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Abstract The estimation of the Kéllén—Lehmann spectral
density from gauge invariant lattice QCD two point cor-
relation functions is proposed, and explored via an appro-
priate inversion method. As proof of concept the SU(2)
glueball spectrum for the quantum numbers JF¢ = 0t+
is investigated for various values of the lattice spacing.
The spectral density and the glueball spectrum are esti-
mated using the published data of Yamanaka et al. (Phys
Rev D 102(5):054507, https://doi.org/10.1103/PhysRevD.
102.054507, arXiv:1910.07756 [hep-lat], 2020). Our esti-
mates for the ground state mass are in good agreement with
the traditional approach published therein, which is based on
the large time exponential behaviour of the correlation func-
tions. Furthermore, the spectral density also contains hints
of excites states in the spectrum.

1 Introduction

A major effort to understand the dynamics of strong inter-
actions is the computation of the hadronic spectra. In
QCD, hadrons, namely mesons and baryons, are seen as
bound states of quarks and gluons. Besides the conventional
hadronic states, multiple-quark and pure glue bound states
are also predicted by theory. Of these exotic states, so far
only multi-quark states have been identified experimentally
[2]. For glueballs there are a number of candidate states [3-5],
but no established observation. Glueballs continue to attract
a great deal of theoretical [6-12] and experimental atten-
tion, with an ongoing effort to identify these pure glue states
unambiguously [13-16]. Additionally, glueball states have
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also been discussed as possible candidates for dark matter
[1,17].

A first principles approach to access the hadron spectra,
which has been advancing since the beginning of the eight-
ies from last century [18], is lattice QCD. In a typical lattice
QCD computation of the bound state mass, an appropriate
two point correlation function is evaluated and, from its large
time decay behaviour and the associated slope, the ground
state mass is estimated [ 19]. In the discrete setting, itis in gen-
eral tricky to access a priori continuum quantities from finite
volume data [20], although ways to extract more than naively
expected from finite volume input have been devised [21]. It
is common practise in the computation of bound masses to
rely on techniques that improve the signal to noise ratio of
the Monte Carlo simulation. These techniques allow access
not only to the ground state mass with the chosen quantum
numbers, but, sometimes, also allow the first excited state
to be extracted. In practice however, the computation of the
excited states masses has proven to be a difficult task, usually
based on a generalized eigenvalue problem, as in [4,5].

Herein, we aim to discuss an alternative way of access-
ing the particle masses: via the computation of the Kallén—
Lehmann spectral representation associated with the momen-
tum space particle propagator [22]. A possible advantage of
using spectral representations compared to a conventional
lattice calculation is that it does not necessarily require the
use of smearing, or other techniques, to improve the Monte
Carlo signal to noise ratio, see e.g. [23,24] and references
therein. As seen below, the computation of the spectral func-
tion allows simultaneous extraction of the ground state and,
to some extent, also of the 1st excited state, at least for good
enough data.

The interest in the Kéllén—Lehmann spectral represen-
tation goes beyond the determination of particle spectra.
Besides accessing the spectra at zero and finite temperature,
the spectral representation is linked with the analytical struc-
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ture of the associated propagator [25], and it allows the com-
putation of thermodynamical and transport properties [26].
Furthermore, in QCD, or any other confining theory, it can
help to understand the confinement mechanism [27-33]. In
particular for the glueball sector, future work should focus
on the thermal widening of the spectral peaks, indicative of a
melting pattern of the glueball modes across (or at least near
to) the deconfinement transition. Such information cannot
be directly traced from the aforementioned large time slope
and requires a more in depth study of the spectral functions
themselves [8]. A first step set in this paper is developing
an efficient inversion scheme at zero temperature that can be
quite easily generalized to finite temperature afterwards.

In the current work we focus on the SU(2) glueball states
with quantum numbers J”¢ = 01+, i.e. the scalar glue-
ball. However, in principle, the procedure can be extended
to other quantum numbers and other gauge groups. As dis-
cussed below, the masses of the glueball 0" obtained from
the spectral function are in good agreement with the estimates
of a more conventional mass calculation.

