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Abstract We perform canonical analysis of non-relativistic
string theory with non-relativistic world-sheet gravity. We
determine structure of constraints and symplectic structure
of canonical variables.

1 Introduction and summary

AdS/CFT correspondence is the most known example of
holographic duality [1]. This correspondence, in its strongest
form, claims that SU (N )N = 4 SYM theory in four dimen-
sions is equivalent to type IIB theory on AdS5 × S5 at any
values of N and ’tHooft coupling λ. On the other hand under-
standing this duality at the strongest form is still lacking and
hence we should restrict to some limits of this correspon-
dence.

Recently such an interesting limit was suggested in [2] and
it is known as Spin Matrix Theory (SMT) and describes near
BPS limit of AdS/CFT. It is quantum mechanical theory with
Hamiltonian given as sum of harmonic oscillator operators
that transform both in adjoin representation of SU (N ) and in
a particular spin subgroup Gs of the global superconformal
PSU (2, 2|4) symmetries of N = 4.

One can ask the question what is the dual description of
this quantum mechanical model. It was suggested [3] and fur-
ther studied in [4–6] that dual theory in the bulk corresponds
to non-relativistic string theory with non-relativistic world-
sheet known as SMT string. These special non-relativistic
theories should be considered in the broader context of non-
relativistic string theories that were studied recently in [3–
6] and also [7–21]. This development is related to the gen-
eralization of Newton–Cartan geometry [22] to the stringy
Newton–Cartan geometry [7] and torsional Newton–Cartan
geometry. Moreover, SMT string was derived in [3–5] by
specific non-relativistic limit on the world-sheet of non-
relativistic string in torsional NC background. Recently this
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SMT string was very intensively studied in [6] where partic-
ular class of backgrounds for SMT string, known as flat-
fluxed backgrounds, was analysed. In these backgrounds
SMT string reduces to a free theory. These world-sheet the-
ories are analogues of the Polyakov action on Minkowski
target space-time.

The next step would be to analyse properties of SMT string
in general background. In order to do this we should cer-
tainly study classical dynamics as for example its Hamilto-
nian form. The aim of this paper is to find such a formulation
in the most general case.

Let us be more explicit. We start with the action for SMT
string that was found in [5] and perform canonical analysis
of this theory. As opposite to Polyakov form of the rela-
tivistic string now the action is formulated using vierbein
e a
α where α = 0, 1 correspond to world-sheet coordinates

while a = 0, 1 correspond to tangent space coordinates.
Note that e a

α is invertible matrix with inverse θα
a . Now it

is crucial that the quadratic term with ∂αxμ∂βxνhμν is mul-

tiplied with θα
1θ

β
1 as opposite to the relativistic case when

this term has the form θα
aθ

β
bη

ab. Then it is necessary to dis-
tinguish two cases. In the first case we presume that θ0

1 �= 0.
Then the relation between momenta and time derivative of
xμ is invertible. As a result we obtain Hamiltonian together
with set of the primary constraints that follow from the struc-
ture of the theory. Careful analysis of the preservation of
the primary constraints gives two secondary constraints that
are first class constraints that reflect the fact that the the-
ory is invariant under world-sheet diffeomorphism. We also
identify four additional second class constraints and Pois-
son brackets between them. Finally we determine symplec-
tic structure for canonical variables which is given in terms
of the Dirac brackets. We identify that in this case the Dirac
brackets coincide with Poisson brackets.

The situation is different when θ0
1 = 0. In this case it is

not possible to express time derivative of xμ using canon-
ical variables. Instead we get new d-constraints where d-is
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number of dimensions labelled with xμ. Then the canonical
analysis is slightly more complicated than in previous case.
However we again find two first class constraints that reflect
invariance of the action under reparameterization. We fur-
ther identify second class constraints and Poisson brackets
between them. The presence of these constraints then imply
non-trivial symplectic structure between canonical variables
xμ which confirms analysis presented in [6].

Let us outline our results and suggest further directions of
research. We found Hamiltonian formulation of SMT string
and we identified structure of constraints. We discussed two
cases when in the first one we were able to invert relation
between time derivative of xμ and canonical momenta. In
fact, this is the most general situation where all compo-
nents of θα

1 are non-zero. On the other hand the second case
when θ0

1 = 0 deserves separate treatment. This fact suggests
that the spatial gauge as was used in [6] cannot be reached
from the general Hamiltonian. It is instructive to compare
this situation with the standard relativistic Lagrangian where
the relation between momenta and ∂xμ contains expres-
sion θ0

aη
α
bη

ab∂αxμ that can be certainly inverted even if we
impose condition θ0

1 = 0. On the other hand when we stud-
ied the situation when θ0

1 = 0 separately we found theory
with non-trivial symplectic structure as in [6].

