.028

−0.014−0.028 2.235 2.239+0.015+0.030
−0.015−0.028

�DM,0h2 0.1191 0.1189+0.00096+0.0018
−0.00086−0.0020 0.1198 0.1194+0.0011+0.0020

−0.00099−0.0021 0.1203 0.1197+0.0012+0.0021
−0.00095−0.0023

100 θs 1.042 1.042+0.00029+0.00057
−0.00030−0.00059 1.042 1.042+0.00029+0.00057

−0.00031−0.00056 1.042 1.042+0.00029+0.00055
−0.00029−0.00057

ln(1010As) 3.048 3.047+0.013+0.028
−0.014−0.028 3.040 3.045+0.014+0.030

−0.014−0.027 3.040 3.046+0.012+0.029
−0.015−0.027

ns 0.9675 0.9673+0.0036+0.0076
−0.0038−0.0074 0.9647 0.9660+0.0040+0.0081

−0.0041−0.0078 0.9685 0.9665+0.0042+0.0079
−0.0040−0.0081

τreio 0.05699 0.05662+0.0063+0.014
−0.0073−0.013 0.05223 0.05536+0.0061+0.014

−0.0076−0.014 0.05135 0.05483+0.0061+0.014
−0.0080−0.014

wDE – – −1.018 −1.034+0.035+0.065
−0.032−0.067 −1.026 −1.009+0.036+0.070

−0.039−0.072

� – – – – 0.0008549 0.0007799+0.00021+0.0011
−0.00078−0.00078

zreio 7.921 7.870+0.64+1.4
−0.72−1.3 7.463 7.757+0.64+1.4

−0.73−1.4 7.376 7.702+0.62+1.4
−0.78−1.4

�M,0 0.3038 0.3022+0.0057+0.011
−0.0050−0.011 0.3015 0.2963+0.0088+0.016

−0.0076−0.016 0.2922 0.2953+0.0077+0.016
−0.0084−0.016

H0 [ km
s Mpc ] 68.28 68.41+0.37+0.90

−0.46−0.82 68.67 69.20+0.88+1.9
−0.97−1.7 69.86 69.39+0.96+1.8

−0.90−1.9

σ8 0.8225 0.8217+0.0056+0.012
−0.0061−0.011 0.8264 0.8319+0.011+0.024

−0.012−0.022 0.8408 0.8343+0.012+0.024
−0.012−0.024

Table 2 Best-fit values and 68% and 95% confidence level intervals for the cosmological parameters of �CDM, wCDM, Barrow cosmology (with
Barrow parameter �), and also the TMG model (with Tsallis parameter β) from Ref. [76], considering dataset (II)

Planck + Planck-SZ + CFHTLenS + Pantheon + BAO + BAORSD

�CDM wCDM Barrow cosmology TMG model

Parameter Best fit 68% & 95% limits Best fit 68% & 95% limits Best fit 68% & 95% limits Best fit 68% & 95% limits

100 �B,0h2 2.261 2.263+0.012+0.026
−0.013−0.025 2.260 2.265+0.012+0.026

−0.013−0.025 2.270 2.264+0.013+0.027
−0.013−0.027 2.272 2.268+0.014+0.027

−0.015−0.028

�DM,0h2 0.1163 0.1164+0.00078+0.0015
−0.00079−0.0015 0.1161 0.1162+0.00083+0.0016

−0.00080−0.0017 0.1161 0.1164+0.00092+0.0016
−0.00076−0.0017 0.1166 0.1160+0.00097+0.0016

−0.00077−0.0017

100 θs 1.042 1.042+0.00029+0.00055
−0.00026−0.00053 1.042 1.042+0.00030+0.00059

−0.00029−0.00056 1.042 1.042+0.00029+0.00059
−0.00029−0.00056 1.042 1.042+0.00026+0.00054

−0.00028−0.00052

ln(1010As) 3.034 3.024+0.010+0.023
−0.014−0.021 3.029 3.028+0.010+0.025

−0.015−0.023 3.020 3.028+0.012+0.025
−0.014−0.022 3.026 3.028+0.011+0.024

−0.014−0.025

ns 0.9712 0.9719+0.0036+0.0072
−0.0039−0.0074 0.9735 0.9723+0.0036+0.0071

−0.0035−0.0074 0.9706 0.9728+0.0038+0.0078
−0.0041−0.0077 0.9706 0.9720+0.0038+0.0074

−0.0040−0.0076

τreio 0.05358 0.04963+0.0041+0.010
−0.0074−0.0096 0.05220 0.05090+0.0052+0.012

−0.0075−0.011 0.04839 0.05074+0.0054+0.012
−0.0077−0.011 0.05102 0.05158+0.0059+0.011

