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Abstract The role of the gravitomagnetic field in the rota-
tion of galaxies is clarified. Larmor’s theorem simplifies the
analysis of different galactic equilibrium solutions. In par-
ticular, the self-consistent solution, which takes into account
both the equivalent Larmor gravitomagnetic field and fluid
convection, recovers previous results that reproduce galactic
rotation curves without recourse to dark matter.

1 Introduction

Joseph Larmor proposed dynamical models for the electrons
based on the canonical formulation of classical mechanics
[1,2]. He was the first to establish the connection between
the motion of electrons in a magnetic field and the angular
velocity of rotating bodies in the form of Larmor’s theorem
[3,4]. This connection can be extended to the gravitoelec-
tromagnetic formulation of gravity [5]. In the gravitoelec-
tromagnetic context Larmor’s theorem relates the Lorentz
force in a stationary frame with the Coriolis acceleration in a
rotating frame (cf. Appendix A). An equivalent Larmor grav-
itomagnetic field can be associated with the angular velocity,
so that the transformation from an inertial to a non-inertial
rotating frame corresponds to a transformation of the grav-
itomagnetic field. The laws of physics do not depend on the
reference frame – the change to a rotation frame is just a
convenient transformation that may or not simplify the cal-
culations.

Concerning the rotation of galaxies, a recent paper demon-
strated that the observed velocity curves of characteristic
galaxies can be reasonably reproduced using a self-consistent
equilibrium solution, within the gravitoelectromagnetic con-
text and without introducing dark matter [6]. Earlier efforts
on this problem used the general gravity approach, adding
considerable physical insight on the subject [7–9]. The prob-
lem with the general gravity approach is the limited number
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of known exact solutions of Einstein’s equation and the dif-
ficulty in developing self-consistent equilibria. The gravito-
electromagnetic formulation alleviates these issues.

The objective of the present paper is to clarify the role
of the gravitomagnetic field and illustrate some advan-
tages of using a fluid (Eulerian) model instead of a parti-
cle (Lagrangian) approach. Of course, both formulations are
equivalent [10]. Two solutions of the fluid-like galactic equi-
librium are presented, based on different simplifying assump-
tions. The driven galactic equilibrium, derived in Sect. 2,
focuses on a pure rotation model, completely neglecting the
local mass currents in the non-inertial frame. In this case,
the dust flow is described by a simple hydrostatic balance
condition controlled by the mean Larmor gravitomagnetic
field, which is equivalent to a pure rotation. This equilib-
rium solution corresponds to the classical circular rotation
model, but is not self-consistent. It needs an external source
and weak dissipative processes to be maintained, and can
be clearly ruled out. On the other hand, the self-consistent
galactic equilibrium, derived in Sect. 3, is maintained by the
internal currents in a perfect fluid, as previously shown [6].
This solution is obtained if both the gravitomagnetic Lorentz
acceleration and the convective terms are taken into account.
In this second case the Lorentz acceleration is formed by the
contributions of the pure rotation Larmor field and the local
mass currents. Although the physical results do not depend
on the reference frame, it is simpler in this case to remain
in a local inertial frame, where the gravitomagnetic field in
the Lorentz acceleration term includes all the mass current
effects in this frame, namely, the sum of the pure rotation
mean fluid velocity and the deviations from the mean.

A brief derivation of Larmor’s theorem is presented, in a
form appropriate for the fluid approach, in the Appendix A.
This derivation shows how the gravitomagnetic field con-
tributions change for a transformation from a local iner-
tial frame to a rotating frame. The transformation to a non-
inertial frame explicitly shows the contributions of the fic-
titious centrifugal and Coriolis accelerations, which are, of
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course, included in the full Lorentz acceleration in the iner-
tial frame (in a truly inertial reference frame all the forces
vanish, including gravity, and the motion is described by free-
fall). The relation between rotation and the Lorentz accelera-
tion on a moving mass constitutes the essence of the Larmor
theorem, as pointed out by Brillouin [2]. The theorem was
originally formulated having in mind the motion of electrons
in an electromagnetic field, reaching wide acceptance with
the quantum mechanical description of the electronic motion
in the atom, but has the character of a more general law as
conjectured by Larmor [1].