Certainly this work can be extended in many directions. It
would be nice to study the most general form of the string with
the non-relativistic world-sheet and study its consistency
from canonical point of view. It would be also extremely
interesting to study supersymmetric generalization of this
two dimensional theory. However the most important issue
is to study relation between string theory with non-relativistic
world sheet and spin matrix models. In other words we should
apply these general calculations to the concrete background
as was found in [6]. Then we could analyse spectrum of
SMT string. This is the place where the canonical form of
the SMT string derived in this paper could be useful, for
example, when we try to fix two first class constraints that
were identified in this paper by specific gauge fixing known
as uniform light cone gauge [24–26], for review see [23].
Then we could study solutions of the equations of motion
of gauge fixed SMT string and compare it with the spe-
cific configurations of spin matrix models. Another possi-
bility would be to study SMT string with the help of BRST
formalism as for example in [27] and then quantum consis-
tency of this theory. We hope to return to these problems in
future.

This paper is organized as follows. In the next Sect. 2
we review basic properties of non-relativistic string and we
perform canonical analysis it the most general case. We also
determine symplectic structure of given theory. In Sect. 3

we separately discuss the case θ0
1 = 0 and we determine

corresponding Hamiltonian and symplectic structure.

2 Hamiltonian analysis of SMT string

We begin with the Polyakov form of the action for SMT string
that was introduced in [5] and that has the form

S = −T

2

∫
d2σ(2εαβmα∂βη + eθα

1θ
β
1hαβ + ωεαβe 0

α τβ

+ψεαβ(e 0
α ∂βη + e 1

α τβ)). (1)

Let us explain meaning of various symbols that appear in
(1). The world-sheet is labelled by σ 0, σ 1 ≡ σ and T is
string tension. Further, mμ, hμν and τμ are target space-time
Newton-Cartan fields that obey conditions

τμh
μν = 0 , vμhμν = 0 , τμvμ = −1 ,

hμνh
νρ − τμvρ = δρ

μ. (2)

The world-sheet metric is defined with the help of zwiebein
e a
α , a = 0, 1 with inverse θα

a that obey

e a
α θα

b = δab , e a
α θβ

a = δβ
α . (3)

As was argued in [5] the world-sheet theory is non-relativistic
since e a

α play different role in the action. This can be already
seen from (1) since zweibein inverse θα

a does not appear

in Lorentz invariant way θα
aθ

β
bη

ab but instead there is an

expression θα
1θ

β
1. This fact has an important consequence

for the structure of this theory. Note also that

e = det e a
α (4)

and

mα = mμ∂αx
μ , hαβ = hμν∂αx

μ∂βx
ν, τα = τμ∂αx

μ,

(5)

where xμ label embedding of the string into target space-
time. Finally η is scalar field defined on world-sheet that cor-
responds to the embedding of the string into periodic target
space direction.

We should stress that the theory is manifestly invariant
under world-sheet diffeomorphism σ ′α = f α(σ ) where
world-volume fields transform as

x ′μ(σ ′) = xμ(σ ), η′(σ ′) = η(σ ) , e
′ b
β (σ ′) = ebα(σ )

∂σα

∂σ ′β .

(6)

Our goal is to find Hamiltonian formulation of this theory
in order to investigate possible non-relativistic nature of it.
First of all we start with the definition of conjugate momenta.
From (1) we obtain
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πα
b = ∂L

∂(∂0e a
α )

≈ 0 , pψ = ∂L
∂(∂0ψ)

≈ 0

πω = ∂L
∂(∂0ω)

≈ 0,

pη = ∂L
∂(∂0η)

= Tm1 + T

2
ψe 0

1 ,

pμ = ∂L
∂(∂0xμ)

= −Tmμ∂1η − T eθ0
1θ

β
1hμν∂βx

ν

+T

2
ωe 0

1 τμ + T

2
ψe 1

1 τμ. (7)

It is clear that definition of pη implies following primary
constraint

�1 ≡ pη − Tm1 − T

2
ψe 0

1 ≈ 0.

