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Abstract In recent years the femtoscopy technique has
been used by the ALICE Collaboration in small colliding
systems at the LHC to investigate the strong-interaction of
hadron pairs in the low-energy regime. The extension of
this technique to the study of many-body correlations aims
to deliver in the next years the first experimental measure-
ments of the genuine many-hadron interactions, provided
that the contributions due to the lower order terms are prop-
erly accounted for. In this paper we present a method that
allows to determine the residual lower order contributions to
the three-body correlation functions, based on the cumulant
decomposition approach and on kinematic transformations.
A procedure to simulate genuine three-body correlations in
three-baryon correlation functions is also developed. A qual-
itative study of the produced correlation signal is performed
by varying the strength of the adopted three-body interaction
model and comparisons with the expectations for the lower
order contributions to the correlation function are shown.
The method can be also applied to evaluate the combinatorial
background in the two-body correlation functions, providing
an improved statistical accuracy with respect to the standard
techniques. The example of the contribution by the pK+K−
channel to the recently measured pφ correlation is discussed.

1 Introduction

One of the main challenges of the modern nuclear physics is
to obtain a quantitative description of the many-body strong
interaction among hadrons. The many-body dynamics is cru-
cial in the theoretical explanation of various phenomena,
such as the absorption processes of mesons in nuclei [1]
and the observations of heavy neutron stars (M > 2 M�)
[2], which are apparently in contradiction with the formation
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of hyperons in the interior of such stars. Many-body scat-
tering and bound states calculations involving hyperons and
nucleons are typically performed employing effective inter-
action potentials [3,4]. Alternative approaches to the many-
body problem make use of variational methods, such as the
so-called Green’s function Monte Carlo and the quantum
Monte Carlo techniques [5–7]. So far, experimental inputs to
the three-body interaction models in the strangeness S = 0
and S = −1 sectors are provided by the measurements of
nuclei and hypernuclei binding energies, not ideal to con-
strain many-body scattering calculations.

In the last two decades the femtoscopy method [8–11] was
applied in collider and fixed target experiments at energies
varying from few GeV to few TeV. In particular, the hadrons
which are produced in pp and p–Pb collisions at the LHC are
emitted at small relative distances (of the order of 1 fm) and
may undergo Final State Interactions (FSIs) before the detec-
tion. The interacting hadrons are correlated in the momentum
space and the underlying dynamics can be tested by studying
the correlation function [10,11]. Recently, the method was
applied by the ALICE Collaboration and was used to study
FSIs of hadrons produced in pp and p–Pb collisions. The
high statistics collected by ALICE allowed to precisely mea-
sure the correlation function for multiple hadron pairs (p–p
[12], pK+ and pK− [13], p� [14], p�0 [15], �� [16], p�−
[17], p�− [18], pφ [19] and BB̄ [20]) and several models
for the two-body strong interaction could be validated (for a
complete review see Ref. [21]).

A first extension of this technique in the many-particle
sector can be obtained by addressing three-body correlations
[22,23], a measurement which will become feasible within
the next years. One of the crucial aspects in the interpre-
tation of the three-body correlations is represented by the
influence of the lower order, two-body, interactions on the
collected triplets sample. A first study with pion-triplets mea-
sured in Ref. [24] demonstrated that the Kubo’s cumulant
expansion method [25] can be employed to isolate and sub-
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tract the contributions of two-body quantum statistics (QS)
from the three-body systems. This contribution was obtained
using a data-driven approach, by selecting two-pions pro-
duced in the same collision and a third pion from a different
event to avoid three-body correlations. The same procedure
can be applied to a sample of any three hadrons to isolate
the genuine three-body correlation and infer on the strong
interaction. Alternatively, the lower order contributions can
be calculated starting from the genuine two-body correlation
functions, either the measured or the theoretical, imposing the
kinematic constraints of the analysed three-body system. The
advantage of this method is that it is not biased by the exper-
imental procedure of mixing particles emitted in the same
collision with particles emitted in a different collision. In
this paper, the latter procedure, called the projector method,
will be presented. Toy Monte Carlo (MC) simulations can be
employed to study the shape of three-body correlation func-
tions, including genuine two- and three-body contributions.
To this end, models for the two- and three-body interactions
are assumed. Using the projector method to set the baseline
due to the lower order correlations, it is possible to quali-
tatively study the simulated correlation function varying the
strength of the genuine three-body effects.

Furthermore, the method allows the projection of corre-
lation functions in any kinematic variable of interest. This
renders the projector method formalism useful also for the
evaluation of other sources of background which affect the
measurement of genuine hadron–hadron correlation func-
tions. An example is the combinatorial background in the
identification of unstable hadrons from their decay daugh-
ters. The latter are experimentally contaminated by particles
of different origin, entering as a background in the measured
correlation function. In the case of pφ analysis the correlation
function is affected by the residual pK+K− correlations (see
Ref. [19]). The problem is commonly solved by constructing
the correlation function starting from particles in the side-
bands region of the invariant mass of the particle of interest.
In the specific example of the φ meson, one would consider
the side-bands on the K+K− invariant mass. The obtained
correlation can be used as a baseline for the interaction stud-
ies [15]. The method developed in this work will allow to
evaluate theoretically the projection of the pK+, pK− and
K+K− correlations in the pφ correlation function, leading to
an improved precision of the background model in the region
where the genuine three-body effects are negligibly small.

The paper is organised as follows: general concepts on
the two- and three-body correlation functions are given in
Sects. 2 and 3; the method is formalised and developed in
Sect. 4 and tests are performed in Sect. 5 by means of toy MC
simulations of a two-body correlation in three-body systems;
in Sect. 6 genuine three-body correlations are introduced in
the simulated data sample and a study of the generated cor-
relation function is performed; the evaluation of the pK+K−

combinatorial background contribution in the pφ correlation
function is calculated in Sect. 7 and the conclusions are given
in Sect. 8.