Let us describe our procedure to access the Killén—
Lehmann spectral representation p (w) from a two point cor-
relation function G(p?). The relation between these two
functions reads

G(pz) _ /(;oo 2wp (w) dw _ /°° o(w) dw

w? + p? oo @ —ip

This definition assumes that the integrations are well defined
[34] and, therefore, p (w) approaches zero sufficiently fast as
|w| — oo. Certain correlators contain polynomial terms that
diverge for large p as happens e.g. for the glueball operator,
something which follows immediately from power counting
and a dimensional analysis. However in these cases it is still
possible to write down a sensible Kéllén—Lehmann spectral
representation, if one first subtracts the polynomial part [34].
This corresponds to adding appropriate contact counterterms.
So, if G(p?) has a polynomial part, the propagator can be
written as

n—1 ~
Y =St Py [ 2R e
G(p)-éak(p P+ ( p+p)/0 o
n—1 o -
:Zak(Pz—ﬁz)k+(_p2+132)n/ P(w)qw
k=0 —00 W —1Lp
(D
with
105G (p?)
Tk a2k , 2
o = G)
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and p? is a reference momentum scale at which the subtrac-
tion is done. A derivation of the above relations can be found
in Appendix A. For the scalar glueball a dimensional anal-
ysis [10] shows that n = 3. The spectral function p(w) can
thus be obtained, if the subtraction of the polynomial part can
be performed. However, performing subtractions on numer-
ical data is extremely sensitive to the choice of p and results
in relative rapid variation of {a;} with the subtraction point
[35].

An elegant way to perform the subtractions, without actu-
ally having to do these, is by considering the Fourier trans-
form of G(p?) and look at the Schwinger function defined
as

e P dpy.
p=0, ps#0

cor=r{6w)w=[ 6w

—00

“

Setting the subtraction reference momentum p = 0, yields

C(r)=F{G(pH} () (5)
n—1
= L{p@) (7)) + 27 > ar(~ D0 (x)
k=0
+ A (1) Y s () / " dw 3 B (®),
0

k=2

(6)

see Appendix A for more details. The important observation
however, is that C(t) = L{p(w)} (|t]) when T # 0, and
equal to a sum of (derivatives of) Dirac delta functions when
T = 0. Therefore, p(w) can be recovered by taking C(7) for
T > 0, and inverting the Laplace transformation.

Because the inverse Laplace transform is an ill-defined
numerical problem, regularization is necessary in order to
perform the inversion. We shall use Tikhonov regulariza-
tion, similar to our previously published method [28,36].
However, because glueballs are observable particles, their
spectral density p(w) is non-negative. Therefore we shall
implement Tikhonov regularization using non-negative least
squares (NNLS) [37], to ensure a positive spectral function
p(w) > 0. Tikhonov regularization is not the only possible
way to regularize the inversion, and a number of different
regularization strategies have been explored in literature to
access the spectral function for particle correlators by var-
ious authors [31,33,38—45]. An advantage of the Tikhonov
regularization being that it keeps the optimization function
a quadratic function, which translates into solving a modi-
fied linear system of equations. Using a NNLS solver allows
solving this system of linear equations while simultaneously
enforcing positivity; a feature not shared by other strategies
to enforce positivity such as the ansatz p(w) = exp(o(®)).
The most widely used approach is based on the maximum
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entropy method (MEM) [38]. We will therefore use the same
litmus test as in [38] to benchmark our approach, before turn-
ing to the actual glueball case.

2 The numerical method

In a lattice simulation the propagator! G(p,,) is computed on
a finite set of evenly spaced momenta p,. Given a data set
{G(pn)} := {G(po),....,G(pN-1)}, the Schwinger func-
tion is computed using DFFT, resulting in a data set {C (tx)},
where

N-1
C(w) =) G(py)e /N,

n=0
The Laplace transformation to access the spectral function is
given by

C(r) = L{p(w)} (tp) = /o e “%p(w)dow. (7)

Because p(w) > 0 for observable particles, 9C/dt < 0.
Equation (7) can be approximated using the matrix equation

C=Kp,
with the elements of K defined as
Kip = e “% Aw.