(8)

In this section we will presume that θ0
1 is non-zero and hence

we can express time derivative of xμ as function of pμ. On
the other hand there is another primary constraint that follows
from the definition of pμ given in (7)

�2 ≡ vμ pμ + T vμmμ∂1η + T

2
ωe 0

1 + T

2
ψe 1

1 ≈ 0 (9)

using vμhμν = 0, vμτμ = −1.
Returning to (7) we obtain bare Hamiltonian density in

the form

HB = pμ∂0x
μ + pη∂0η − L

= − 1

2T eθ0
1θ

0
1

[pμh
μν pν + 2T pμh

μνmν∂1η

+T 2∂1ηmμh
μνmν∂1η]

−θ0
1θ

1
1

θ0
1θ

0
1

(pμ∂1x
μ + pμvμτ1 + ∂1ηm1 + ∂1ηmμvμτ1)

+T

2
ωe 0

0 τ1 + T

2
ψ(e 1

0 τ1 + e 0
0 ∂1η). (10)

As is well known from the theory of systems with constraints
the time evolution is governed by extended Hamiltonian that
incorporates bare Hamiltonian together with set of all pri-
mary constraints. Explicitly we have

HE =HB+�1�1 + �2�2 + � a
α πα

a + �ψ pψ + �ω pω,

(11)

where �1,�2,� a
α ,�ψ and �ω are Lagrange multipliers.

Now we should analyse condition of the preservation of
all primary constraints πα

a ≈ 0, pω ≈ 0 , pψ ≈ 0, �1 ≈
0 , �2 ≈ 0. To do this we need following canonical Poisson
brackets

{
e a
α (σ ), π

β
b(σ

′)
}

= δβ
α δabδ(σ − σ ′) ,{

ψ(σ), pψ(σ ′)
} = δ(σ − σ ′) ,{

ω(σ), pω(σ ′)
} = δ(σ − σ ′) . (12)

First of all we have that �1,2 are second class constraints
together with pψ, pω as follows from Poisson brackets

{
pψ(σ),�1(σ

′)
} = T

2
e 0

1 (σ )δ(σ − σ ′) ,

{
π1

0(σ ),�1(σ
′)
}

= T

2
ψ(σ)δ(σ − σ ′) ,

{
pψ(σ),�2(σ

′)
} = −T

2
e 1

1 (σ )δ(σ − σ ′) ,

{
pω(σ ),�2(σ

′)
} = −T

2
e 0

1 (σ )δ(σ − σ ′) ,

{
π1

0(σ ),�2(σ
′)
}

= −T

2
ω(σ)δ(σ − σ ′) ,

{
π1

1(σ ),�2(σ
′)
}

= −T

2
ψ(σ)δ(σ − σ ′) .

{
�1(σ ),�2(σ

′)
} = −T vμ∂μmν∂σ x

ν(σ )δ(σ − σ ′)
−T vμmμ(σ ′)∂σ ′δ(σ − σ ′)
−Tmμ(σ )∂σ δ(σ − σ)vμ(σ ′)

= T vμ(∂νmμ

−∂μmν)∂σ x
νδ(σ − σ ′) ,

{�2(σ ),�2(σ )} = {
�1(σ ),�1(σ

′)
} = 0 (13)

using the fact that

f (σ ′)∂σ δ(σ − σ ′) = f (σ )∂σ δ(σ − σ) + ∂σ f (σ )δ(σ − σ ′) .

(14)

We see that there is non-zero Poisson bracket between
π1

0, π
1
1 and �1,2 which makes analysis slightly complicated.

In order to resolve this issue let us introduce π̃1
0 as a specific

linear combinations of primary constraints that has vanishing
Poisson brackets with �1, �2. Explicitly, we have

π̃1
0 = π1

0 − 1

e 0
1

ψpψ − 1

e 0
1

ωpω + π1
1
e 1

1

e 0
1

(15)

that obeys

{
π̃1

0, �1

}
= 0 ,

{
π̃1

0, �2

}
= 0. (16)

In the same way we introduce π̃1
1 defined as

π̃1
1 = π1

1 − 1

e 0
1

ψpω (17)

that clearly obeys

{
π̃1

1, �1

}
= 0 ,

{
π̃1

1, �2

}
= 0. (18)
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In the same way we have
{
π̃1

0, pψ

}
≈ 0,

{
π̃1

0, pω

}
≈ 0 ,{

π̃1
1, pψ

}
≈ 0,

{
π̃1

1, pω

}
≈ 0 ,{

π̃1
0, π

α
a

}
≈ 0,

{
π̃1

1, π
α
a

}
≈ 0 . (19)

Note that π0
1 ≈ 0 , π0

0 are unchanged. Then clearly π̃1
1 ≈

0, π̃1
0 ≈ 0 and π0

0 ≈ 0, π0
1 ≈ 0 are first class constraints.