2 Two-body correlation function

The femtoscopic two-body correlation function is defined in
terms of the relative momentum k of the interacting pair and
is calculated using the Koonin–Pratt formula [26,27]

C2(k) =
∫
V
S2(r) |ψk(r)|2 d3r , (1)

where S2(r) is the two-body source function, which is nor-
malised to the unity in the domain V of the relative position
coordinates r, ψk(r) is the wave function of the pair. In the
non-relativistic regime, the wave function ψk(r) is a solution
of the stationary Schrödinger equation, given by the Hamil-
tonian operator of the relative system

Hr = k2

2μ
+ V2(r) = − h̄2

2μ
∇2

r + V2(r) , (2)

where μ is the reduced mass of the system and V2(r) is the
two-body interaction potential. Under the hypotheses of no
explicit time and momentum dependence for the particles
emitter, a Gaussian two-body source function can be assumed

S2(r) = 1

(4πr2
0 )3/2

e
− r2

4r2
0 , (3)

where r0 is the emitting source radius (more details on the
source function are discussed in Refs. [11,21,28]).

Given two particles with massesm1 andm2, position coor-
dinates x1 and x2, the Koonin–Pratt formula can be gener-
alised, including the center of mass (CM), as

C2(p1, p2) = ∫
V1

∫
V2

S2(x1, x2) |ψp1,p2(x1, x2)|2 d3x1d3x2 , (4)

where p1 and p2 are the particle momenta and ψp1,p2(x1, x2)

is now the wave function of the two-body system in the posi-
tion coordinates representation. The non-relativistic Hamil-
tonian operator turns to be

H = p2
1

2m1
+ p2

2

2m2
+ V2(x1 − x2) . (5)

Applying the transformation from the Cartesian to the rela-
tive coordinates basis in Eq. (4), the Koonin–Pratt formula
in Eq. (1) is recovered. In the absence of interactions, i.e.
V2(x1 − x2) = 0, the wave function of the system is given
by the product of plane waves and the correlation function
becomes C2(p1, p2) = 1.
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3 Three-body correlation function

The definitions presented in Sect. 2 are now extended to a sys-
tem of three particles having masses m1, m2 and m3. Starting
from the general Eq. (4), the three-body correlation function
can be defined as

C3(p1, p2, p3) =
∫
V1

∫
V2

∫
V3

S3(x1, x2, x3)

×|ψp1,p2,p3(x1, x2, x3)|2 d3x1d
3x2d

3x3 ,

(6)

where x1, x2 and x3 are the coordinates of the three particles,
p1, p2 and p3 are the corresponding conjugate momenta,
S3(x1, x2, x3) is the three-body source function, which is
normalised to the unity in the 9-dimensional V1 × V2 × V3

volume and ψp1,p2,p3(x1, x2, x3) is the wave function of the
three-body system in the position coordinates representation.
The three-body correlation function is given as a function of
the Lorentz invariant hyper-momentum Q3 [22,24] defined
as

Q3 =
√

−q2
12 − q2

23 − q2
31 , (7)

where qi j is the modulus of the four-vector

qμ
i j = 2 m j

mi + m j
pμ
i − 2 mi

mi + m j
pμ
j . (8)

In the non-relativistic approximation Eq. (7) reads

Q3 = 2

√√√√ 3∑
i< j=1

(
m j

mi + m j
pi − mi

mi + m j
p j

)2

. (9)

For each given value of Q3, multiple configurations in the
momentum phase space (p1, p2, p3) ∈ S are allowed. The
three-body correlation function can be calculated as a func-
tion of Q3 by performing the integration over all the momen-
tum configurations corresponding to the same value of Q3,
i.e.

C3(Q3) = ∫∫∫
(p1,p2,p3)∈D3

C3(p1, p2, p3) N d3p1 d3p2 d3p3 , (10)

where D3 is the integration domain defined as follows

D3 = {(p1, p2, p3) ∈ S | Q3 = constant} . (11)

The density of states for each configuration is uniform, thus
the normalization constant N in Eq. (10) is defined as

N =
[∫∫∫

(p1,p2,p3)∈D
d3p1 d3p2 d3p3

]−1

. (12)

In the absence of interaction the three-body correlation func-
tion is equal to the unity C3(p1, p2, p3) = 1 and the projec-
tion onto the Q3 scalar is C3(Q3) = 1.

The formula in Eq. (10) can be generalised to the N -body
system given the kinematic variable of interest, denoted here
as QN

CN (QN ) = ∫ · · · ∫
(p1,...,pN )∈DN

CN (p1, ..., pN ) N d3p1 · · · d3pN , (13)

where the domain DN and the normalisation N are defined
accordingly.

4 Two-body contributions in three-body correlation
functions

In three-body correlation studies, three particles emitted in
the same collision are measured. The correlation in the parti-
cles momentum space is provided both by the pairwise inter-
actions among the hadrons and, eventually, by the three-body
interaction. The contribution due to the genuine three-body
correlation can be isolated using the Kubo’s cumulant expan-
sion method (see Ref. [25] for the details). Using the Kubo’s
rule, a triplet sample denoted with (1, 2, 3), where the num-
bers indicate the particles, can be decomposed as follows

(1, 2, 3) = − 2 × (1)(2)(3) + ([1, 2], 3)

+ ([2, 3], 1) + ([3, 1], 2) + ([1, 2, 3]) (14)

where ([i, j], k) are statistical sub-samples in which only the
particles in the square brackets are correlated; (i)( j)(k) is the
sub-sample of three uncorrelated particles and ([i, j, k]) is
the genuine three-body correlated sample. The correlation
function corresponding to Eq. (14) is

C3(p1, p2, p3) = C3([p1, p2], p3) + C3(p1, [p2, p3])
+C3(p2, [p3, p1]) − 2

+c3([p1, p2, p3]), (15)

where c3([p1, p2, p3]) is the three-body cumulant (see Ref.
[24] for the formal derivation). In the absence of genuine
three-body effects the cumulant is equal to zero (c3 = 0) and
the three-body correlation function is

C3(p1, p2, p3) = C3([p1, p2], p3) + C3(p1, [p2, p3])
+C3(p2, [p3, p1]) − 2

≡ C2b
3 (p1, p2, p3), (16)

where the superscript 2b indicates that only the two-body
correlations are considered.