2 Driven galactic equilibrium

The equations of motion of a perfect fluid in rotary flow
can be formulated in a frame rotating at the angular velocity
�. In this case the motion is for the most part steady, but
the dynamical equation explicitly includes the non-inertial
centrifugal and Coriolis accelerations. The momentum con-
servation equation in the weak relativistic approximation in
a rotating frame, as shown in the Appendix A, is given by

∂v

∂t
+ (v · ∇) v +

(
∂�

∂t
+ (v · ∇) �

)
× r

+ [r × (� × r)] ·∇ � = −∇ p

ρ
+ E + ∇φc

+v × (B − 2BL) . (2.1)

Now consider the steady motion (∂/∂t ≡ 0) of a rotating dust
distribution with vanishing pressure (p ∼= 0). Furthermore,
consider that the flowing dust is in pure rotation with van-
ishing local mass currents (v = 0). This corresponds to the
strong simplifying assumption referred to in the Introduc-
tion, when the convective and Lorentz acceleration effects
due to the local mass currents are completely neglected in
the rotating frame. In this case the flow is described by the
hydrostatic balance condition

[r × (� × r)] ·∇ � = −∇φ + ∇φc, (2.2)

which is equivalent to (cf. Appendix A)

∇φ = −� × (� × r) = BL × u, (2.3)

where φ is the Newtonian potential, u = � × r is the mean
fluid velocity in the stationary frame, and BL = −� is the
equivalent Larmor field. Note that for an uniform angular
velocity Eq. (2.2) reduces to a simple balance between the
gravitational attraction and the centrifugal force, valid only
for an infinitely long cylinder or for an infinitesimally thin
disk. However, for non vanishing vorticity (rotational flow)
Eq. (2.2) and the equivalent Eq. (2.3) show that the grav-
itational attraction can be balanced by the gravitomagnetic

Fig. 1 Piecewise continuous representation of the tilt angle ϑ for an
hypothetical thin disk approximately represented by the Kuzmin model
described below

field everywhere. Note also that in both cases the convective
acceleration term has been neglected.

Assuming azimuthal symmetry in the mean motion in
spherical coordinates (r, θ, ϕ), the angular velocity � can
be represented in the form

� = {cos (θ − ϑ) ,− sin (θ − ϑ) , 0} �(r, θ) , (2.4)

where θ − ϑ (r, θ) is the angle formed by the axial vector �

with respect to the radial direction r . This representation is in
accordance with the differential rotation in galaxies demon-
strated by Oort [11]. The mean axial velocity in the stationary
frame is

u = �× r = {
0, 0, uϕ (r, θ)

}
, (2.5)

where uϕ (r, θ) = r sin (θ − ϑ)� (r, θ). Note that individ-
ual particles undergoing a rotary motion in a plane normal to
� have velocity components along all directions. In this way,
particles execute an up-and-down motion in the gravitational
well, while rotating parallel to the galactic plane. In the fluid
description the vertical motions between different particles
cancel out and the mean velocity u has a single component in
the azimuthal direction, considerably simplifying the analy-
sis. Exactly on axis a single particle could exist executing a
vertical oscillation in the gravitational potential well.

Using the above form for �, the equilibrium balance can
be written as{

∂φ

∂r
,

1

r

∂φ

∂θ
, 0

}
= {sin (θ − ϑ) , cos (θ − ϑ) , 0}

×�(r, θ) u (r, θ) , (2.6)

It follows that
⎧⎪⎨
⎪⎩

∂φ

∂θ
= cot (θ − ϑ) r

∂φ

∂r

u (r, θ) = ∂φ/∂r

sin (θ − ϑ)� (r, θ)

(2.7)
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The tilt angle ϑ with respect to the vertical axis can be rep-
resented as a piecewise continuous function of θ by

ϑ (r, θ) = θ − arccotan

(
∂φ/∂θ

r∂φ/∂r

)
+ πU

(
θ − π

2

)
, (2.8)

where U is the unit step function. In this form ϑ = π at the
equatorial plane θ = π/2, where ∂φ/∂θ → 0 for vertically
symmetric distributions as illustrated in Fig. 1 (BL points
downwards at θ = π/2). Taking

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin (θ − ϑ) = 1 − 2U (θ − π/2)

∂φ/∂θ

r∂φ/∂r

√
1 +

(
r∂φ/∂r

∂φ/∂θ

)2

cos (θ − ϑ) = 1 − 2U (θ − π/2)√
1 +

(
r∂φ/∂r

∂φ/∂θ

)2

(2.9)

the equilibrium equation gives (a positive sign is assumed for
�, implying a negative sign for uϕ)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(r, θ) =
√

r∂φ/∂r

r sin2 (θ − ϑ)

uϕ (r, θ) = −
√

r
∂φ

∂r

(2.10)