Now we are ready to study preservation of the primary
constraints. In case of pω ≈ 0 we get

∂0 pω = {pω, HE } = −T

2
e 0

0 τ1 − �2 T

2
e 0

1 = 0 , (20)

where HE = ∫
dσHE . Note that (20) can be solved for �2

as

�2 = −τ1
e 0

0

e 0
1

. (21)

Further, condition of the preservation of the constraint pψ ≈
0 implies

∂0 pψ = {
pψ, HE

} = −T

2
(e 1

0 τ1 + e 0
0 ∂1η) + �1 T

2
e 0

1

−�2 T

2
e 1

1 = 0 (22)

that can be solved for �1 as

�1 = − e

e 0
1

τ1 + e 0
0 ∂1η. (23)

Let us finally analyse conditions of preservation of con-
straints �1 ≈ 0 and �2 ≈ 0. In case of �1 ≈ 0 we obtain

∂0�1(σ ) = {�1(σ ), HE } =
∫

dσ ′(
{
�1(σ ),HB(σ ′)

}

+�ψ

{
�1(σ ), pψ(σ ′)

}
+�2 {

�1(σ ),�2(σ
′)
}
) = 0 (24)

which is equation for �ψ . In the same way requirement of
the preservation of the constraint �2(σ ) ≈ 0 implies

∂0�2(σ ) = {�2(σ ), HE } =
∫

dσ ′(
{
�2(σ ),HB(σ ′)

}

+�ψ

{
�2(σ ), pψ(σ ′)

}
+�ω

{
�2(σ ), pω(σ ′)

}
+�2 {

�2(σ ),�1(σ
′)
}
) = 0 (25)

that, using the fact that we know �1 and �ψ allows us to
solve for �ω. These results are consequence of the fact that
�1, �2 and pω, pσ are second class constraints.

As the final step we study the question of preservation of
the constraints

π̃1
0 ≈ 0 , π̃1

1 ≈ 0 , π0
1 ≈ 0 , π0

0 ≈ 0. (26)

First of all we use the fact that θα
a has following components

θα
a =

(
θ0

0 θ0
1

θ1
0 θ1

1

)
= 1

e

(
e 1

1 −e 0
1

−e 1
0 e 0

0

)
(27)

so that HB is equal to

HB = − e

2T e 0
1 e 0

1

[pμh
μν pν + 2T pμh

μνmν∂1η

+T 2∂1ηmμh
μνmν∂1η] +

+e 0
0

e 0
1

(pμ∂1x
μ + pμvμτ1 + T ∂1ηm1

+T ∂1ηmμvμτ1) +
+T

2
ωe 0

0 τ1 + T

2
ψ(e 1

0 τ1 + e 0
0 ∂1η) .0 (28)

To proceed further we use the fact that

{
πα

a(σ ), e(σ ′)
} =

{
πα

a(σ ), det e b
β (σ ′)

}

= −θα
ae(σ )δ(σ − σ ′) . (29)

Then we start with the requirement of the preservation of
constraint π0

0 and we obtain

∂0π
0
0 =

{
π0

0, HE

}
= e 1

1

2T e 0
1 e 0

1

[pμh
μν pν

+2T pμh
μνmν∂1η + T 2∂1ηmμh

μνmν∂1η]
− 1

e 0
1

(pμ∂1x
μ + pμvμτ1 + T ∂1ηm1

+T ∂1ηmμvμτ1) − T

2
ωτ1 − T

2
ψ∂1η

= e 1
1

2T e 0
1 e 0

1

[pμh
μν pν + 2T pμh

μνmν∂1η

+2T pητ1 − 2T 2m1τ1

+T 2∂1ηmμh
μνmν∂1η]

− 1

e 0
1

(pμ∂1x
μ + pη∂1η)

+�1

(
− 1

e 0
1

+ e 1
1

e 0
1 e 0

1

)
+ 1

e 0
1

�2 (30)

using the fact that

ψ = 2

T e 0
1

(−�1 + pη − Tm1) ,

ω = 2

T e 0
1

(
�2 + �1

e 1
1

e 0
1

− vμ pμ − T vμmμ∂1η

−e 1
1

e 0
1

pη + e 1
1

e 0
1

Tm1

)
(31)

as follows from the definition of the primary constraints
�1, �2.
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In the same way we can proceed with the time evolution
of constraint π0