Given that in each statistical sub-sample ([i, j], k) only
the pair (i, j) interacts, the three-body correlation functions
C3([pi , p j ], pk) in Eq. (16) can be calculated by using the
two-body correlation function of the (i, j) pair. In this spe-
cific case the Hamiltonian of the system is

H = HCM + H1 + H2 = P2

2 M
+

[
k2

1

2 μ1
+ V (r1)

]
+ k2

2

2 μ2
,

(17)

where P is the momentum of the center of mass (CM), k1

and k2 are the relative momenta for the three-body system
corresponding to the Jacobi coordinates r1 and r2, M is the
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total mass, μ1 and μ2 are the reduced masses (the defini-
tions are given in Appendix A). Since the Hamiltonian oper-
ators HCM , H1 and H2 commute, the total wave function of
the system can be factorised. The solutions of the stationary
Schrödinger equations for the Hamiltonians HCM and H2

are free plane waves in the position coordinates representa-
tion and then the three-body correlation function defined in
Eq. (6) turns to be

C3(P, k1, k2)=
∫
VR

∫
Vr1

∫
Vr2

S3(R, r1, r2) |ψ1(r1)|2 d3R d3r1d3r2 ,

(18)

where the wave function ψ1(r1) is a solution of the
Schrödinger equation for the Hamiltonian operatorH1 in Eq.
(17). Given that the wave function in Eq. (18) depends only
on the coordinate r1, the source function can be marginalised
in r1 by performing the integrals in d3R and d3r2, i.e.

S3(r1) =
∫
VR

∫
Vr2

S3(R, r1, r2) d
3R d3r2 . (19)

Assuming that the two- and three-body sources have the same
radius, evaluated in Ref. [29], we get the equivalence of the
three-body and two-body source functions S3(r1) = S2(r1)

and, consequently, the equivalence of the three-body and
the two-body correlation functions C3(P, k1, k2) = C2(k1),
recovering the Koonin–Pratt formula in Eq. (1).

Following the definitions given is Sect. 3, the correlation
function is calculated as a function of the scalar Q3. To this
end Eq. (9) is rewritten in terms of the relative momenta

Q3 =
√

α k2
1 + 2β k1 · k2 + γ k2

2 (20)

where the constants α, β and γ depend on the particles mass.1

The Eq. (20) for a fixed value of Q3 is the analyti-
cal formula of a rotated hyper-ellipsoid in IR6, then using
a parametrisation for the surface, the integral in Eq. (10)
becomes

C3(Q3) =
∫∫∫∫

Q3=const
C2(k1) N k2

1 k2
2 d�1d�2dk1dk2

=
∫ √

γ

αγ−β2 Q3

0
C2(k1)

[
16(αγ −β2)3/2k2

1

πQ4
3γ 2

√
γ Q2

3 − (αγ − β2)k2
1

]
dk1 .

(21)

1

α = 4 m2
3

(m1 + m3)2 + 4 m2
3

(m2 + m3)2 + 4 ;

β = 4 m3(m1 + m2 + m3)

m1 + m2

[
m2

(m2 + m3)2 − m1

(m1 + m3)2

]
;

γ = 4 (m1 + m2 + m3)
2

(m1 + m2)2

[
m2

1

(m1 + m3)2 + m2
2

(m2 + m3)2

]
.

The Eq. (21) projects the two-body correlation function
C2(k1) from the two-body relative momentum k1 on the
three-body hyper-momentum Q3. The projection is provided
by the following analytical function

W (k1, Q3) =
∫∫∫

k2
1k

2
2dk2dΩ1dΩ2∫∫∫∫

k2
1k

2
2dk1dk2dΩ1dΩ2

(22)

= 16(αγ − β2)3/2k2
1

πQ4
3γ

2

√
γ Q2

3 − (αγ − β2)k2
1

(23)

that represents the density of states in the phase space in the
volume (k1, k1 +dk1) for a fixed value of Q3. The same pro-
cedure can be applied to calculate the two-body correlation
functions in any chosen kinematic variable by writing the
integration domain in Eq. (11) accordingly. An example will
be shown in Sect. 7.

Performing the projection onto Q3 for all the terms in
the right side of Eq. (16), the total contribution to the three-
body correlation function due to the two-body interactions is
obtained as a function of Q3

C2b
3 (Q3) = C12

3 (Q3) + C23
3 (Q3) + C31

3 (Q3) − 2 (24)

where the indices i j refer to the label of the interacting par-
ticle pairs. Each term of the sum is calculated using the two-
body correlation function for the interacting pairs, i.e.

Ci j
3 (Q3) =

∫
C2(k

i j
1 ) Wi j (ki j1 , Q3) dk

i j
1 , (25)

where the function Wi j is the projector defined in Eq. (23).

5 Validation of the method

The projector method developed in Sect. 4 is tested by means
of a toy Monte Carlo (MC) simulation. A data sample of three
particles with massesm1,m2 andm3 and momenta p1, p2, p3

is generated, assuming that only the pair (1,2) is correlated
in the momentum space. Given the vector components of the
particle momenta, the relative momentum of the correlated
pair k1 and the scalar Q3 are calculated event-by-event. Since
k1 is Lorentz invariant, we will use from now on the common
notation k∗ which is the relative momentum of the interacting
pair in their CM frame. The two-body correlation function
for the pair (1,2) is then obtained as a function of k∗ using
the formula used in femtoscopy to calculate the experimental
correlation function [11], i.e.