Therefore, the equilibrium balance in its simplest form gives
the circular velocity result used in most galactic rotation
curve analyzes so far, eventually leading to the introduction
of dark matter for compatibility with astronomical observa-
tions. However, as pointed out in the Introduction, this equi-
librium is not self-consistent, needing an external source to
drive the rotation as will be shown next. First, it is interesting
to display the results of the above equilibrium solution for
a simple dust distribution. In this respect, consider the exact
Miyamoto-Nagai solution for Poisson’s equation in spherical
coordinates [12]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ (r, θ)

= − G M[
r2 sin2 θ +

(
a + √

b2 + r2 cos2 θ
)2

]1/2

ρ (r, θ) = Mb2

4π

×
ar2 sin2 θ +

(
a + 3

√
b2 + r2 cos2 θ

) (
a + √

b2 + r2 cos2 θ
)2

[
r2 sin2 θ +

(
a + √

b2 + r2 cos2 θ
)2

]5/2 (
b2 + r2 cos2 θ

)3/2

(2.11)

where a and b are geometrical parameters that can be adjusted
to represent the central bulge and the disk parts of a spheroidal
mass distribution, and M is the total mass. In the limit a → 0

this potential-density pair reduces to the spherical Plummer
model [13]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ (r, θ) = − G M√
r2 + b2

ρ (r, θ) = 3Mb2

4π
(
r2 + b2

)5/2

(2.12)

and in the limit b � a it approaches the thin disk Kuzmin
model [13]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ (r, θ)

= − G M√
r2 + a2 + 2ar |cos θ |

ρ (r, θ) = Mb2

4π

×a
[(

r2 + a2 + 6r2 cos2 θ
) + r

(
5a2 + 3r2 cos2 θ

) |cos θ |]
r3 cos2 θ

[
r2 + a2 + 2ar |cos θ |]5/2 |cos θ |

(2.13)

Figures 2 and 3 show that the driven equilibrium solution
approaches the Kepler profile at large distances, either for
a nearly spherical configuration (Plummer model) or a thin
disk configuration (Kuzmin model).

Now consider the Larmor field, responsible for the driven
rotary motion of the dust distribution, whose poloidal com-
ponents are (assuming ∂φ/∂r ≥ 0)

BL = −� = {− cos (θ − ϑ) , sin (θ − ϑ) , 0} �(r, θ)

= [1 − 2U (θ − π/2)] sign (∂φ/∂θ)

r

√
r
∂φ

∂r

×
{
− ∂φ/∂θ

r∂φ/∂r
, 1, 0

}
.

(2.14)

The curl of BL is

∇ × BL =
{

0, 0, sin (θ − ϑ)

(
∂�

∂r
+ �

r

∂ϑ

∂θ

)

+ cos (θ − ϑ)

(
1

r

∂�

∂θ
− �

∂ϑ

∂r

)}
,

(2.15)

and the divergence of BL is

∇ · BL = − cos (θ − ϑ)

(
∂�

∂r
+ �

r

∂ϑ

∂θ

)

+ sin (θ − ϑ)

(
1

r

∂�

∂θ
− �

∂ϑ

∂r

)

− sin (θ − ϑ)

sin θ

�

r
. (2.16)
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Fig. 2 Normalized angular velocity and rotation velocity profiles for
an hypothetical dust distribution represented approximately by the
spherical Plummer model. The right-hand panel shows that the rota-

tion velocity profile hardly varies with the polar angle θ , corresponding
to a nearly constant tangential velocity on a sphere. Note that the radial
distance to the axis of rotation is R = r sin θ

Fig. 3 Normalized angular velocity and rotation velocity profiles for an hypothetical dust distribution represented approximately by the thin disk
Kuzmin model. Note that the radial distance to the axis of rotation is R = r sin θ

Assuming ∂φ/∂r ≥ 0:

(∇ × BL)ϕ = [1 − 2U (θ − π/2)] sign (∂φ/∂θ)

2r (r∂φ/∂r)3/2

×
[
∂φ

∂r

(
r2 ∂2φ

∂r2 + r
∂φ

∂r
+ 2

∂2φ

∂θ2

)