Since p needs to be obtained, and a direct solution is impos-
sible due to the near zero singular values of K, the original
problem is replaced by the minimisation of the Tikhonov
regularizing functional

Jo = 1Kp —Cl3+e?lp — p*II3, 8)

where > > 0 is the Tikhonov parameter and p* is a prior
estimate for p. In order to impose the constraint p > 0 using
a NNLS solver, we define

K C
e () 2 ()

and rewrite J, as
Jo = Ap —bl5. (10)

It is straightforward to show that (8) and (10) are equivalent.
However, the formulation of the problem using Eq. (10) can
be solved with a non-negative least squares (NNLS) solver
such that p > 0 is guaranteed [37]. In this work we used the
implementation of NNLS [37] as provided by SciPy [46].

! Note the change in notation from G(p?) to G(p), where p = py
now stands for the four component of the momentum. See Eq. (4) for
the definition of the Schwinger function.

We should note that although we work with lattice QCD
data, we nevertheless keep using the “continuum version”
of the spectral relation, as also done in e.g. [31,38,43]. The
standard MEM paper [38, Appendix], compared the usage
of an (artificial) lattice kernel against the continuum kernel,
and did not find any noticeable difference. This provides jus-
tification for this assumption.

Determination of o The regularization parameter «, in
essence, provides a soft threshold to the singular values of
K, such that the smallest singular values no longer cause
numerical issues. Choosing « is a delicate affair, since setting
it too small means the problem remains ill-defined, whereas
setting it too large destroys a lot of the information contained
in the data.

Our preferred criterion for o relies on the Morozov dis-
crepancy principle [36], which states that &> should be cho-
sen such that

IKp—Cl3=> o, (1)
i

where Zi crl.z is the total variance in the data. Intuitively, this
criterion implies that the quality of the reconstruction is iden-
tical to the quality of the data. The o> obeying Eq. (11) is
guaranteed to be unique [47], and because the value of p fora
given data set C depends only on «?, any minimization algo-
rithm yields the same solution for p. We found fast conver-
gence with Nelder-Mead, as implemented in symfit [48],
but we checked that different solvers indeed give numerically
the same solution.

Construction of K The matrix K should perform the
Laplace transform as truthfully as possible, and therefore w
should range from [0, wmax), Where wmay is sufficiently large
compared to any features that might appear in p (w). In order
to ensure this we choose to sample w evenly in logarithmic
space from [107,10°] GeV in N, steps. However, the peak
positions are very consistent, in both linear and logarithmic
space, provided wmax and N, are large enough. Nonethe-
less, sampling @ evenly in logarithmic space is preferred,
as convergence of the peak positions is reached for much
smaller values of N,. A numerical comparison is provided
in Appendix B.

3 Results and discussion

In this section we detail the results of applying the method
of Sect. 2 to various mock and real data. In Sect. 3.1 the
method is applied to a toy model based on a vector-meson
spectral density to establish its reliability. Then, in Sect. 3.2
the method is applied to recent lattice SU(2) propagator data
for the 0™ glueball [1].

@ Springer
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Fig. 1 Reconstruction the toy-model spectral density function for various noise levels d as defined in Eq. (14) and number of data points N.
The dashed black line is the original spectral function, while the blue solid curve is the reconstructed spectral function as given by the Tikhonov

regularized NNLS method

3.1 Meson toy-model

In order to investigate the reliability of the method we con-
sider a realistic toy-model, based on a vector-meson model
decay into hadrons, as used before in [38]. This particular
model needs a single subtraction (n = 1), and therefore pro-
vides an excellent test of the method. To allow comparison
of our results to those of [38], the same process was used to
generate the mock data. The meson spectral density function
is given by

(w) 2| p2 Lomy
w) = —
g T | P (e?— m%,)2 + F%m%
1 1 Uy 1 0
e (4 ) oo | (12)
with an energy-dependent width
2 2\ 3/2
gpmr 4m
Ip(w) = T my <1 — w2”> 0(w —2my). (13)

@ Springer

The empirical values of the parameters are

m, = 0.77 GeV, my = 0.14 GeV,
pmn = 545, Fy= L
8pnm
wo = 1.3 GeV, 5 =0.2GeV

As w — o0, this model behaves like p(w — o00) =
(1/472)(1 4 o /7). Therefore the integral eq. (1) does not
converge, and a single subtraction has to be performed; that
means n = 1 in the notation used in Eq. (2).