1 and we get

∂0π
0
1 =

{
π0

1, HE

}

= − 1

2T e 0
1

[pμh
μν pν + 2T pμh

μνmν∂1η

+2T pητ1 − 2T 2m1τ1 + T 2∂1ηmμh
μνmν∂1η]

+ 1

e 0
1

�1 . (32)

In case of π̃1
1 ≈ 0 we obtain

∂0π̃
1
1 =

{
π̃1

1, HE

}

= e 0
0

2T e 0
1 e 0

1

[pμh
μν pν + 2T pμh

μνmν∂1η

+2T pητ1 − 2T 2m1τ1

+T 2∂1ηmμh
μνmν∂1η] − e 0

0

e 0
1 e 0

1

�1 . (33)

In the same way we can proceed with π̃1
0 and we obtain that

all constraints (26) are preserved when we introduce two
secondary constraints

H1 = pμh
μν pν + 2T pμh

μνmν∂1η + 2T pητ1 − 2T 2m1τ1

+T 2∂1ηmμh
μνmν∂1η ≈ 0 ,

H2 = pη∂1η + pμ∂1x
μ ≈ 0 . (34)

Note also that using these secondary constraints the Hamil-
tonian density HB can be written as

HB = − e

2T e 0
1 e 0

1

H1 + e 0
0

e 0
1

H2 + +e 0
0

e 0
1

τ1

(
�2 + e 1

1

e 0
1

�1

)

−�1

e 0
1

(e 1
0 τ1 + e 0

0 ∂1η) . (35)

We see that Hamiltonian is linear combinations of con-
straints. As the last step we should analyse Poisson brackets
between constraints H1 and H2. Since they contain spatial
derivatives of xμ it is convenient to introduce their smeared
form multiplied by arbitrary functions N 1, M1 and N 2, M2.
Explicitly, we have

T1,2(N 1,2) ≡
∫

dσN 1,2H1,2 , T1,2(M1,2)

=
∫

dσM1,2H1,2 . (36)

Then using standard Poisson brackets we obtain{
T1(N 1),T1(M1)

}
= 0 ,{

T2(N
2),T2(M

2)
}

= T2(N
2∂1M

2 − M2∂1N
2) . (37)

Finally we determine Poisson bracket between generator of
spatial diffeomorphism T2(N 2) and H1 and we obtain{
T2(N 2),H1(σ )

}
= −2∂1N

2H1 − N 2∂1H1 ≈ 0 (38)

which shows that H1 is tensor density. These results show
that H1 ≈ 0 ,H2 ≈ 0 are correct form of diffeomorphism
constraints which is consequence of the fact that action for
SMT string is still diffeomorphism invariant.

Finally we should analyse conditions of the preservation
of constraints H1 ≈ 0,H2 ≈ 0. We see that generally
Poisson brackets between H1,2 and �1, �2 do not vanish.
Instead we know that �1, �2 have non-zero Poisson brack-
ets between pψ,ψω so that they can be interpreted as second
class constraints. Let us denote these second class constraints
as � A = (pω,�1, pψ,�2) with following structure of Pois-
son brackets{

� A(σ ),�B(σ ′)
}

= �AB(σ, σ ′), (39)

where

�AB =

⎛
⎜⎜⎝

0 1
2e

0
1 0 − 1

2e
1

1
− 1

2e
0

1 0 0 vμ(∂μmν − ∂μmν)∂1xν

0 0 0 − 1
2e

0
1

1
2e

1
1 −vμ(∂μmν − ∂μmν)∂1xν 1

2e
0

1 0

⎞
⎟⎟⎠ T δ(σ − σ ′) (40)

with inverse matrix

�AB = 2

T

⎛
⎜⎜⎜⎜⎜⎜⎝

0 − 1
e 0

1
−2 vμ(∂μmν−∂μmν )∂1xν

e 0
1 e 0

1
0

1
e 0

1
0 − e 1

1
e 0

1 e 0
1

0

2 vμ(∂μmν−∂μmν )∂1xν

e 0
1 e 0

1

e 1
1

e 0
1 e 0

1
0 1

e 0
1

0 0 − 1
e 0

1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

δ(σ − σ ′) . (41)
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Let us then introduce modified constraints H̃i , i = 1, 2 as

H̃i = Hi − � A�AB

{
�B,Hi

}
, (42)

where summation over A includes also integration over σ

implicitly. Using the fact that
{Hi ,H j

} ≈ 0 we easily get
that{
H̃i , H̃ j

}
≈ 0 . (43)

Then we have{
H̃i , �

A
}
=

{
H̃i , �

A
}
+

{
� A, �C

}
�CB

{
�B,Hi

}
≈ 0

(44)

and hence H̃i have vanishing Poisson brackets with all con-
straints. On the other hand since � A are second class con-
straints that vanish strongly in the end of the procedure we
find that H̃i coincide with Hi . Of course, this can be done on
condition that we replace ordinary Poisson brackets by Dirac
brackets whose structure will be studied in the next section.