−∂φ

∂θ

∂2φ

∂r∂θ

]
, (2.17)

and

∇ · BL = [1 − 2U (θ − π/2)] sign (∂φ/∂θ)

2r (r∂φ/∂r)3/2

×
[

r
∂φ

∂r

(
2cotθ

∂φ

∂r
− ∂2φ

∂r∂θ

)

+∂φ

∂θ

(
r
∂2φ

∂r2 − ∂φ

∂r

)]
. (2.18)

The divergence is not null, implying the existence of an exter-
nal nonconservative source driving the rotary flow. The Lar-
mor field BL in this case cannot be represented by the curl of
a vector potential. In general, ∇ × BL is given by the sum of
mass currents and time-varying gravitoelectric fields (these

two terms were assumed to vanish in the above solution):

∇ × BL = −4πG

c2 j + 1

c2

∂E
∂t

. (2.19)

According to Stokes’ theorem

∫∫
S
(∇ × BL) · dS =

∮



BL · d�, (2.20)

where S is the surface of a poloidal cross-section and 
 is
the poloidal contour enclosing the surface. This implies that
the boundary of the rotating system in the driven solution
case (with ∇ × BL = 0) must contain singularities injecting
helicity in the system, either in the form of external mass cur-
rents j ext or by a transformer action represented by ∂Eext/∂t .
These edge singularities correspond to the dark matter mis-
conception. Furthermore, such driven equilibria can be main-
tained only in conjunction with a weak dissipative process.

The above discussion shows that the equilibrium described
by the hydrostatic balance condition (2.3), which leads to the
circular velocity solution, is not self-consistent. It requires
an external source and some dissipative mechanism in order
to be maintained. Ruling out this solution, and its erro-
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neous simplifying assumptions, the self-consistent solution
is examined in the next section.

3 Self-consistent galactic equilibrium

The momentum conservation equation in a stationary frame
is (cf. Appendix A)

∂u
∂t

+ (u · ∇) u = −∇ p

ρ
+ E + u × B. (3.1)

Consider again steady motion (∂/∂t ≡ 0) with vanishing
pressure (p ∼= 0):

(u · ∇) u = −∇φ + u × B. (3.2)

Note that the full convective and Lorentz acceleration terms
have been maintained. The same representation used for � in
the previous section can be adopted for the gravitomagnetic
field B in the present case

B = {cos (θ − ϑ) ,− sin (θ − ϑ) , 0} B (r, θ) . (3.3)

The mean axial velocity in an axisymmetric equilibrium is
u = {

0, 0, uϕ (r, θ)
}
, so that

u × B = {sin (θ − ϑ) , cos (θ − ϑ) , 0} uϕ (r, θ) B (r, θ) ,

(3.4)

and

(u · ∇) u = −u2
ϕ (r, θ)

r
{1, cot θ, 0} . (3.5)

The momentum balance equation gives

⎧⎪⎪⎨
⎪⎪⎩

∂φ

∂r
= u2

ϕ (r, θ)

r
+ sin (θ − ϑ) uϕ (r, θ) B (r, θ)

1

r

∂φ

∂θ
= u2

ϕ (r, θ)

r
cot θ + cos (θ − ϑ) uϕ (r, θ) B (r, θ)

(3.6)

Hence

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin (θ − ϑ) = r∂φ/∂r − u2
ϕ (r, θ)

ruϕ (r, θ) B (r, θ)

cos (θ − ϑ) = ∂φ/∂θ − u2
ϕ (r, θ) cot θ

ruϕ (r, θ) B (r, θ)

(3.7)

The tilt angle ϑ (r, θ) of the gravitomagnetic field is given
by the piecewise continuous function

ϑ (r, θ) = θ − arctan

(
r∂φ/∂r − u2

ϕ (r, θ)

∂φ/∂θ − u2
ϕ (r, θ) cot θ

)

+πU
(
θ − π

2

)
, (3.8)

and the field magnitude is

B (r, θ) = ∂φ/∂θ − u2
ϕ (r, θ) cot θ

cos (θ − ϑ) ruϕ (r, θ)
. (3.9)

The solution at this point departs from the previous case
(Sect. 2) in that B can be written in terms of a gravitomagnetic
vector potential A = {

0, 0, Aϕ (r, θ)
}
, so that ∇ · B = 0.