Assuming oy = 0.3, the value (1/4712)(1 + ag/m) =
0.0277 can be used as the prior, but identical to [38] we shall
use the slightly smaller value ppior = 0.0257. In order to gen-
erate mock data, we compute Corig(7y) as the Laplace trans-
form of p(w), on N points 73 spaced by At = 0.085 fm =
0.43078 GeV~!. The standard deviation of the noise is cho-
sen as

Tk
o() =d Corig(fk)E’ (14
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where d is a parameter which controls the noise level, iden-
tical to that of [38]. The mock data set is then generated as

C(t) = N (it = Corig(tr), 02 = 0 (1)?).

These mock data sets were then inverted, ignoring C(tp),
for various values of N and d, using the method of Sect. 2,
to test the robustness of the method. No inversions without
positivity constraints were performed, as significant positiv-
ity violations were observed in initial trials. Here we used
N, = 1000 in the construction of K. The results are shown
in Fig. 1. Both more data-points, or less noise, are found
to improve the quality of the reconstruction. A direct com-
parison with [38, Figure 4] is complicated by the absence
of uncertainties on that figure, but the performance of the
methods seems comparable to the naked eye.

3.2 SU(2) Glueball data

Yamanaka et al. [1], see also [49], have provided us with the
Schwinger functions for the SU(2) pure Yang-Mills glue-
balls, using lattice simulations for 8 =2.1,2.2,2.3,2.4,2.5.
The Schwinger functions were computed using the raw data,
that is, without any smearing applied. The lattice volumes,
the number of configurations, the number of Schwinger func-
tion time slices N, and the uncertainties in each data set, are
shown in Table 1. There was no access possible to the con-
figuration per configuration data, implying we have to ignore
any possible correlations between the different times. Said
otherwise, we work with a diagonal correlation matrix?.

The simulations of Yamanaka et al. rely on large ensem-
bles of configurations, resulting in data sets with very low sta-
tistical uncertainties. This makes the results of the Tikhonov
regularized inversion highly reproducible, as seen in the toy
model study of Sect. 3.1. For further details about the data
sets, we refer the reader to [1].

The Schwinger functions for the various simulations can
be seen in Fig. 2. The values of C(t) for t > 10 behave
unexpectedly, since p(w) > 0 implies dC/dt < 0. There-
fore these data points were excluded from the inversion, as
this behavior is likely the result of lattice artifacts. On the
basis of this argument perhaps even more data points could
be excluded, but we found that this does not significantly
impact the result, and given the small number of data points
available and in the interest of transparency, we have opted to
include as many data points as possible in the inversion. Fig-
ure 3 shows the spectral density functions as obtained without
any constraints on p(w), using the ip-method published in
[36]. As Fig. 3 illustrates, there are significant positivity vio-
lations and rapid oscillations in the infrared when positivity
is not enforced, especially for small w, a tell-tale sign of over-

2 N. Yamanaka, private communication.
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Fig. 2 C(v) for all data sets. In order to display negative values while
keeping log-scale where possible, the range [—10~7, 10~ 7] is linear.
Only the data points connected by a dotted line were included in the
inversion
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Fig. 3 p(w) for all data sets, using the i p-method. The p (w) have been
normalized to give the last peak an intensity of 1. The colored bands
indicate the masses as found by [1] (see also Table 3). The oscillations
indicate overfitting and clearly positivity constraints should be imposed

fitting.> On the other hand, when positivity is imposed, the
resulting spectral functions in Fig. 4 all display a clear mass
gap that corresponds to a ground state mass in the range of
1.4-1.9 GeV. Moreover, the infrared oscillations are gone,
and we can actually forget about the deep IR that is anyhow
inaccessible to the lattice simulation. To produce Fig. 4, we
set N, = 2000 in the construction of K. This is unnecessar-
ily large for reliable extraction of the ground state mass, as
convergence is already reached for N, > 1000 as is shown in
Appendix B, and was done merely to improve the aesthetics
of Fig. 4. Table 2 lists the w values of all the local maxima

