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Abstract We address the modeling dependence of jet tag-
gers built using the method of mass unspecific supervised tag-
ging, by using two different parton showering and hadroni-
sation schemes. We find that the modeling dependence of the
results — estimated by using different schemes in the design
of the taggers and applying them to the same type of data —is
rather small, even if the jet substructure varies significantly
between the two schemes. These results add great value to the
use of generic supervised taggers for new physics searches.
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1 Introduction

Elusive signals of new particles involving boosted hadronic
jets may arise in a variety of models, see for example Refs. [1—-
5]. Their detection at the Large Hadron Collider (LHC) is
quite demanding and requires tools that distinguish between
‘signal’ jets originating from boosted massive particles, and
‘background’ jets from quarks and gluons produced by QCD
interactions. Jet substructure tools [6—10] originally intro-
duced for the discrimination of Standard Model (SM) heavy
particles (top quarks and W/Z/H bosons) from QCD jets,
are essential for this goal.

In order not to rely on specific assumptions about the
nature of the new particles, a generic tagger is necessary

to search for these elusive signals. This was indeed the moti-
vation for the anti-QCD tagger in Ref. [11]. This tagger
uses a relatively simple neural network (NN) architecture
and is trained with QCD jets (background) and various types
of multi-pronged signal jets. It is remarkable that, despite
being a fully-supervised tool, the anti-QCD tagger is able to
recognise as signal a wide variety of massive multi-pronged
jets. The key aspect to achieve this, is the use of the so-
called model-independent (MI) data in the training: massive
jets with n = 2, 3, 4 prongs (this number can of course be
increased above n = 4) but otherwise phase-space agnostic.
As it was shown in Ref. [11], this setup provides sensitiv-
ity to six-pronged jets not used in the training. Mass unspe-
cific supervised tagging (MUST) [12] extends this concept
by including the jet mass (m ;) and transverse momentum
(prJ) as training variables, so that the taggers are applicable
across a quite wide range of my and p7 ;. An alternative to
MI data is explored in Ref. [13].

Generic taggers for multi-pronged jets can also be built by
using representation learning, e.g. with an autoencoder [14—
18]. Without the need of any signal assumption, but only
using background (pseudo-)data, an unsupervised tagger can
learn the background features in order to pinpoint outliers,
i.e. signal jets that deviate from the known pattern. A great
advantage of unsupervised learning is that the tool does not
depend on our modeling of the signals and backgrounds, and
can directly be trained on data. On the other hand, the per-
formance is worse than with supervised learning, as shown
for example in Ref. [19].

The application of supervised taggers to data raises con-
cerns about their dependence on the modeling of parton
showers and hadronisation, as well as other effects that are
not described from first principles but phenomenologically.
These issues were studied in Ref. [20] for a W boson tagger
using jet images. For that specific setup, a variation of signal
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efficiency &5, = 0.4 — 0.56 is found at fixed background
rejection sl;(lg = 10 by using several Monte Carlo codes.!
We note that the size of this variation is expected to depend
on

(a) the type of signal jet (mass and prongness);

(b) the transverse momentum;

(c) the specific method used to build the tagger: jet images
versus jet substructure variables, NN architecture, etc.

In this respect, it is important to point out that Ref. [20] also
finds a variation of the same size, &s5;g = 0.35 — 0.52 for
sb_klg = 10, by using as discriminant the jet mass and sub-
jettiness ratio 121 [7,8] and pseudo-data generated by sev-
eral Monte Carlo codes. Obviously, the variation in the latter
case is not due to the design of the discriminant — in other
words, whether it is trained using certain Monte Carlo code
or another — which is the same in both cases. Rather, the
difference arises from how pseudo-data is.

In this paper we address the modeling dependence for a
generic tagger built upon MUST. We consider two Monte
Carlo hadronisation schemes, using PYTHIA [21] and HER-
WIG [22], and explore the differences when training taggers
and applying them to pseudo-data obtained with each of these
generators. We study 18 benchmarks with signal jets of dif-
ferent mass, transverse momentum and prongness. There are
two meaningful comparisons to be made: (i) different tagger,
same data; (ii) same tagger, different data. The conclusions,
which we anticipate here, are:

(i) Fora given pseudo-data set, the dependence of the results
on the generator used for the design (training) of the
tagger is small, and insignificant in many cases.

(i) On the other hand, there is a significant dependence
of the results on how pseudo-data is: the same tagger
exhibits differences when applied to PYTHIA and HER-
WIG simulation.