C2(k
∗) = Nsame(k∗)

Nmixed(k∗)
, (26)

where Nsame(k∗) is the relative momentum distribution of
pairs of particles produced in the same MC event and
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Nmixed(k∗) is obtained using the so-called mixed event tech-
nique, combining particles generated in different MC events.

The three-body correlation function of the triplet is also
calculated. In this case, the same and mixed event distribu-
tions as a function of Q3 are used, i.e.

C3(Q3) = Nsame(Q3)

Nmixed(Q3)
. (27)

The correlation function in Eq. (27) is finally compared to
the prediction of the projector method, using the two-body
correlation function C2(k∗) as input in Eq. (25).

5.1 MC data sample

The simulated data sample is generated following the
Kubo’s decomposition rule in Eq. (14), i.e. adding correlated
and uncorrelated particle sub-samples. The first hypothesis
within the simulation is that only the pair (1,2) is correlated,
consequently the (2,3) and (3,1) pairs correlations and the
three-body cumulant are assumed to be zero. The first two
terms in Eq. (14) are then considered. The relative contribu-
tions of the uncorrelated and correlated particle sub-samples
have to be determined assuming a realistic two-body inter-
action providing the two-body correlation.

In the MC simulations each event is represented by
specific values for the momenta (p1, p2, p3) of the three-
particles, to be extracted from a probability distribution func-
tion (pdf) of the momenta. The domain is

D = {(p1, p2, p3) ∈ S | |p1| < m1 ∧ |p2| < m2

∧ |p3| < m3} ,
(28)

chosen to fulfill the non-relativistic condition. For the uncor-
related particles sub-sample, the components of the momen-
tum vectors are drawn from uniform distributions U (p) =
U (px )U (py)U (pz) while the genuine two-particle correla-
tion is obtained using a joint distribution of the corresponding
momenta f2(p1, p2). The global pd f is then defined as

f (p1, p2, p3) = q U (p1) U (p2) U (p3)

+ p f2(p1, p2) U (p3) ,
(29)

where q and p are the weights of the two sub-samples and
are calculated in Sect. 5.2. The joint pd f which is chosen to
generate the two-body correlation is a multivariate Gaussian
distribution defined as follows

f2(p1, p2) = N exp

⎡
⎢⎣−

(
m2

m1+m2
p1 − m1

m1+m2
p2

)2

2 σ 2
2

⎤
⎥⎦ , (30)

where N is a normalization constant and σ2, together with
q and p, represent the parameters of the genuine two-body
correlation and have to be determined. Since the pd f s are
normalised to unity in the domain D, the completeness rela-
tion q + p = 1 is fulfilled. The choice of the Gaussian
distribution in Eq. (30) allows to factorise the pd f s of the
components of the momentum vectors

f2(p1, p2) = f2,x (p1,x , p2,x ) f2,y(p1,y, p2,y)

× f2,z(p1,z, p2,z) , (31)

and to easily generate numerically the vector components
which are used to calculate k∗ and Q3 event-by-event.

5.2 Extraction of the parameters

Given that particle 3 is uncorrelated, the pd f from Eq. (29)
simplifies to

f (p1, p2) = q U (p1) U (p2) + p f2(p1, p2) . (32)

Sampling the single particle momenta from f (p1, p2), the
corresponding k∗ and Nsame(k∗) can be obtained. This sam-
ple can be expressed as

NMC
same(k

∗) = q NMC
mixed(k

∗) + p g2(k
∗) , (33)

where NMC
mixed(k

∗) is the uncorrelated, mixed event, distribu-
tion and g2(k∗) is the function f2(p1, p2) in terms of k∗.

The two-body interaction is commonly modeled using the
Lednický formalism [30], which can express the correlation
function CLednický

2 in terms of the scattering length f0, the
effective range d0 of the interaction, and the source radius r0.
The same event sample can be expressed as

Nsame(k
∗) = CLednický

2 (k∗) Nmixed(k
∗) , (34)

allowing to obtain the parametersq, p and σ2 for a given set of
scattering parameter and emission source radius. Nmixed(k∗)
in Eq. (34) is generated drawing a sample from the pd f in
Eq. (32) with the condition (q, p) = (1, 0), corresponding to
the hypothesis of no genuine two-body correlation. Finally,
the corresponding Nsame(k∗) is evaluated from Eq. (34), and
the result is fitted with using Eq. (33) to extract q and σ2 with
the constraint p = 1 − q.

In order to perform a realistic test, CLednický
2 (k∗) is evalu-

ated assuming the scattering parameters corresponding to the
spin-0 p� interaction calculated within the χEFT at the next-
to-the-leading-order (NLO) given in Ref. [31] ( f0 = 2.91 fm,
d0 = 2.78 fm). A source radius r0 = 1.25 fm, typical for
small colliding systems at the LHC [12,29], is assumed.

In Fig. 1, the fit of the Nsame(k∗) distribution (black open
points) is shown. The red histogram is the fit function Eq.
(33), the open green and blue points represent the contri-
butions to the fit due to the genuine two-body and mixed
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Fig. 1 Fit of the same event distribution for the pair (1,2) obtained
using the Lednický model (black open points). The chosen scattering
parameters correspond to the spin-0 p� interaction calculated within the
χEFT at the NLO given in Ref. [31] ( f0 = 2.91 fm, d0 = 2.78 fm) and
a source radius r0 = 1.25 fm is chosen. The total fit function is the red
histogram, the open green and blue points represent the contributions
to the fit due to the genuine two-body and mixed event components in
the simulated data sample. See text for details

Table 1 Weights q, p and σ2 parameters extracted from the fit of the
same event distribution using Eq. (33) (see text for the details)

q p σ2

(99.734 ± 0.002) % (0.266 ± 0.002) % (27.7 ± 0.1) MeV/c

event components in the simulated data sample. The obtained
parameters q, p and σ2 are reported in Table 1.