3 These should anyhow be taken by a grain of salt given that the finite
lattice volume limits the IR resolution.

@ Springer
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Table 1 The glueball data sets of [1]. Selection of information taken from [1, Table I, Table II]. The physical volume in units of fm?* was calculated

assuming /o = 0.44 Gev

B Volume Volume (fm*)

Configurations N

max(C(1))/(oc (1)) a/o

2.1 103 x 12
2.2 124

2.3 143 x 16
2.4 163 x 24
2.5 203 x 24

(2.73)% x 3.27 = 66.30
(2.51)% x 2.51 = 39.87
(2.31)3 x 2.65 = 32.80
(1.91)% x 2.86 = 19.90
(1.69)% x 2.02 = 9.72

1,000,000
9,999,990
4,100,000
2,030,000 13
520,000

3.28 x 1074
1.04 x 104
1.38 x 1074
1.55 x 10~*
13 3.04 x 1074

0.608(16)
0.467(10)
0.3687(22)
0.2660(21)
0.1881(28)

10

“~

0 1 2 3 4 5
w (lattice units)

Fig. 4 p(w) for all data sets, subject to p(w) > 0, normalized such
that the ground state has an intensity of 1. The colored bands indicate
the masses as found by [1] (see also Table 3). The dotted line at w =
(lattice units) indicates the largest momentum at which the results can
be trusted

Table 2 Maxima of Fig. 4 in order of increasing w, with corresponding
left and right Half Width at Half Maximum (HWHM)

B w = HWHM (lattice units)

2.1 1.895 4+ 0.112 — 0.085
4.708 4 1.499 — 0.747

2.2 1.540 4+ 0.018 — 0.035
3.571 +0.041 — 0.041

2.3 1.116 4+ 0.195 - 0.110
3.110 + 1.653 — 0.909

24 1.053 + 0.170 — 0.136
3.219 +1.654 — 0.914

2.5 0.808 + 0.068 — 0.054

3.039 +1.615 — 0.838

in Fig. 4, and the left and right Half Width at Half Maximum
(HWHM) values of each local maximum.

In order to compare the ground state masses as extracted
via the spectral method with the results calculated by
Yamanaka et al. [1], Table 3 lists the two results side by
side.

@ Springer

The uncertainties in the ground state masses as listed in
Table 3 were calculated by fitting a Gaussian distribution to
the ground state peak, and a string tension of /o = 0.44 GeV
was assumed to convert to physical units. The required values
of a/o are given in Table 1, and their uncertainties were
compounded with the uncertainties in the ground state mass
to calculate the uncertainties in the physical mass m.

For all but 8 = 2.5, the scalar glueball masses as obtained
by [1], and those extracted using the spectral density method,
agree within one standard deviation. This is noteworthy, since
we based ourselves on unsmeared data, whilst the mass esti-
mates from [1] were obtained after smearing, which usually
improves the ground state signal. For 8 = 2.5 the disagree-
ment is about ~ 1.8 standard deviations, which might be
explained by the fact that this is also the data set generated
from the smallest number of configurations. In addition to the
ground states, the spectra presented in Fig. 4 also hint at first
excited states. However, the position of these excited states
are close to or beyond 77 /a, the largest momentum accessible
on the lattice, and thus their estimation has to be treated with
care.

Figure 5 displays the extracted mass estimates as a func-
tion of a2, from which an estimate for the continuum values
of the masses can be obtained after performing a weighted
linear regression to the function m (@?) = sa* + mg(0).
This model is motivated by the fact that the lattice action and
operators have corrections of O(a?). The continuum esti-
mates for the ground and excited state masses were found to
bemy(0) = 1.684+0.09 GeV and my(0) = 4.07+1.01 GeV
respectively (where again we assumed /o = 0.44 GeV).