This is possible because the convective derivative of the flow
velocity is included in the dynamical equation (cf. Eq. 3.2).
The fluid model describes the collective effects of the gravita-
tional Vlasov fields E = −∇φ and B produced by the mass
and mass current distributions, respectively. Introducing the
gravitomagnetic flux function ψ (r, θ) = Aϕ (r, θ) r sin θ ,
the field B is given by

B = ∇ × A = 1

r2 sin θ

{
∂ψ

∂θ
,−r

∂ψ

∂r
, 0

}
, (3.10)

and

∇ × B = ∇ × (∇ × A)

=
{

0, 0,− 1

r3 sin θ

[
r2 ∂2ψ

∂r2

+ sin θ
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)]}
. (3.11)

Ampère’s law gives ∇ × B in terms of the mass current ρu

∇ × B = −4πG

c2 ρu, (3.12)

which leads to the Grad-Shafranov equation for ψ

∂2ψ

∂r2 + sin θ

r2

∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
= 4πG

c2 ρ (r, θ) uϕ (r, θ) r sin θ.(3.13)

The representation of B as a tilted axial vector combined
with the momentum balance equation gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ψ

∂r
= r B (r, θ) sin θ sin (θ − ϑ)

= sin θ

uϕ (r, θ)

(
r
∂φ

∂r
− u2

ϕ (r, θ)

)

∂ψ

∂θ
= r2 B (r, θ) sin θ cos (θ − ϑ)

= r sin θ

uϕ (r, θ)

(
∂φ

∂θ
− u2

ϕ (r, θ) cot θ

)
(3.14)
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Substitution of the above relations in the Grad-Shafranov
equation gives a second-order nonlinear differential equation
relating the mean fluid velocity uϕ (r, θ) to the Newtonian
potential φ (r, θ) and to the mass density ρ (r, θ)

r
∂

∂r

[
1

uϕ (r, θ)

(
r
∂φ

∂r
− u2

ϕ (r, θ)

)]

+ ∂

∂θ

[
1

uϕ (r, θ)

(
∂φ

∂θ
− u2

ϕ (r, θ) cot θ

)]

= 4πG

c2 ρ (r, θ) uϕ (r, θ) r2. (3.15)

Furthermore, φ (r, θ) and ρ (r, θ) are related by Poisson’s
equation ∇2φ = 4πGρ in spherical coordinates

1

r2

∂

∂r

(
r2 ∂φ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
= 4πGρ (r, θ) .

(3.16)

The two above equations can be combined in the form
(

uϕ + r
∂uϕ

∂r

)
r
∂φ

∂r
+

(
uϕ cot θ + ∂uϕ

∂θ

)
∂φ

∂θ

= uϕ

[(
uϕ

sin2 θ
− r

∂uϕ

∂r
− cot θ

∂uϕ

∂θ

)
uϕ

+4πGρr2
(

1 − u2
ϕ

c2

)]
, (3.17)

which does not explicitly depend on the second derivatives of
φ. Introducing a normalization radius r0 and a normalization
mass density ρ0 = c2/

(
Gr2

0

)
, the above nonlinear first order

partial differential equation for β = uϕ/c can be written in
normalized form

(
β + r

∂β

∂r

)
r
∂
(
φ/c2

)
∂r

+
(

β cot θ + ∂β

∂θ

)
∂
(
φ/c2

)
∂θ

= β

[(
β

sin2 θ
− r

∂β

∂r
− cot θ

∂β

∂θ

)
β + 4π

ρ

ρ0

r2

r2
0

(
1 − β2

)]
.

(3.18)

The gravitational potential φ (r, θ) is given in terms of
the mass density ρ (r, θ) by the general integral in spherical
coordinates

φ (r, θ)

c2 = − 1

r2
0

∫
V

ρ
(
r ′, θ ′)
ρ0

d3r ′

|r ′ − r|

= −
∫ ∞

0

∫ π

0

∫ 2π

0

ρ
(
r ′, θ ′)
ρ0

× r ′2 sin θ ′dr ′dθ ′dϕ′

r2
0

√
r2 + r ′2 − 2rr ′ (cos θ cos θ ′ + sin θ sin θ ′ cos (ϕ − ϕ′))

= −
∫ ∞

0

∫ π

0

ρ
(
r ′, θ ′)
ρ0

4K (m) r ′2 sin θ ′dr ′dθ ′

r2
0

√
r2 + r ′2 − 2rr ′ cos (θ − θ ′)