2.1 Symplectic structure

We saw above that � A are second class constraints with the
matrix of Poisson brackets given in (40) and its inverse given
in (41). In order to determine Dirac brackets between canon-
ical variables we firstly calculate Poisson brackets between
canonical variables and second class constraints � A

{
xμ(σ ),� A(σ ′)

}
= (0, 0, 0, vμ)δ(σ − σ ′) ,{

pμ(σ ),�A(σ ′)
} = (0, T ∂μmν∂1x

νδ(σ − σ ′)
+Tmμ(σ ′)∂σ ′δ(σ − σ ′),

0,−∂μvν pνδ(σ − σ ′) − T ∂μ(vνmν)∂1ηδ(σ − σ ′)) ,{
η(σ ),� A(σ ′)

}
= (0, 0, 0,−T vμmμ(σ ′)∂σ ′δ(σ − σ ′)) ,{

pη(σ ),� A(σ )
}

= (0, δ(σ − σ ′), 0, 0) . (45)

Then we find following form of Dirac brackets between
canonical variables{

η(σ ), pη(σ
′)
}
D = {

η(σ ), pη(σ
′)
}

−
∫

dσ1dσ2

{
η(σ ),� A(σ1)

}
�AB(σ1, σ2)

{
�B(σ2), pη(σ

′)
}

= δ(σ − σ ′) ,

{
η(σ ), η(σ ′)

}
D = −

∫
dσ1dσ2

{
η(σ ),� A(σ1)

}
�AB

(σ1, σ2)
{
�B(σ2), η(σ ′)

}
= 0 ,

{
pη(σ ), pη(σ

′)
}
D = −

∫
dσ1dσ2

{
pη(σ ),� A(σ1)

}
�AB

(σ1, σ2)
{
�B(σ2), pη(σ

′)
}

= 0{
xμ(σ ), pν(σ

′)
}
D = {

xμ(σ ), pν(σ
′)
}

−
∫

dσ1dσ2

{
xμ(σ ),� A(σ1)

}
�AB

(σ1, σ2)
{
�B(σ2), pν(σ

′)
}

= δμ
ν δ(σ − σ ′),

{
xμ(σ ), xν(σ ′)

}
D = −

∫
dσ1dσ2

{
xμ(σ ),� A(σ1)

}
�AB

(σ1, σ2)
{
�B(σ2), x

ν(σ ′)
}

0 ,

{
pμ(σ ), pν(σ

′)
}
D = −

∫
dσ1dσ2

{
pμ(σ ),� A(σ1)

}
�AB

(σ1, σ2)
{
�B(σ2), pν(σ

′)
}

= 0 . (46)

Finally we determine mixed Dirac brackets

{
xμ(σ ), η(σ ′)

}
D = −

∫
dσ1dσ2

{
xμ(σ ),� A(σ1)

}

�AB(σ1, σ2)
{
�B(σ2), η(σ ′)

}
= 0 ,

{
xμ(σ ), pη(σ

′)
}
D = −

∫
dσ1dσ2

{
xμ(σ ),� A(σ1)

}

�AB(σ1, σ2)
{
�B(σ2), pη(σ

′)
}

= 0 ,

{
pμ(σ ), η(σ ′)

}
D = −

∫
dσ1dσ2

{
pμ(σ ),� A(σ1)

}

�AB(σ1, σ2)
{
�B(σ2), η(σ ′)

}
= 0 ,

{
pμ(σ ), pη(σ

′)
}
D = −

∫
dσ1dσ2

{
pμ(σ ),� A(σ1)

}

�AB(σ1, σ2)
{
�B(σ2), pη(σ

′)
}

= 0 .

(47)

These results show that Dirac brackets between pμ, xμ, pη, η

have the same form as Poisson brackets. In the next section
we consider situation when θ0

1 = 0.