−0.0072−0.012

wDE (wf ) – – −0.9731 −0.9733+0.031+0.054
−0.025−0.055 −0.9762 −0.9569+0.033+0.065

−0.032−0.066 −0.9677 −0.9944+0.041+0.089
−0.046−0.084

� (β) – – – – 0.0002247 0.0005340+0.00013+0.00092
−0.00053−0.00053 0.9999 0.9997+0.00047+0.00098

−0.00048−0.00090

zreio 7.502 7.084+0.50+1.0
−0.69−1.0 7.366 7.211+0.53+1.2

−0.76−1.2 6.951 7.196+0.55+1.1
−0.78−1.2 7.231 7.275+0.59+1.2

−0.72−1.2

�M,0 0.2871 0.2876+0.0043+0.0086
−0.0044−0.0086 0.2934 0.2941+0.0072+0.016

−0.0083−0.016 0.2897 0.2938+0.0078+0.017
−0.0084−0.017 0.2994 0.2945+0.0076+0.016

−0.0074−0.015

H0 [ km
s Mpc ] 69.56 69.54+0.37+0.73

−0.36−0.71 68.76 68.74+0.87+1.8
−0.87−1.8 69.23 68.82+0.94+1.9

−0.91−1.9 68.20 68.62+0.79+1.7
−0.89−1.8

σ8 0.8079 0.8044+0.0045+0.0096
−0.0051−0.0091 0.7980 0.7974+0.0093+0.018

−0.0090−0.017 0.7958 0.7978+0.0096+0.019
−0.0092−0.019 0.7927 0.7956+0.0097+0.019

−0.0092−0.019

(SZ) effect measured by Planck [88,89], the CFHTLenS like-
lihood with the weak lensing data [90,91], the Pantheon like-
lihood with the supernovae data [92], the BAO likelihood
with the baryon acoustic oscillations data [93,94], and the
BAORSD likelihood for BAO and redshift-space distortion
(RSD) measurements [95,96].

In order to constrain the cosmological model under
consideration, we use two different dataset combinations:
“Planck + Pantheon + BAO” [hereafter dataset (I)] and
“Planck + Planck-SZ + CFHTLenS + Pantheon + BAO +

BAORSD” [hereafter dataset (II)]. Tables 1 and 2 represent
the observational constraints from two different datasets (I)
and (II), respectively, where we have considered �CDM and
also wCDM as our base models.

Marginalized 1σ and 2σ confidence level contour plots
from datasets (I) and (II) for selected cosmological param-
eters of Barrow cosmology are also depicted in Fig. 5. Fur-
thermore, in order to compare Barrow cosmology with Tsal-
lis modified gravity (TMG), the results based on the TMG
model according to Ref. [76] are also displayed.
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Fig. 5 The one-dimensional posterior distribution and two-
dimensional posterior contours with 68% and 95% confidence
limits for the selected cosmological parameters of Barrow cosmology

from dataset (I) (blue) and dataset (II) (orange) (left panel), and also for
the TMG model from dataset (II) according to Ref. [76] (right panel)

Considering dataset (I), we can see an enhancement in the
Hubble constant in Barrow cosmology compared to the stan-
dard model, which indicates a slight amelioration in H0 ten-
sion. Moreover, dark energy has a phantom behaviour accord-
ing to the best-fit and mean value of wDE, which is influential
in alleviating the H0 tension. However, a quintessential char-
acter of dark energy is also allowed within the 1σ confidence
level, where −1.048 < wDE < −0.9735. Also, to be more
precise, we compare Barrow cosmology with the wCDM
model, which also represents a phantom behaviour of dark
energy. Then, there is a minor increase in the Hubble con-
stant of the wCDM model in comparison with �CDM, which
confirms that Barrow cosmology is in acceptable agreement
with wCDM. Furthermore, according to the obtained con-
straints on Barrow parameter � and dark energy equation of
state, one can conclude that Barrow cosmology is in a reason-
able consistency with the �CDM model. For the last point,
it should be emphasized that the best fit and mean value of
� are compatible with �CDM, and the minor increase in
the Hubble constant caused by the phantom nature of dark
energy would only slightly alleviate the H0 tension and not
solve it completely.

On the other hand, dataset (II) results show a suppression
in the growth of structure in Barrow cosmology with respect
to the �CDM model. Actually, one anticipates higher values
of σ8 in Barrow cosmology according to numerical results
described in Sect. 3. However, the quintessential behaviour

of dark energy can reduce the structure growth and conse-
quently provide more compatible results with local galaxy
surveys. Likewise, the wCDM model has a quintessential
character of a dark energy equation of state, which yields a
lower σ8 growth rate than the standard cosmological model.
Thus, MCMC analysis implies that Barrow cosmology is
in good agreement with wCDM. Additionally, observational
constraints on wDE and � confirm that the Barrow model is
also compatible with �CDM.