, (3.19)

where m = m
(
r, r ′; θ, θ ′) is the squared modulus of the

elliptic integral of the first kind K (m)

m
(
r, r ′; θ, θ ′) = − 4rr ′ sin θ sin θ ′

r2 + r ′2 − 2rr ′ cos (θ − θ ′)
, (3.20)

and

r
∂

∂r

(
φ (r, θ)

c2

)
=

∫ ∞

0

∫ π

0

ρ
(
r ′, θ ′)
ρ0

r ′2 sin θ ′dr ′dθ ′

r2
0

× 2√
r2 + r ′2 − 2rr ′ cos (θ − θ ′)

×
[

K (m) +
(
r2 − r ′2) E (m)

r2 + r ′2 − 2rr ′ cos (θ − θ ′)

]
, (3.21)

where E (m) is the elliptic integral of the second kind.
Assuming vertical symmetry and putting θ = π/2 (with
∂φ/∂θ = 0 at θ = π/2), Eq. (3.18) can be simplified for
calculating the rotation velocity β (r, π/2) along the equato-
rial plane(

β + r
∂β

∂r

)
r

∂

∂r

(
φ (r, π/2)

c2

)

= β

[(
β − r

∂β

∂r

)
β + 4π

ρ (r, π/2)

ρ0

r2

r2
0

(
1 − β2

)]
,

(3.22)

where

r
∂

∂r

(
φ (r, π/2)

c2

)
=

∫ ∞

0

∫ π

0

ρ
(
r ′, θ ′)
ρ0

r ′2 sin θ ′dr ′dθ ′

r2
0

× 2√
r2 + r ′2 − 2rr ′ sin θ ′

[
K (m) +

(
r2 − r ′2) E (m)

r2 + r ′2 − 2rr ′ sin θ ′

]
,

(3.23)

and

m
(
r, r ′; θ ′) = − 4rr ′ sin θ ′

r2 + r ′2 − 2rr ′ sin θ ′ . (3.24)

Defining the two functions of the mass density and its integral

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (r) = 4πr2

r2
0

ρ (r, π/2)

ρ0

g (r) = r
∂

∂r

(
φ (r, π/2)

c2

) (3.25)

the equation for β2 (r, π/2) can be identified as an Abel equa-
tion of the second kind

[
g (r) + β2

]
r

dβ2

dr
= 2 [ f (r) − g (r)] β2 + 2 (1 − f (r)) β4,

(3.26)
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Fig. 4 Self consistent equilibrium of an hypothetical dust distribution
described by the Miyamoto-Nagai potential-density pair

which is identical to the equation previously derived in cylin-
drical coordinates [6], taking into account that the radial
direction r along the equatorial plane is the same.

Abel equation (3.26) for β (r) can be solved numerically
introducing a potential-density pair which is a solution of
Poisson’s equation ∇2φ = 4πGρ. For example, using the
simple Miyamoto-Nagai pair (2.11), the functions f (r) and
g (r) are given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (r) = rsr2
[
(a + b)2 (a + 3b) + ar2

]
2b

[
(a + b)2 + r2

]5/2

g (r) = rsr2

2
[
(a + b)2 + r2

]3/2

(3.27)

where rs = 2G M/c2 is the Schwarzschild radius. The
inward directed integration must be initiated with a rota-
tion velocity value β
 at a distant point 
, since the origin
r = 0 is a singular point. Figure 4 shows the self-consistent
equilibrium for an hypothetical dust distribution with nor-
malized values rs/a = 10−4, a = 1 and β
 = 10−3 at the
distant point 
/a = 50. The normalizing distance a = 1
can assume any convenient unit (in astronomical studies it
usually takes the value 1 kpc). Three equilibrium solutions
are displayed for b/a = 1, 3 and 7, showing that the non-
linear rotation velocity profiles vary in a somewhat unex-
pected way by the change of a single parameter b, but dis-
play the usually observed behavior of the galactic rotation
curves. The Miyamoto-Nagai model has only two parame-
ters, a and b, insufficient to represent a thin disk galactic
distribution, which may include a long disk and localized
ring currents. This solution is limited, in general, to com-
pact, massive spheroidal objects. Furthermore, the mass den-
sity in this model extends to infinity, although with finite total
mass. Unfortunately, one considerable difficulty is to obtain a
free boundary solution (or reasonable approximation) for the
galactic equilibrium. Nevertheless, since the Poisson equa-
tion is linear, the gravitational potential can be represented by

a superposition of mass density distributions, but the rotation
velocity must be determined by a solution of the nonlinear
self-consistent equilibrium in the presence of the mass cur-
rents.