5.3 Projected two-body correlation function

Using the parameters from Table 1, the pd f of the particle
momenta in Eq. (29) is defined. The three-body MC data
sample, where particle 3 is not correlated to the pair (1,2),
is finally generated. The correlation functions C2(k∗) and
C3(Q3) are calculated using Eqs. (26) and (27). The obtained
correlation functions are shown in Fig. 2, top and bottom
panels respectively.

The uncertainties represent the statistical errors of the MC
simulation. The magenta band in the bottom panel is obtained
by substituting in Eq. (25) as C2(k∗) the two-body correla-
tion shown in the top panel of Fig. 2. The simulated corre-
lation function is in agreement with the correlation function
obtained by projecting k∗ onto Q3, validating the projector
method developed in Sect. 4. The band of the magenta curve
represents the statistical uncertainty of the projected corre-
lation function, which is significantly reduced compared to
the simulated data sample. This is related to the fact that the
two-body correlation C2(k∗) has smaller uncertainties com-
pared toC3(Q3). The projector method allows to evaluate the
two-body (background) contributions in the measured three-
body correlation with much higher precision, compared to
any data-driven determination.

Fig. 2 Top panel: two-body correlation function for the simulated p�

data sample as a function of the relative momentum of the interacting
pair. Bottom panel: three-body correlation function for the simulated
triplets (black squared symbols) as a function of Q3. Particles (1,2) are
correlated (the correlation function is shown in the top panel), particle
3 is not correlated to the (1,2) pair. The uncertainties represent the
statistical errors of the MC simulation. The magenta band is obtained
by projecting the (1,2) correlation function (top-panel) from k∗ to the Q3
of the triplet. The width of the band represents the uncertainty obtained
from the error propagation of the statistical uncertainties of correlation
function in the top panel

6 Simulation of a genuine three-body correlation

The next step is to consider the complete triplets sample
decomposition in Eq. (14) in the MC data sample. The total
two-body contributions in the simulated three-body correla-
tion function will be modelled using the projector method to
calculate C2b

3 (Q3) in Eq. (24). Any deviation from C2b
3 (Q3)

will reflect the non-vanishing three-body cumulant in the
simulated triplet sample. The study presented in the follow-
ing aims to provide a first qualitative procedure that could
be used to test the available three-body potentials models in
view of the future femtoscopic measurements.

6.1 MC data sample

Using the same procedure adopted in Sect. 5.1 and following
the Kubo’s decomposition in Eq. (14), the MC triplets data
sample is obtained extracting the single particle momenta
from the pd f
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Fig. 3 Schematic representation of the three-body interaction model
used in the MC simulation. Two cases are considered: a two pairs in the
triplet interact simultaneously; b all the three pairs interact simultane-
ously

f (p1, p2, p3) = wU U (p1) U (p2) U (p3)

+ w2B [ f2(p1, p2) U (p3)

+ f2(p2, p3) U (p1)

+ f2(p3, p1) U (p2)]
+ w3B f3(p1, p2, p3) , (35)

where wU , w2B and w3B are respectively the weights of
the uncorrelated, the two-body and three-body correlated
sub-samples to be determined; the functions f2(pi , p j ) are
the joint two-particle momenta pd f s defined in Eq. (30);
f3(p1, p2, p3) is the joint pd f of the three-particle momenta,
providing the genuine three-body correlation contribution.

To determine f3(p1, p2, p3) and to fix the weights of the
sub-samples in the pd f in Eq. (35) a model for the genuine
three-body interaction is needed. Since theoretical calcula-
tions of three-body correlation functions, involving two- and
three-body potentials, are not available in literature, a toy
model will be considered in the following. A genuine three-
body correlation is obtained if, in the same event, at least
two pairs of the triplet are correlated. Each pair correlation
is assumed to be given by the same parameters of the gen-
uine two-body interaction. Consequently, in the adopted toy
model the three-body interaction occurs via a simultaneous
two-body interaction. Since there are no spectator particles in
the triplet, such correlation gives a higher order contribution
in the Kubo’s decomposition rule, namely the genuine three-
body term of the cumulant expansion. A similar treatment of
the three-body forces is given in Ref. [2], where the three-
body potential is formalised in terms of multiple Yukawa-like
potentials. Such condition is satisfied in two cases: (a) only
two pairs in the triplet interact; (b) all the three pairs in the
triplet interact. A schematic representation is shown in Fig. 3.

Under this hypothesis it is possible to define consistently
the weights and the function f3(p1, p2, p3), given a two-body
interaction model.

6.2 Extraction of the weights

The weights wU , w2B , w3B and the function f3 are obtained
using the same three particles considered in Sect. 5, with mass
of about 1 GeV and two-body interaction parameters q, p and

σ2 obtained from the fit in Sect. 5.2 and given in Table 1. Each
of the three pairs in the triplet, namely the pairs (1,2), (2,3)
and (3,1), is correlated or not correlated in the momentum
space. The probability to find a correlated (i, j) pair in the
generated data sample is given by the parameter p and, con-
sequently, the probability to find an uncorrelated (i, j) pair
in the same data sample is given by q. The weight wU of the
uncorrelated triplets in the MC sample is then calculated as
the probability that the three pairs are not correlated, i.e.

wU = q · q · q = (99.20 ± 0.06)% . (36)

The weight of the two-body correlated samples is given by
the probability that only one pair interacts

w2B = p · q · q = (0.265 ± 0.002)% . (37)

Including the three possible permutations the global two-
body contribution amounts to (0.794 ± 0.007)%. For the
three-body interaction, the separated weights for the cases a)
and b) are evaluated. The weight for the case a) is

w
a)
3B = p · p · q = (7.1 ± 0.1) × 10−6 (38)

and for the case b)

w
b)
3B = p · p · p = (1.88 ± 0.04) × 10−8 . (39)

The global genuine three-body correlations amounts to

w3B = 3 w
a)
3B + w

b)
3B = (2.12 ± 0.03) · 10−5 (40)

where the factor 3 accounts for the permutations of the pair
combinations in the case a).