The first test suggests that, even if Monte Carlo does not
perfectly model the showering and hadronisation, MUST-
based taggers correctly learn prongness from simulation and
will perform well on real data. The second test shows that
tagging performance will mostly depend on how real data
actually is, i.e. if the subjets within a multi-pronged jet are
more or less resolved. (Notice that this is in agreement with
the differences found in Ref. [20] when using the same dis-
criminator 1] on different pseudo-data.) And of course, the

I Reference [20] quotes a variation of up to 50% in background rejection
for fixed signal efficiency. However, anomaly detection tools often use
the jet mass a discriminant, using a mass-decorrelated tagging with
fixed background rejection. Thus, the variation of the signal efficiency
at fixed background rejection is more adequate for the assessment of
the dependence on the Monte Carlo setup.
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latter statement not only applies to supervised taggers, but
also to unsupervised ones: if real data is such that it is harder
to distinguish the substructure of a multi-pronged jet from a
QCD jet, this will be the case for any tool.

The remainder of this paper is structured as follows. In
Sect. 2 we describe our setup for the Monte Carlo genera-
tion and training of the NNs. We compare the jet substruc-
ture observables obtained with either simulation scheme in
Sect. 3. When possible, we compare our qualitative results
obtained with subjettiness variables with the findings of
Ref. [20] using jet images. We compare the tagging perfor-
mances in Sect. 4. Finally, our results are discussed in Sect. 5.

2 Monte Carlo generation and design of the taggers

In Ref. [12] we developed a supervised generic jet tag-
ger, dubbed as GenT, in order to discriminate between
quark/gluon one-pronged jets and multi-pronged jets from
boosted massive particles. Here we train taggers GenT* with
the same NN architecture, in the transverse momentum range
pry € [200,2200] GeV and extending the mass range to
my € [10,500] GeV.

QCD jets are generated with MADGRAPH [23], in the
inclusive process pp — jj. Event samples are generated
in 100 GeV bins of pr, starting at [200, 300] GeV and up to
pr > 2.2 TeV. Large event samples are required in order to
have sufficient events at high m: 10° events are generated
in each bin of pry, and both jets are used in the analysis,
amounting to a total of 42 million QCD jets, which are used
in the training and validation of the NN, as well as for tests.

The MI data used to train and validate the NNs are gen-
erated with PROTOS [24] in the process pp — ZS§, with
Z — vv and § a scalar. We consider the six decay modes

S — uiiuii, S — bbbb,
S— Fv; F — udd, F— udb,
S — uii, S— bb, (1)

4-pronged (4P):
3-pronged (3P):
2-pronged (2P):

to generate multi-pronged jets (F' is a colour-singlet fermion).
To remain as model-agnostic as possible, the S and F decays
are implemented with a flat matrix element, so that the decay
weight of the different kinematical configurations only corre-
sponds to the four-, three- or two-body phase space. Signal jet
samples are also generated in 100 GeV bins of pr. To cover
different jet masses, the mass of S (and of F for 3-pronged
decays) is randomly chosen event by event within the interval
[10, 800] GeV, and setting an upper limit Mg < prR/2 to
ensure that all decay products are contained in a jet of radius
R =0.8.

The signals used to evaluate the performance of the taggers
are generated with MADGRAPH. The models of Refs. [4,5]
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are implemented in FEYNRULES [25] and interfaced to MAD-
GRAPH using the universal Feynrules output [26]. We con-
sider the production of a neutral gauge boson Z’ with decay
into SM particles as well as new scalars. We generically
denote by A the new scalars decaying into a quark pair, and
by S the new scalars decaying into an AA pair. (The actual
scalar decays are Z' — A;A;, Z' — §;S;, withi # j, but
we omit subindices for simplicity and consider My, = M4,
Ms, = Ms;). The various processes considered are

1) 2 — WW, W — q3.

(2) Z/ — AA, A — bb.

3) Z' —» tt,t > Wb — qgb.

(4) Z' — SS,with§ - WW — 4q.
(5) Z' — SS,with § — AA — 4b.

All signal samples contain 2 x 10° events except the 7 sam-
ples, which contain 6 x 10° events.