The relatively wide peaks for the excited states indicate
that we might need a better signal, as there are in principle
no decay channels open for these 1st excited states in pure
gluodynamics, not even to the 07 ground state. However,
these values are near to or beyond w = m/a, i.e. the resolu-
tion of the lattice experiments, and hence are to be taken with
a grain of salt. Only the 8 = 2.2 data set displays relatively
sharp ground and excited state peaks; we dare to speculate
that this is because of the much larger configuration num-
ber for B = 2.2 (Table 1). Future research should reveal
whether larger configuration numbers and/or smearing tech-



Eur. Phys. J. C (2022) 82:251

Page 7of 11 251

++
Table 3 The 07 glueball Traditional [1]

Spectral representation

ground state masses as

presented in Table 3 of [1] B ang mg 1GeV ame mg /GeV
compared with the spectral
representation method. The 2.1 1.853(13) 1.341(37) 1.895(99) 1.371(80)
uncertainty in the ground state 2.2 1.517(10) 1.429(32) 1.540(26) 1.451(40)
EIE{SS Valées was Cg!CUlal;ted by 23 1.241(6) 1.481(11) 1.116(153) 1.331(182)
ﬂ:;“;fl o g?jifé‘s t;g‘pﬁ“;;("‘};‘l 24 0.924(8) 1.528(18) 1.053(153) 1.742(254)
physical units were calculated 25 0.696(6) 1.628(28) 0.808(61) 1.890(145)
assuming /o = 0.44 GeV
1T 7 1 [ it data, an operation that can be cumbersome and a source of
10 1 I g=21 large uncertainties, we consider the Schwinger function C (1)
] B =22 instead of G(p?). Once the Schwinger function has been cal-
81 i =23 culated from G (p?), subtractions are performed simply by
> % ﬂi ;l removing the data point C(0). The spectral density is then
L 67 obtained by taking the inverse Laplace transform of C(t)
g ] for > 0. For this inverse Laplace transform, the inversion
A method as described in [36], that does not constrain p, was
.......................... compared with a reformulation of the method that relies on
21 U O L Y I ... a non-negative least square solver to impose a positive .
1 The numerical method was first tested on mock data from
0 T T T a given spectral density. The test followed the same rules
0.00 0.02 0.04 0.06 0.08

Fig. 5 Mass estimates of the ground and excites states, see Table 2, vs
a? in fm?. A weighted linear regression to the data points was performed
to estimate the continuum values for the ground and excited state masses

niques result in sharper peaks. It is nonetheless reassuring
that this crude estimate for the continuum 1st excited state
mass comes pretty close to the state of the art prediction of
[50, Table 23], based on independent SU(2) data.

We should also keep in mind that we are aiming at reli-
able continuum estimates, which implies 8 and the lattice
volume should be sufficiently large, so probably values of
B > 2.4 are suboptimal from this viewpoint. The size of
the (inverse) lattice spacing also determines the maximally
accessible momentum scale, forcing our spectral function
estimates to vanish in the UV, in contradistinction with the
continuum tail going as w*, as follows from power counting
or explicit computation [51].

4 Summary and conclusion

In this work we discuss the computation of the Killén—
Lehmann spectral density function p from two point cor-
relation functions G (p?) that can have a (divergent) polyno-
mial part. The extraction of the finite part of G(p?) that is
associated with p requires the subtraction of that polynomial
part. To avoid doing the subtraction directly on the numerical

as used in the original maximum entropy method inversion
paper [38], with similar results.

The inversion method was then applied to extract the
Kaillén—Lehmann spectral density function from the lat-
tice SU(2) glueball propagator data with quantum numbers
JPC = 07, based on the unsmeared data of [1]. We found
that the inversion method is robust and allows estimation of
the ground state and provides hints of excited state masses.
The comparison of the mass estimates between a conven-
tional lattice approach [1] and the method described herein
shows that the latter achieves comparable results for the
ground state, despite the lack of smearing.

The new spectral method is sufficiently general to be
applied to any spectroscopic calculation. In future research,
we will scrutinize the usage of smeared data to boost the
contribution of the lowest lying states, which should allow
access to at least the 1st excited state with higher accuracy.
Afterwards, the analysis performed in the current manuscript
might also be extended to the analysis of the spectra of other
glueball states with different quantum numbers.
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Appendix A: Subtracted correlator

A correlator G(p?) can be expressed in terms of a Killén—
Lehmann spectral representation as

) © 2wp (w) dw
G(p7) = /0 W, (15)
if this integral converges. However, if the correlator con-
tains divergences polynomial in p?, it is still possible to find
a Killén—Lehmann spectral representation, if one first sub-
tracts the polynomial part. In order to do this, consider the
Taylor expansion of G(p?) around p:

005G (p?)