The pd f of the genuine three-body correlation f3(p1, p2,
p3) is defined using the pair correlations f2(p1, p2) defined
in Sect. 5. More precisely, for each correlated pair the pd f
f2(p1, p2), weighted by the parameter p, is used while for
each uncorrelated pair, uniform distributions U (p1) U (p2)

weighted by the parameter q are used. Accordingly, for the
three-body correlation in the case a) the weight wa)

3B = p·p·q
corresponds to the pd f

f a)
3 (p1, p2, p3) = f2(p1, p2) f2(p2, p3) U (p3) U (p1)

+U (p1) U (p2) f2(p2, p3) f2(p3, p1)

+ f2(p1, p2) U (p2) U (p3) f2(p3, p1)

= N exp

⎡
⎢⎣−

(
m2

m1+m2
p1 − m1

m1+m2
p2

)2

2 σ 2
2

⎤
⎥⎦

× exp

⎡
⎢⎣−

(
m3

m2+m3
p2 − m2

m2+m3
p3

)2

2 σ 2
2

⎤
⎥⎦

+ permutations, (41)
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where N is a normalisation constant and σ2 is given in
Table 1. For the three-body correlation in the case b) the
weight w3B(b) = p · p · p corresponds to the pd f

f b)3 (p1, p2, p3) = f2(p1, p2) f2(p2, p3) f2(p3, p1)

= N exp

⎡
⎢⎣−

(
m2

m1+m2
p1 − m1

m1+m2
p2

)2

2 σ 2
2

⎤
⎥⎦

× exp

⎡
⎢⎣−

(
m3

m2+m3
p2 − m2

m2+m3
p3

)2

2 σ 2
2

⎤
⎥⎦

× exp

⎡
⎢⎣−

(
m1

m1+m3
p3 − m3

m1+m3
p1

)2

2 σ 2
2

⎤
⎥⎦ .

(42)

In the MC triplets sample, the contribution due to the genuine
three-body correlation is finally drawn from the following
weighted distribution

f3(p1, p2, p3) = w
a)
3B

w3B
f a)
3 (p1, p2, p3)

+ w
b)
3B

w3B
f b)3 (p1, p2, p3) . (43)

A similar study on three-particle correlations was already
performed in Ref. [32] where the three-body Bose–Einstein
effects in the case of three charged pions was explored.

6.3 Results

The three-body correlation function obtained from the MC
simulation, where the genuine three-body correlation is
included, is shown in Fig. 4 top panel with blue boxes.

The magenta band represents the total lower order contri-
butionsC2b

3 (Q3) in the correlation function and it is obtained
applying Eq. (24) the two-body correlation function shown
in Fig. 2 (top panel) projected onto Q3. The width of the
magenta band is the corresponding statistical uncertainty. A
deviation of the simulated correlation function with respect
to the two-body interaction contribution appears in the low
Q3 region. The femtoscopic cumulant is obtained from Eq.
(15) as a function of Q3

c3(Q3) = C3(Q3) − C2b
3 (Q3) , (44)

where C3(Q3) is the simulated three-body correlation func-
tion and it is shown in Fig. 4 bottom panel. The three-body
cumulant is effectively zero for Q3 > 300 MeV/c. In the
adopted toy model for the genuine three-body correlations,
the simultaneous interaction of the pairs in the triplets occurs
with the same strength as in the case of a genuine two-body
interaction.

Fig. 4 Top panel: three-body correlation function for the MC simu-
lated triplets (blue boxes) as a function of the hyper-momentum Q3.
Genuine two-body and three-body correlations are considered in simu-
lated data sample. The error bars represent the statistical uncertainties of
the MC simulation. The total two-body interaction contribution calcu-
lated using the projector method is represented by the magenta band, the
width is the corresponding statistical uncertainty. Bottom panel: three-
body cumulant for the MC simulated triplets obtained by subtracting
the three-body correlation function and the lower order contributions
calculated with the projector method

In the following, the strength of the three-body correla-
tion is varied. To this end, the σ parameter in the Gaussian
functions in f3(p1, p2, p3) is considered to be not identical to
the σ2 parameter of the two-body interaction (σ �= σ2). The
cases of σ = 0.5 σ2 and σ = 2 σ2 are explored, correspond-
ing respectively to an increased or decreased strength of the
interaction. The resulting correlation functions and three-
body cumulants are shown in Fig. 5. As expected, decreasing
the strength of the simultaneous pairwise correlations (using
σ = 2σ2) the shape of the correlation function (open black
points in Fig. 5) approaches the shape of the predicted lower
order contributions. On the contrary, increasing the strength
of the simultaneous pairwise correlations (using σ = 0.5σ2)
the shape of the correlation function deviates more strongly
from the lower order contributions in the low Q3 region.

Although the study conducted in this paper is qualitative,
it shows that by measuring the three-hadron correlation func-
tion and using the Kubo’s cumulant method it is possible to
infer on the parameters of the interaction models. It has been
demonstrated that if the interaction strength and range of
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Fig. 5 Top panel: three-body correlation functions obtained from MC
simulations of triplet samples where the genuine two- and three-particle
correlations are included. Blue boxes correspond to the case where
the simultaneous pairwise interactions used to simulate the three-body
forces have the same strength of the genuine two-body interaction (σ =
σ2), full orange points correspond to the case of stronger interaction
(σ = 0.5σ2) and open black points to the case weaker interaction (σ =
2σ2). See text for details. The magenta band represents the contributions
to the correlation function due to the lower order contributions obtained
using the projector method. Bottom panel: three-body cumulant for the
MC simulated triplets obtained by subtracting the three-body correlation
function and the lower order contributions calculated with the projector
method. The same color code used in the plot in the top panel is used
to distinguish the cases of σ = 0.5σ2 , σ2 , 2σ2

the three- and two-body forces are similar, the genuine three
body signal observed in the cumulant becomes significant,
and likely detectable by the LHC experiments planned in the
near future.