It should be noted that, considering datasets (I) and (II),
simultaneous alleviation of existing discrepancies between
local observations and CMB measurements is not possible
in Barrow cosmology due to the correlation between σ8 and
H0.

Moreover, it is worthwhile to compare Barrow cosmol-
ogy with the TMG model based on the numerical results
from dataset (II). Considering the fact that Barrow cosmol-
ogy and the TMG model are established on absolutely dif-
ferent physical principles, the growth of structure is slightly
reduced in both the Barrow and Tsallis scenarios, related to
the quintessential behaviour of dark energy, which is also
consistent with the wCDM model. The structure growth sup-
pression is more important in the TMG model than in Barrow
cosmology, according to the behaviour of β and �. Specifi-
cally, the derived best fit and mean value of � correspond to
higher values of σ8, in contrast to the quintessential character
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of dark energy which results in a decrease in the growth of
structure.

Also, the Akaike information criterion (AIC), defined as
[97,98]

AIC = −2 lnLmax + 2K , (44)

with Lmax the maximum likelihood function and K the
number of free parameters, is helpful for evaluating which
model is better supported by observational data. Consider-
ing �CDM and wCDM as reference models, we obtain the
following results

dataset(I) : AIC(�CDM) = 3817.12, AIC(wCDM) = 3818.08,

AIC(Barrow) = 3820.20,

→
{

AIC(Barrow) − AIC(�CDM) = 3.08,

AIC(Barrow) − AIC(wCDM) = 2.12,

dataset(II) : AIC(�CDM) = 3847.12 , AIC(wCDM) = 3849.38,

AIC(Barrow) = 3850.72,

→
{

AIC(Barrow) − AIC(�CDM) = 3.6,

AIC(Barrow) − AIC(wCDM) = 1.34.

Therefore, we can understand that the �CDM model is
better fitted to both datasets (I) and (II) compared to Barrow
cosmology; however, one cannot rule out the Barrow cos-
mology model. On the other hand, according to dataset (I),
wCDM is preferred to Barrow cosmology, while the Barrow
model is still valid. Moreover, dataset (II) indicates that the
Barrow model is supported by observational data as well as
wCDM.

5 Conclusions

It is argued by Barrow [56] that a black hole horizon might
have an intricate, fractal structure caused by quantum gravi-
tational corrections to the area law of entropy. In this respect,
the Barrow entropy relation (1) is associated with the black
hole horizon, with the new exponent � that measures the
deviation from standard cosmology. Furthermore, Einstein
field equations can be derived from the first law of thermo-
dynamics at the apparent horizon of the FLRW universe,
and vice versa, inspired by the remarkable analogy between
thermodynamics and gravity. In this direction, it is possible
to associate an entropy to the apparent horizon as the same
expression of black hole entropy, just by replacing the black
hole horizon radius by the apparent horizon radius. Accord-
ingly, we derived modified field equations in Barrow cos-
mology by applying Barrow entropy in a Clausius relation.
Then, by performing MCMC analysis, we put constraints on
the cosmological parameters, specifically the Barrow param-
eter � which quantifies deviations from �CDM, based on

two different combinations of datasets: “Planck + Pantheon
+ BAO” [dataset (I)] and “Planck + Planck-SZ + CFHTLenS
+ Pantheon + BAO + BAORSD” [dataset (II)].

Numerical results from dataset (I) indicate that the H0

tension can be slightly relieved in Barrow cosmology with a
phantom behaviour of dark energy compared to the �CDM
model; however, the tension is not solved completely. More-
over, wCDM describes a phantom dark energy equation
of state which is consistent with the Barrow cosmological
model.

On the other hand, numerical results based on dataset
(II) indicate that the quintessential nature of dark energy
can slightly alleviate the σ8 tension in Barrow cosmology
compared to the �CDM model, while there is a satisfactory
agreement between the Barrow model and wCDM.

In general, our MCMC investigation based on both
datasets shows compatibility between Barrow cosmology
and the reference models (�CDM and wCDM). Further, the
correlation between σ8 and H0 shows that a full reconcilia-
tion between local and global observations is not possible.

For the last point, it is interesting to compare the obtained
constraints on Barrow cosmology with the results based on
Tsallis cosmology reported in [76]. Considering both Barrow
and Tsallis scenarios, there is a slight alleviation in σ8 ten-
sion with a quintessential behaviour of dark energy accord-
ing to dataset (II), which is more significant in the TMG
model. Also, the quintessential character of dark energy in
Barrow and Tsallis cosmologies is in reasonable agreement
with the wCDM model. However, considering physical prin-
ciples and the motivation of correction, Barrow cosmology
and the TMG model describe two different corrections to the
area law of entropy.
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