TSk +Ga(p?).  (16)

n—1
G(p*) =) (p*—p")
=0

where G,, ( p2) is the remainder after the first n terms have
been isolated. At zeroth order, we find

Gi1(pH = G(pH - G(pH

_ o 2wp (w) dw
2 2
=(—p~+ - 17
p ”)/o TS S
Through induction, we obtain
~ _ o 2wp (w) dw
Gn(p?) = (—=p* + pH)" f - 18
This allows us to state that
n—1 ~
2wp(w) dw

2\ _ k

G(P)—Zak(P -+ PP+ D )n/ Tt

k=0
n—1
=Y (P — P+ P+ )f ”(‘”)d“’
k=0

(19)

@ Springer
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BT ICO TN e
- pl)
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Because p is an odd (real) function for bosonic degrees of
freedom [38], so is p. We will now calculate the Fourier
transform of the subtracted correlator, in order to obtain C (7).

f{c(pz)}zilakf{(p%k} {( p)/ p(“’)d‘”}
k=0

A

(22)
where we have set p = 0. For the first term A we obtain

n—1

A=Y aF )] =2r Zak( Dk () (23)

k=0 k=0

and for the second

B = 7{(—1)2)"/00 p)do dw} 4)
oo W—Ip
00 B 2w(_p2)n
- d”/’@f{m}

o0
:271(—1)”/ dw p(w)
0
n
% |:_22w2k—38(2(n—k)+2)(1,) i w2n6—|r|a):|
k=2

k=2

+ £ {p@e] () (25)

As aresult the total transform is given by

n—1
f[G<p2>]=2n’;Oak(—1>k6<2"><r>+c{p<w)}<|r|>
(- 1)n+126(2(n k)+2)(t)/ do 0™ =3 5(w)

k=2
(26)

An important consequence of this is that all the subtractions
are turned into (derivatives of) delta functions, which end up
at T = 0. Therefore, taking only t > 0, we can say that

C(@) =L{p(w)}(1).
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Appendix B: Numerical dependence on N,

To produce the glueball spectra given in Sect. 3.2, » was sam-
pled evenly in logarithmic space between [10~>, 10°] GeV, in
N, = 2000 steps, when constructing the Laplace kernel K.
However, this number of steps N,, is unnecessarily large, and
was chosen merely to generate aesthetically pleasing graphs.

To demonstrate the convergence of the maxima of the
spectral functions, Fig. 6 shows the w coordinate of the first

10
*  1st
9 A ¥ 2st
IR
5
8 7
=
= 61
s 5
£ X X X X X
£ 4]
g
o 31
s X
3 24 X X X X X
1_
0 T T T T T T
26 27 28 29 210 2]1

N,

(a) Results for logarithmic sample of w in
[107°,10°] GeV.

and second maximum in the 8 = 2.1 data set for increasing
Ny . In both the linearly spaced and logarithmically evenly
spaced scenarios, the ground state converges rapidly, and the
second maximum soon follows suit. In addition, Fig. 7 shows
the full spectrum in both scenarios. There is excellent agree-
ment between the two methods for the determination of the
ground state mass, but the overall convergence is better when
using logarithmically evenly spaced samples.

10
X st
9 1 ® o 2st
z %]
E]
g
B
2 6 X
s 5
IS 7] X
£ 44
3 L 1x
o 34
s X
3 24 X X X X
1_
0 T T T T T T
26 27 28 29 210 211

No

(b) Results for linear sample of w in
[0,100] GeV.

Fig. 6 The position of the first and second maxima for the § = 2.1 data set, as a function of the number of samples N,, in the Laplace kernel K

100

—~ 107" 3

2
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£ 102 4
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7
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(a) w sampled uniformly in logarithmic
space between [107°,10°] GeV.
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(b) w sampled uniformly in linear space be-
tween [0, 100] GeV.

Fig. 7 p(w) for the B = 2.1 data set, as a function of the number of samples N,, in the Laplace kernel K
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