The parton-level event samples are showered and hadro-
nised either with PYTHIA 8.3 or with HERWIG 7.2, with stan-
dard settings. The former uses dipole showers by default [27],
while the latter uses angular-ordered showers [28]. In
both cases, a fast detector simulation is performed with
DELPHES [29], using the CMS card. Jets are reconstructed
with FASTJET [30] applying the anti-k7 algorithm [31] with
R = 0.8, and groomed with Recursive Soft Drop [32] with
parameters N = 3, B = 1, z¢ye = 0.05. Jet substructure
is characterised by a set of subjettiness variables proposed
in [7,33],

1/2 1 2 1/2 D _@ 1 _@
{1:1(/),tl(),tl(),...,ré/),rs()r é),rﬁ)} 2)

computed for ungroomed jets.” These 17 subjettiness vari-
ables constitute the input to the NN together with the groomed
jet mass and pr.

Two taggers are built exactly in the same way, but using
either PYTHIA or HERWIG showering and hadronisation. The
training sets are obtained by dividing the m; range in ten
bins, all of 50 GeV except the first one [10, 50] GeV, and the
pr range in 100 GeV bins, starting at [200, 300] GeV and
up to [2100, 2200] GeV. In the lower pr samples the higher
mass bins are dropped, considering the full m; range only
for the p7 bins above 1200 GeV. In each two-dimensional
bin of m; and pr; we select for the training set 3000 events
from each of the six types of signal jets in (1), and 18,000
background events, in order to have a balanced sample. The
proportion of quark and gluon jets in the background samples
is pr-dependent. The total size of the training sets is around

2 One might consider that calculating tn’> for groomed jets would
decrease the dependence on the details of showering and hadronisa-
tion, but unfortunately the groomed 1:,51) have much less discriminating
power [12].

5.5 million events. The validation sets used to monitor the
NN performance are similar to the training ones.

The NNs are implemented using KERAS [34] with a TEN-
SORFLOW backend [35]. For the training, a standardisation of
the 19 inputs, based on the SM background distributions, is
performed. The NN contain two hidden layers of 2048 and
128 nodes, with Rectified Linear Unit (ReLU) activation for
the hidden layers. For the output layer a sigmoid function is
used, yielding the NN score, i.e. the signal probability, that
can be used to discriminate signal jets from QCD jets. The
NN are optimised by minimising the binary cross-entropy
loss function, using the Adam [36] algorithm, and a batch size
of 64. The NNs obtained after the training with these large
event sets are remarkably stable. We train five instances of
each NN, with different initial random seeds and select the
ones that give the largest area under the (&g, &pkg) curve
(AUC) for the validation sets. The rest of NNs are used to
estimate the stability of the results.

3 Substructure observables

With the default options for parton showering and hadro-
nisation used here, PYTHIA and HERWIG produce the two
most differing results among five combinations studied in
Ref. [20]. It is very difficult, if not impossible, to fully under-
stand the results obtained next section from the behaviour
observed in substructure observables: there are many non-
trivial correlations among the inputs to the NNs. However,
there a few qualitative aspects that can be learnt by the com-
parison of the subjettiness variables obtained after PYTHIA
and HERWIG simulation.

For the comparison we consider QCD and multi-pronged
jets with pr; € [1.4,1.6] TeV and two ranges for the jet
masses: (a) my € [60, 100] GeV; (b) my € [350, 450] GeV.
The multi-pronged jets are generated from the decay of a 3.3
TeV Z':

e Formy € [60, 100] GeV weuse Z' — WW, W — qg
(two-pronged, 2P) and Z' — SS, S — AA — 4b with
Mg = 80 GeV, M4 = 30 GeV (four-pronged, 4P)

e Form; € [350,450] GeV we use Z' — AA, A — bb
with M4 = 400 GeV (2P) and Z' — SS, S — AA —
4b with Mg = 400 GeV, M4 = 80 GeV (4P).

We present in Fig. 1 the normalised distributions of 1,51) with
n = 1,2,3,4, for QCD and multi-pronged jets with m; €
[60, 100] GeV. The results for m; € [350,450] GeV are
displayed in Fig. 2.

The distributions for n = 1 (top rows) are quite the same
when using PYTHIA (red) or HERWIG (blue). For n = 2 there
is some difference, which increases with n for 2P and 4P jets.
Furthermore, for 2P and 4P jets the level of (dis)agreement

@ Springer
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Fig. 1 Normalised distributions of ‘[,5 Y withn = 1,2, 3, 4, for QCD and multi-pronged jets with m; € [60, 100] GeV (see the text for details)
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Fig. 3 ROC curves 2P jets with m ; ~ 80 GeV

between PYTHIA and HERWIG distributions is alike, with the
exception of ril) for m; € [350,450] GeV. Because the
discrimination between 2P jets and the QCD background is
less sensitive to higher-order r,gl), one then expects that the
differences in tagger performance found for 2P jets will be
milder. This is confirmed by the results presented in the next
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section. In addition, we remark that the differences are more
significant for lighter boosted particles, i.e. m; € [60, 100]

GeV.