3 Singular case

Canonical analysis performed in previous section was valid
on condition that θ0

1 �= 0 or equivalently e 0
1 �= 0. However

spatial gauge that was imposed in [5,6] is valid on condition
when e 0

1 = 0. In other words this gauge fixing cannot be
reached in previous analysis and deserves separate treatment.
We call this case as singular since, as we will see below, it will
not be possible to express time derivative of xμ as function
of canonical variables.
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To see this explicitly we start with the action (1) from
which we determine following conjugate momenta

πα
b = ∂L

∂∂0e a
α

≈ 0 , pψ ≈ 0 , , πω ≈ 0 , pη = Tm1 ,

pμ = ∂L
∂∂0xμ

= −Tmμ∂1η + T

2
ψe 1

1 τμ

(48)

that implies an existence of primary constraints

�1 ≡ pη − Tm1, �2
μ ≡ pμ + Tmμ∂1η − T

2
ψe 1

1 τμ ≈ 0 .

(49)

For further purposes we introduce following linear combina-
tion of constraints that we denote as H2:

H2 ≡ ∂1x
μ�2

μ+�1∂1η=pμ∂1x
μ + pη∂1η−T

2
ψe 1

1 τ1 ≈ 0

(50)

that will be useful below.
As the next step we determine bare Hamiltonian density

in the form

HB = pμ∂0x
μ + pη∂0η − L = T

2
eθ1

1θ
1
1h11

+T

2
ωe 0

0 τ1 + T

2
ψ(e 0

0 ∂1η + e 1
0 τ1) . (51)

Let us now proceed to the analysis of preservation of primary
constraints. We introduce extended Hamiltonian as

HE =
∫

dσ
(
HB + �1�1 + �

μ
2 �2

μ + vψ pψ

+vω pω + � a
α πα

a

)
. (52)

We observe that we can always write �1 = �̃1∂1η so that
when we use (50) we can express ∂1η�1 with the help of H2

and hence extended Hamiltonian density HE can be written
in the form

HE = T
e 0

0 e 0
0

2e
h11 + T

2
ωe 0

0 τ1 + T

2
ψ(e 0

0 ∂1η + e 1
0 τ1)

+vψ pψ + vω pω + �̃1H2 + �̃
μ
2 �2

μ + � a
α πα

a , (53)

where we introduced �̃
μ
2 as �̃

μ
2 = �

μ
2 − �̃∂1xμ. Then in

what follows we will omit tilde on �′s.
Now we are ready to analyse requirement of the preserva-

tion of all constraints. In case of pω we get

∂0 pω = {pω, HE } = −T

2
e 0

0 τ1 ≡ −T

2
e 0

0 � I I
ω ≈ 0 , (54)

where � I I
ω = τ1 ≈ 0 is new secondary constraint. Gen-

erally this constraint would imply ∂1xμ = 0 however this
is very strong condition. We should rather presume that the
background has non-zero component τ0 only so that this con-
straint is equal to � I I

ω ≡ ∂1x0 ≈ 0. As a consequence H2 is

standard spatial diffeomorphism constraint which is the first
class constraint.

Now using the fact that τ0 �= 0 , τi = 0 we have

�2
0 = p0 + Tm0∂1η − T

2
ψe 1

1 τ0, �2
i = pi + Tmi∂1η.

(55)

For further purposes we calculate Poisson brackets between
primary constraints
{
pψ(σ),�2

0(σ ′)
}

= T

2
e1

1τ0δ(σ − σ ′) ,

{
�2
i (σ ),�2

j (σ
′)
}

= −T (∂im j − ∂ jmi )∂1ηδ(σ − σ ′)

≡ −Fi jδ(σ − σ ′) . (56)

If we calculate Poisson bracket between �2
0 and �2

i we find
that it is non-zero and we denote its value to be equal to −Fi0.
Explicitly we have{

�2
i (σ ),�2

0(σ ′)
}

= −Fi0δ(σ − σ ′) . (57)

Let us now study the requirement of the preservation of con-
straint pψ

∂0 pψ = {
pψ, HE

} = −T

2
e 0

0 ∂1η + �0
2
T

2
e 1

1 τ0 = 0 (58)

that has solution

�0
2 = e 0

0

τ0e 1
1

∂1η . (59)

In other words, �2
0 ≈ 0, pψ ≈ 0 are second class constraints

that can be explicitly solved for pψ and ψ . We return to this
problem below. Instead we focus on the time evolution of
constraint �2

0 ≈ 0 that has the form

∂0�
2
0 =

{
�2

0 , HE

}
=

∫
dσ

({
�2

0 ,HE

}

−T

2
e 1

1 τ0δ(σ − σ ′)vψ + F0i�
i
2

)
= 0 (60)

which can be solved for vψ . Finally, the requirement of the
preservation of constraints �2

i ≈ 0 has the form

∂0�
2
i =

{
�2
i , HE

}
=

∫
dσ ′(

{
�2
i ,HB(σ ′)