7 pK+K− combinatorial background

The method described in Sect. 4 can be used to predict
the contribution to the hadron–hadron correlation functions
which is due to the combinatorial background affecting the
particle identification of the candidate hadrons [15]. Parti-
cles that are reconstructed from the decay channels, such as
neutral hadrons, are identified by applying a selection cut
in the invariant mass distributions of the decay products. In
the selected invariant mass window particles which are not
produced in the decay are also selected, entering as a back-

Fig. 6 Simulated K+K− invariant mass spectrum (black points and
histogram). The signal (red distribution) is simulated using a Breit–
Wigner function with center and full width at half maximum equal to
the mass and the decay width of the φ meson from the PDG. A first
order polynomial is assumed for the combinatorial background (blue
distribution). The sum of the signal and background contribution is also
shown in green

ground in the measured correlation function. The case of the
φ meson, reconstructed through the φ → K+K− decay, is
now considered. An example of the reconstructed MK+K−
invariant mass distribution is shown in Fig. 6 for a simulated
data sample. The red distribution is the simulated signal for
the φ and the blue distribution represents the combinatorial
background, i.e. the K+K− pairs which are not emitted in the
decay of the φ.

Let us consider the measurement of the genuine pφ corre-
lation function and that the φ candidates are selected apply-
ing the cut mφ − δ < MK+K− < mφ + δ to the spectrum
in Fig. 6, where mφ is the nominal mass of the φ and δ is a
chosen window interval. The measured pφ correlation func-
tion will be affected by the contribution due to the pK−,
pK+ and K+K− interactions. These contributions are com-
monly evaluated by selecting proper side-bands windows in
the invariant mass spectrum in Fig. 6, namely selecting the
kaons from regions which are outside the window used for the
φ particle identification. For the selected pK+K− triplets the
correlation function is evaluated as a function of the relative
pφ momentum defined as

kpφ = mφ

mp + mφ

pp − mp

mp + mφ

(pK+ + pK−) . (45)

The same contribution can be estimated by using the for-
malism developed in Sect. 4. Given the two-body pK−, pK+
and K+K− correlation functions as a function of the relative
momentum of the interacting pairs, the projection onto the
pφ relative momentum can be calculated using Eq. (24), by
replacing Q3 with kpφ, i.e.

CpK+K−(kpφ) = CpK−(kpφ) + CpK+(kpφ)

+CK+K−(kpφ) − 2 , (46)
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where the contribution due to the genuine three-body pK+K−
correlation is assumed to be negligible. In the case of three
charged particles, genuine three-body effects induced by the
pairwise Coulomb interactions might be present. This is a
complex theoretical problem which is still unsolved exactly
and needs to be supported by experimental measurements
[33]. However, such effects are negligibly small in the region
kpφ > 0.19 GeV/c, estimated from the results in Refs.
[34,35]. The correlation function CpK+K−(kpφ) that will be
obtained in this Section will be shown in the kinematic region
mentioned above.

The triplet (p, K+, K−) will be denoted in the next with
the numbers (1, 2, 3) for simplicity. Each contribution in the
sum in Eq. (46) is evaluated as follows

Ci j (kpφ) = ∫∫∫
(p1,p2,p3)∈D Ci j (pi , p j ) N d3p1 d3p2 d3p3 , (47)

where the integration domain D is defined by the kinematic
constraints, i.e. kpφ = constant and mφ − δ < MK+K− <

mφ + δ. The genuine two-body pK+ and pK− correlation
function measured by the ALICE collaboration [13] are used.
Since the invariant mass distribution for the combinatorial
background is not uniform, each value of MK+K− is weighted
with the corresponding shape normalised to the unity in the
φ candidate window. The shape is given by the background
component in the fit of the invariant mass distribution (blue
curve in Fig. 6), and the weight turns to be

fbkg(MK+K−) = Fitbkg(MK+K−)∫ mφ+δ

mφ−δ Fitbkg(MK+K−) dMK+K−
. (48)

The integral in Eq. (47) is then performed in two-steps

1. a first integration is done in the domain

D = {(p1, p2, p3) ∈ S | kpφ = const. ∧
MK+K− = const.} , (49)

which provides a projected correlation function at a fixed
value of the K+K− invariant mass Ci j (kpφ; MK+K−);

2. each value of the obtained correlation function is weighted
by the function fbkg(MK+K−)

∫ mφ+δ

mφ−δ

Ci j (kpφ; MK+K−) fbkg(MK+K−) dMK+K− . (50)

A selection window δ = 8 MeV/c2 is chosen. The pK+ and
pK− correlation functions projected onto kpφ are shown in
Fig. 7 top and bottom respectively. The structure in the pK−
correlation function in the region at kpφ ∼ 0.3 GeV/c is the
signature of the �(1520) resonance which decays in pK−
final state.