We also observe that in all cases the PYTHIA and distri-
butions for QCD jets are very similar. On the other hand,
HERWIG distributions for 1:,51), n > 2 are slightly shifted
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towards larger values for 2P and 4P jets. This fact indicates
that in 2P and 4P jets the subjets are less resolved, and is in
agreement with Ref. [20], which shows for W jets that HER-
WIG with angular-ordered shower produces more radiation
between the subjet cores, which are therefore less resolved.
This pattern suggests that the discrepancy is mainly due to
the hadronisation scheme, rather than parton showering. The
results in Ref. [20] confirm this point: the differences that
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Fig. 5 ROC curves for 3P top jets

arise when using the same hadronisation scheme but differ-
ent showering (e.g. HERWIG with either angular-ordered or
dipole shower; PYTHIA with either dipole or antenna show-
ers) are quite small.

4 Tagging performance

In this section we test the two taggers trained either with
PYTHIA (P) or HERWIG (H) on pseudo-data, generated with
either of these Monte Carlo simulations. This allows to dis-
entangle two important aspects that are independent:

(a) the modeling dependence, that is, the different perfor-
mance of the two taggers when applied to the same
pseudo-data;

(b) the dependence of the performance on pseudo-data
itself, that is, applying the same tagger to different
pseudo-data.

We consider the five signal processes mentioned in Sect. 2
with different masses, totaling 18 benchmarks:

@ Springer
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Fig. 6 ROC curves for 4P jets with mj ~ 200 GeV

(1) Z' — WW, with Mz = 1.1,2.2, 3.3 TeV.

(2) Z' — AA, with (M, My) = (1100, 80), (2200, 80),

(3300, 80), (3300, 400) GeV.
3) Z' — tt with My =2.2,3.3 TeV.

4 Z' — S8, S — WW with (Mz, Mg) = (2200, 200),

(3300, 200), (3300, 400) GeV.

(5) Z — S§S,S — AA with (Mg, Mg, M4) = (1100,
80, 30), (2200, 80, 30), (3300, 80, 30), (2200, 200, 80),

(3300, 200, 80), (3300, 400, 80) GeV.

For the benchmarks with Mz =

[60, 100], [150, 200], [160, 240], [350, 450] GeV.

We first present in Fig. 3 the receiver operating characteris-
tic (ROC) curves for light 2P jets: Z' — WWand Z' — AA
with M4 = 80 GeV, with Mz = 1.1, 2.2 and 3.3 TeV.
Figure4 shows results for 4P jets of the same mass, using
7' — SS with Mg = 80 GeV, M4 = 30 GeV, and the same

@ Springer
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1.1, 2.2, 3.3 TeV we
select jets with transverse momentum within the respective
intervals pr; € [0.4,0.6], [0.9, 1.1], [1.4, 1.6] TeV. For the
benchmarks with jet mass m; ~ 80, 175, 200, 400 GeV
we select jets with mass in the respective intervals m; €

0 0.1 0.2
signal efficiency Esig

Z' masses. The gray bands around the curves represent the
variation of (&sig, 8l;k1g) among the five trainings of the NN.
Except at the upper left side, the bands are barely visible
and their width is comparable to the thickness of the curves.
Showing the variation of (&g, sgk]g) among trainings can be
used to test whether the difference between P and H taggers
is a statistical artifact. We also include horizontal lines at
sb_klg = 20, 100 to guide the eye to estimate the variation in
&sig between the different curves.

The W and S benchmarks with m; ~ 80 GeV, prj ~ 1
TeV were already studied for the anti-QCD tagger [11] and
the differences between P and H taggers were quite more pro-
nounced than when using MUST. Overall, there are several
important conclusions that can be drawn from Figs. 3 and 4:

(1) The P and H pseudo-data have significant differences.
This can be seen by comparing, e.g. the two red lines in
the plots, which correspond to the same (P) tagger.

(i) However, the taggers very effectively learn to discrim-
inate jets of different prongness, independently of the
details of the parton shower and hadronisation. The P
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and H taggers have nearly the same performance on a
given pseudo-data set, especially for W bosons. This
can be verified by comparing solid and dashed lines of
the same colour.