}

−Fi0δ(σ − σ ′)�2
0

+Fi jδ(σ − σ ′)� j
2) = 0 . (61)

SinceFi j is non-singular by definition we can solve the equa-
tion above for �2

i .
Let us analyse requirement of the preservation of con-

straints πα
a . Following analysis presented in section (2) we

replace π1
1 with π̃1

1 defined as

π̃1
1 = π1

1 − ψ

e 1
1

pψ (62)
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that has vanishing Poisson bracket with �2
0 ≈ 0. Further,

requirement of the preservation of π0
0 has the form

∂0π
0
0 = {

π0
0, HE

} = − 1

e 1
1

[
T

2
h11 + 1

τ0
(p0 − Tm0∂1η)∂1η

]

+ 1

e 1
1 τ0

�2
0 ≈ 0 (63)

using the fact that

T

2
ψ = 1

e 1
1 τ0

(p0 − Tm0∂1η − �2
0) (64)

and also that e is equal to e = det e a
α = e 0

0 e 1
1 . We see

that in order to obey Eq. (63) we should introduce secondary
constraint H1 defined as

H1 = T

2
h11 + 1

τ0
(p0 − Tm0∂1η)∂1η ≈ 0 . (65)

On the other hand requirement of the preservation of the
constraint π̃1

1 ≈ 0 gives

∂0π̃
1
1 =

{
π̃1

1, HE

}
= e 0

0

(e 1
1 )2

H1 − 1

τ0(e 1
1 )2

�2
0 ≈ 0 . (66)

Clearly
{H1(σ ),H1(σ

′)
} = 0 ,

{H1(σ ),H2(σ
′)
} ≈ 0 ,{H2(σ ),H2(σ

′)
} ≈ 0 (67)

and hence they are the first class constraints reflecting invari-
ance of the world-sheet theory under reparameterization.

3.1 Symplectic structure

In this section we study symplectic structure of the theory
studied in previous section. For simplicity of our analysis we
will consider partial fixed theory with fixed spatial diffeomor-
phism constraint H2 ≈ 0. This can be done by introducing
gauge fixing function

G : η − σ ≈ 0 (68)

Since
{G(σ ),H2(σ

′)
} = δ(σ − σ ′), H2 and G are sec-

ond class constraints that strongly vanish. From H2 = 0
we express pη as

pη = −pμ∂1x
μ . (69)

Further, as we argued in previous section, we have second
class constraints � A = (pψ,�2

0 , �2
i ) with following matrix

of Poisson brackets

{
� A(σ ),�B(σ ′)

}
=

⎛
⎝ 0 T

2 e
1

1 τ0 0
− T

2 e
1

1 τ0 0 F0 j

0 −Fi0 −Fi j

⎞
⎠ δ(σ − σ ′) .

(70)

For simplicity we will presume thatF0 j = 0. Then the matrix
inverse to �AB is equal to

�AB =
⎛
⎜⎝

0 − 2
T e 1

1 τ0
0

2
T e 1

1 τ0
0 0

0 0 −F i j

⎞
⎟⎠ , (71)

where F i j is matrix inverse to Fi j . Further, we have Poisson
brackets{
xi (σ ),� A(σ ′)

}
= (0, 0, δij )δ(σ − σ ′) (72)

and hence{
xi (σ ), x j (σ ′)

}
D

= −
∫

dσ1dσ2

{
xi (σ ),� A(σ1)

}
�AB(σ1, σ2)

{
�B(σ2), x

j (σ ′)
}

= −F i jδ(σ − σ ′). (73)

We see that there is non-trivial symplectic structure which is
in agreement with the observation presented in [6]. Then the
equation of motion for xi have the form

∂0x
i =

{
xi , H

}
D

= F ik∂1[λhkl∂1x
l ]

−λF ik∂khmn∂1x
m∂1x

n , (74)

where we used the fact that the Hamiltonian is equal to

H = λH1, H1 = T

2
hi j∂1x

i∂1x
j + 1

τ0
(p0 − Tm0) , (75)

where λ is Lagrange multiplier and where m0 and τ0 do not
depend on xi .

To conclude, we derived symplectic structure for SMT
string in the gauge when e 0

1 = 0 and we showed that it is
non-trivial and depend on the field mμ.
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