The Abel equation of the second kind (Eq. 3.26) controls
the rotation velocity in the equatorial plane. The coefficients
in this equation depend on a localized function f (r), which
is proportional to the mass density ρ (r), and on a cumulative
function g (r), which is given by the radial rate of change of
the integrated mass density. These terms compete in a com-
plicated way, making difficult an analysis of the transition
between the asymptotic states near the singular origin and in
the far away regions. One may conjecture that in the initial
stages of formation of a galaxy the transition between asymp-
totic states is soft, but this could change rapidly at some point
in the galactic evolution. An avalanche process may occur
resulting in a hard transition. This is a phenomenon in which
a small perturbation may eventually introduce a hard transi-
tion in an otherwise soft transition between stationary states.
However, these assumptions must be tested with a study of
the evolutionary and mass accretion processes in a galaxy,
requiring much further work.

4 Comments and conclusions

Larmor theorem was implemented to describe the rotational
flow of a dust distribution in gravitational confinement. The
theorem was used to show the equivalence between rota-
tion in a non-inertial frame and the gravitomagnetic Lorentz
acceleration in a stationary frame. The physical results are
obviously independent of the adopted frame, but the choice
of a convenient frame can simplify the solution of a given
problem, or alternatively lead to erroneous results depend-
ing on the simplifications introduced. This was exemplified
by analyzing the galactic rotation curve problem. It was
shown that, depending on the initial simplifications, either a
driven or a self-consistent equilibrium solution can be found.
The driven equilibrium is maintained by a balance between
the gravitational potential and the centrifugal acceleration,
which is produced by the differential rotation of the flow.
According to Larmor’s theorem, a gravitomagnetic field can
be associated to the angular rotation vector. This leads to a
Lorentz-like force term in the momentum balance equation.
The driven equilibrium solution corresponds to the classi-
cal circular velocity model. However, an external source and
weak dissipative processes are required to maintain the flow,
which is not self-consistent. The external source required for
gravitomagnetic helicity injection, through the boundaries
of the rotating dust configuration, leads to the dark matter
misconceptions.

Alternatively, the introduction of convective flow as the
driving mechanism, together with the Lorentz acceleration,

123



281 Page 8 of 9 Eur. Phys. J. C (2022) 82 :281

leads to a self-consistent equilibrium solution, which can be
formulated in any convenient frame. The Larmor equivalent
gravitomagnetic field is linked to the gravitational potential
by the momentum balance equation, which now includes
Lorentz-like and convective terms. External sources are not
needed to produce the gravitomagnetic field, which is main-
tained, according to Ampère’s law, by the internal currents.
On the other hand, the gravitational potential is produced by
the mass distribution, according to Poisson’s equation. The
self-consistent link between the gravitational potential and
the gravitomagnetic flux function leads to a nonlinear equa-
tion for the flow velocity in terms of both the mass density and
the integrated mass density of the system. The rotation veloc-
ity in the equatorial plane is governed by a nonlinear Abel
equation of the second kind, which is satisfactory in repro-
ducing the astrophysical observations without introducing
black matter [6].

In conclusion, the circular velocity solution (classical
solution leading to the erroneous dark matter concept) cor-
responds to a driven equilibrium of the rotating dust con-
figuration, when the convective forces are neglected. This
solution is not self-consistent, depending on the application
of external sources (presumably dark matter). In the alterna-
tive gravitoelectromagnetic approach the flowing dust equi-
librium solution, which includes all the internal mass cur-
rents effects, is self-consistent. This corresponds to the self-
consistent Larmor rotation of galactic dust. The difference
between the two solutions presented in the paper results from
the initial assumptions about the local mass currents, after
subtracting the predominant rotation velocity.