The K+K− correlation function is flat when projected onto
kpφ. The reason is that the conditions in Eq. (49) are satisfied

Fig. 7 Two-body pK− (top panel) and pK+ (bottom panel) correlation
functions projected onto the kpφ. For CpK− (k∗) and CpK+ (k∗) as func-
tions of k∗, the experimental distributions measured by ALICE in Ref.
[13] are considered. The details of the projections onto kpφ are given in
the text

only for the value of the K+K− relative momentum given by

k23 = 1

2

√
M2

K+K− − (m2 + m3)2 , (51)

and consequently the projected correlation function is con-
stant. The K+K− two-body interaction does not affect the
pK+K− correlation function in Eq. (46). Since we are pro-
jecting all the two-body interaction contributions onto the rel-
ative momentum of the proton with respect to the K+K− CM
momentum, and since the interaction among the kaons does
not affect the pair CM kinematics, nor the proton dynamics,
the correlation function as a function of kpφ is flat. Finally,
the prediction for the combinatorial background correlation
function in the φ region is shown in Fig. 8.

The correlation function in Fig. 8 is obtained with negligi-
ble uncertainties. The error in each bin is obtained from the
error propagation of the statistical errors for the correlation
functions measured in Ref. [13]. This is the main advantage
of the method with respect to the side-bands technique. The
only source of uncertainties will be represented by the statis-
tical error for the parameters of the fit which are used to set
the shape fbkg and that are not considered in this work.

As a final remark, the shapes of the obtained correlation
functions shown in Figs. 7 and 8 depend on the combinatorial
background distribution in the K+K− invariant mass spec-
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Fig. 8 Contribution to the pφ correlation function due to the combi-
natorial pK+K− background. The prediction is calculated using the
decomposition CpK+K− (kpφ) = CpK− (kpφ) + CpK+ (kpφ) − 2, where
CpK− (kpφ) and CpK+ (kpφ) are shown in Fig. 7

trum. In this case a first order polynomial was chosen and a
selection window of 8 MeV/c2 was considered. However the
discussed procedure can be applied to any specific analysis
under study.

8 Conclusions

In this paper, a formalism for the evaluation of lower order
contribution in many-body correlation functions was devel-
oped and applied to the three-body case. The method relies
on kinematic transformations on the momentum phase space
and on the Kubo’s cumulants expansion formalism. The kine-
matic transformations allow to project correlation functions
onto the kinematic variable of interest for the considered sys-
tem and the Kubo’s decomposition provides a summing rule
for the statistical sub-samples terms that contribute to the
total many-particle sample. Considering the decomposition
in the case of a three-body statistical sample, the lower order
correlations are provided only by pairwise interactions, the
remaining particle is not correlated to the interacting pair.
Given this assumption it was possible to calculate a projec-
tor for the two-body correlation functions onto the kinematic
variable Q3 of the three-body system. The method was val-
idated performing a toy Monte Carlo simulation of a three-
body system where only two particles were correlated in the
momentum space. As a further step, the genuine three-body
correlations were included in the Monte Carlo data sample
employing a three-body interaction model based on simul-
taneous pairwise interactions for the pairs in the triplets.
The p� (S = 0) scattering parameters with χEFT NLO cal-
culations are used to constrain the model. Comparing the
shape of the generated three-body correlation function with
the lower order, two-body, contributions a deviation due to
the non-vanishing three-body cumulant appears in the region
Q3 < 300 MeV/c. The developed method has further appli-

cations, it was indeed shown that the same procedure can be
applied to predict the pK+, pK− and K+K− residual contri-
butions in the pφ correlation functions, providing an alter-
native procedure to the methods commonly used in the data
analyses to remove such source of background.

The main advantage of this method is that the required
input are the known, or measured with high precision, two-
body correlation functions. This leads to a reduced uncer-
tainty of the projection as compared to the traditional exper-
imental methods used for a direct determination. This will
greatly aid the precision of the planned accelerator based
experiments measuring the genuine three-body interaction.
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Appendix A: N-body Jacobi coordinates

Let us consider a system of N non-relativistic particles of
masses mi and positions xi (with i = 1, ..., N ) in the 3-
dimensional space. If no interaction among the particles is
assumed, the Hamiltonian is given by the sum of the kinetic
terms

H =
N∑
i=1

Ti =
N∑
i=1

p2
i

2 mi
, (A.1)

where pi are the kinetic momenta of the N particles. We
choose a set of Jacobi coordinates ri defined as follows

ri = xi+1 −
∑i

j=1 m j x j∑i
j=1 m j

. (A.2)
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The corresponding kinetic momenta ki are

ki =
∑i

j=1 m j∑i+1
j=1 m j

pi+1 − mi+1∑i+1
j=1 m j

i∑
j=1

p j

= μi

[
pi+1

mi+1
−

∑i
j=1 p j∑i
j=1 m j

]
, (A.3)

where μi are the reduced masses defined as

1

μi
= 1∑i

j=1 m j
+ 1

mi+1
. (A.4)

The N -body system is now described by the linearly inde-
pendent set of coordinates (R, r1, ..., rN−1) in the position
space and (P, k1, ..., kN−1) in the momentum space, R and
P are the center of mass (CM) position and momentum

R = 1

M

N∑
i=1

mi xi ; P =
N∑
i=1

pi , (A.5)

where M = ∑N
i=1 mi is the total mass. The trans-

formations from the Cartesian to the Jacobi coordinates
(R, r1, ..., rN−1) = Tr · (x1, ..., xN )T and for the kinetic
momenta (P, k1, ..., kN−1) = Tk · (p1, ..., pN )T are given
by the block matrices:

Tr =

⎛
⎜⎜⎜⎜⎜⎝

m1
M

m2
M

m3
M · · · mN

M−1 1 0 · · · 0
− m1

m1+m2
− m2

m1+m2
1 · · · 0

...
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

(A.6)

and

Tk =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
− m2

m1+m2

m1
m1+m2

0 · · · 0
− m3

m1+m2+m3
− m3

m1+m2+m3

m1+m2
m1+m2+m3

· · · 0
...

...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

.(A.7)

Applying the transformation Tk to the Hamoltonian in Eq.
(A.1) we have

H = HCM +
N−1∑
i=1

Hi = P2

2 M
+

N−1∑
i=1

k2
i

2 μi
. (A.8)
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