(iii) Consequently, the ability to distinguish between multi-
pronged and QCD jets depends rather on which pseudo-
data is considered (in other words, how pseudo-data is),
than on the simulation employed in the tagger training.
Pictorially, the curves corresponding to different tagger,
same pseudo-data are (much) closer than the curves cor-
responding to same tagger, different pseudo-data.

The differences between taggers increase with pr;, cor-
responding to more collimated jets, in which case the higher-
order r,E” are expected to play a more important role in the
discrimination. Also, one can notice that for 2P signals the
P tagger is better on P and H pseudo-data, while the oppo-
site behaviour is seen for 4P signals except (partially) for
pry ~ 500 GeV. We believe this is a consequence of the
NN training and the balance in the minimisation of the loss
function for several multi-pronged jet MI data, which favours
a better discrimination of 2P signals in the case of P train-
ing, and a better discrimination of 4P signals in the case of
H training. The small spread between trainings (gray band)
shows this is not a statistical effect.

Results for 3P top jets are presented in Fig. 5. With a larger
ratio mj / pr j, the impact of higher-order r,gl) is smaller for
the discrimination between signal jets and the background.
Consequently, all the ROC curves are quite close for Mz =
2.2 TeV (top panel), and slightly spread for M = 3.3 TeV
(bottom panel).

Detailed results for 4P jets of m; ~ 200 GeV, with four
light quarks or four » quarks, are shown in Fig. 6. They
confirm the claims (i-iii) above. Also as expected, the spread
between curves is larger than for 3P jets of similar mass
(compare with Fig. 5) because higher-order r,f') are more
important for the discrimination. For the same reason, the
curves are closer for My = 2.2 TeV than for My = 3.3
TeV, the latter corresponding to more collimated jets.

Finally, we present results for heavier jets with m ; ~ 400
GeV in Fig. 7. Again, the three conclusions (i-iii) above hold,
as well as the other two features observed, namely (a) the
differences are smaller for 2P than for 4P jets; (b) the curves
are closer for larger m j / pry. We note that the gray bands are
wider in these benchmarks because of the smaller statistics
of the samples, which is also seen by the wavy behaviour at
low signal efficiencies.

5 Discussion

In this paper we have addressed the modeling dependence of
jet taggers designed using the MUST method. There are two
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Fig. 7 ROC curves for jets with m; ~ 400 GeV

independent aspects to be considered here: modeling depen-
dence (difference between taggers designed using PYTHIA
or HERWIG) and data dependence (difference when a given
tagger is applied to either PYTHIA or HERWIG pseudo-data).
From our analysis of 18 benchmarks in Sect. 4, two salient
conclusions can be drawn:
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(i) Pseudo-data generated with PYTHIA and HERWIG have
significant differences.

(i1)) MUST-based taggers very effectively learn to discrim-
inate jets of different prongness, independently of the
details of the parton shower and hadronisation.

Here, (i) is inferred from the comparison of same tagger,
different pseudo-data, whereas (ii) results from comparing
different taggers, and same pseudo-data. Within the several
cases analysed, we find that for 2P jets the modeling depen-
dence is insignificant, and completely negligible in some of
the benchmarks. For 3P and 4P jets it is small or quite small.

The urging question is, of course, whether either PYTHIA
or HERWIG in their different tunes, or other Monte Carlo code
for showering and hadronisation like SHERPA [37] describe
sufficiently well the jet substructure in data, so that super-
vised generic taggers can be reliably used to search for new
physics. Although this cannot be answered only with Monte
Carlo studies, the conclusion (ii) above shows that MUST-
designed taggers are quite robust and gives confidence in their
application to real data. In this regard, possible improvements
in the description of the substructure variables of boosted W
jets (which can be measured in data) would also benefit the
Monte Carlo description for four-pronged jets.

Because the MUST-based taggers effectively learn prong-
ness when trained either with PYTHIA or with HERWIG Monte
Carlo simulation, one expects that their performance on real
data will mostly depend on data itself, that is, whether the
subjets within a multi-pronged jet are more or less resolved,
so that they are easier or more difficult to distinguish from
QCD jets. Of course, this data feature also affects unsuper-
vised tools. Consequently, the price to pay by using super-
vised generic taggers (modeling dependence) may well not
be so high, while one can benefit from their better discrimi-
nation power.
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