The concepts introduced in this paper can be extended
to other configurations. The transformation to a non-inertial
frame may be advantageous in the study of perturbations
about an equilibrium, like possible Rossby waves in a spi-
ral galaxy. Furthermore, the velocity-dispersion in clusters
can be analyzed taking into account the full contribution
of the mean internal currents, including both the mean
toroidal and poloidal mass currents. The toroidal compo-
nent dominates the equilibrium in a galaxy, but the velocity-
dispersion in clusters of galaxies is tentatively dominated
by the poloidal component. Since the toroidal mass current
cannot be neglected, due to the link with the gravitational
potential in a spherical mass density distribution, the solu-
tion of the nonlinear three-dimensional motion is a complex
problem. Possible equilibrium solutions, without recourse to
dark matter, constitute work in progress.
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Appendix A Fluid motion in a rotating frame

The change in the position vector r for an infinitesimal rota-
tion by an angle dθ about the direction n is

d r = −r × n dθ, (A1)

so that

d r
dθ

= −r × n = n × r. (A2)

Similarly

d r
dt

= −r × n
dθ

dt
= � × r. (A3)

This corresponds to an active transformation, giving the
actual rotation of a vector, independent of the coordinate
system. On the other hand, a passive transformation changes
the coordinate system in which vector motion is described.
In order for the vector to remain unchanged by the passive
transformation, the coordinates of the vector must transform
according to the inverse of the active transformation. In this
way, the velocity vector u in a stationary frame of reference
is related to the relative velocity v in a rotating frame of
reference by

u = v + � × r. (A4)

For an arbitrary vector x in fluid motion:

dx
dt

=
(

dx
dt

)′
+ � × x, (A5)

where d/dt ≡ ∂/∂t +v ·∇ denotes the convective (hydrody-
namic) derivative and (dx/dt)′ refers to the rotating frame
of reference. Accordingly, the differentiation of u gives

du
dt

=
(

du
dt

)′
+ � × u. (A6)
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Replacing u by v + � × r in the right-hand side leads to

du
dt

=
(

dv

dt

)′
+

(
d�

dt

)′
× r + � ×

(
d r
dt

)′

+� × (v + � × r)

=
(

∂v

∂t
+ v · ∇v

)′
+

(
∂�

∂t
+ v · ∇�

)′
× r

+� × v + � × (v + � × r)

=
(

dv

dt

)′
+

(
d�

dt

)′
× r + 2� × v + � × (� × r) .

(A7)

Now the equation of motion for an ideal fluid in a sta-
tionary frame in the gravitoelectromagnetic context is [10]

d (αu)

dt
= ∂ (αu)

∂t
+(u · ∇) αu = −∇ p

ρ
+E+u×B, (A8)

where α is the relativistic thermo-inertial factor

α = γ

(
1 + γA

γA − 1

γ kB T

c2

)
. (A9)

Here γ = 1/
√

1 − u2/c2 is the relativistic Lorentz factor,
γA is the adiabatic coefficient, T is the fluid temperature,
p = ρkB T/m is the fluid pressure, and ρ is the mass density
of the fluid. The high-order relativistic contributions in the
fluid motion inertia can be presently neglected taking α ∼= 1,
since α introduces corrections of the order u4/c4 and higher
in the convective term (these terms cannot by ignored in the
calculation, for example, of the anomalous precession of the
perihelion [14]). In the rotating frame of reference the equa-
tion of motion becomes (dropping the prime symbol)

dv

dt
+ d�

dt
× r + 2� × v + � × (� × r)

= −∇ p

ρ
+ E + v × B. (A10)

The double cross product in the left-hand side can be written
as

� × (� × r) = −∇
[

1

2
(� × r)2

]
+ [r × (� × r)] ·∇ �.

(A11)

Introducing the equivalent centrifugal potential φc =
(� × r)2 /2 and the equivalent Larmor gravitomagnetic field
BL = −�, the equation of motion in the rotating frame takes
the final form

dv

dt
+ d�

dt
× r + [r × (� × r)] ·∇ �

= −∇ p

ρ
+ E + ∇φc + v × (B − 2BL) , (A12)

where the Coriolis acceleration 2�×v = −2BL ×v has been
combined with the gravitomagnetic field in the Lorentz force
term v × B. If there are no local mass currents in the rotating
frame (relative motion v = 0), the hydrostatic equilibrium in
the rotating frame is described by the differential equation

[r × (� × r)] ·∇ � = −∇ p

ρ
− ∇φ + ∇φc, (A13)

which is equivalent to

f = −∇ p

ρ
− ∇φ − � × (� × r)︸ ︷︷ ︸

u

= 0, (A14)

where φ is the gravitoelectric (Newtonian) potential, and f
is the specific force density in the rotating frame of reference.
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