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Abstract We present the resummed predictions for inclu-
sive cross section for Drell-Yan (DY) production up to next-
to-next-to leading logarithmic (NNLL) accuracy taking into
account both soft virtual (SV) and next-to SV (NSV) thresh-
old logarithms. We restrict ourselves to resummed contribu-
tions only from quark anti-quark (¢¢) initiated channels. The
resummation is performed in Mellin- N -space. We derive the
N-dependent coefficients and the N-independent constants
to desired accuracy for our study. The resummed results are
matched through the minimal prescription procedure with
the fixed-order results. We find that the resummation, tak-
ing into account the NSV terms, appreciably increases the
cross section while decreasing the sensitivity to renormali-
sation scale. We observe that, at 13 TeV LHC energies, the
SV + NSV resummation at NLL(NNLL) gives about 8%
(2%) corrections respectively to the NLO (NNLO) results
for the considered Q range: 150-3500 GeV. In addition,
the absence of quark gluon initiated contributions to NSV
part in the resummed terms leaves large factorisation scale
dependence indicating their importance at NSV level. We
also study the numerical impact of N-independent constants
and explore the ambiguity involved in exponentiating them.
Finally we present our predictions for the neutral Drell-Yan
process at various center of mass of energies.

1 Introduction

Standard Model (SM) has been extremely successful in
describing the physics of elementary particles. Thanks to
precise predictions of various observables from SM and
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their measurements at the collider experiments with unprece-
dented accuracy, we could validate the SM and at the same
time set stringent constraints on the parameters present in
various beyond SM (BSM) scenarios. While there have been
strenuous efforts in search of new physics signatures at the
large hadron collider (LHC), it is important to improve the
level of precision in SM and BSM predictions to arrive at sen-
sible conclusions. Precise predictions of observables require
the use of complex mathematical techniques and a deeper
understanding of the underlying theory. The spin-offs include
new developments in various branches of mathematics and
other fields, and in addition, the perturbative predictions deal-
ing with Feynman loop and phase space integrals demon-
strate rich mathematical structure in gauge theories. In par-
ticular, these results have shed light on the underlying struc-
ture of the ultraviolet (UV) and infrared (IR) sectors of the
SM.

Among innumerous final states produced in hadron colli-
sions, leptons are relatively easy to observe due to the clean
environment and the corresponding measurements are less
plagued by experimental uncertainties. The production of a
pair of leptons, called Drell-Yan (DY) production is custom-
arily used for luminosity monitoring at the hadron colliders.
Theoretically, for very long, the observables in DY produc-
tion belong to the category of “well studied” quantities in
the SM and as well as in various BSMs. Note that the next-
to-next-to leading order (NNLO) quantum chromodynamics
(QCD) correction [1-3] to this process was computed more
than three decades ago, see also [1-17]. Similar results are
also available in certain BSMs, see [18-20]. More recently,
a series of results on inclusive cross sections for the pro-
duction of a pair of leptons, single Z/W¥* at N3LO in per-
turbative QCD has become available [17]. These corrections
[17] are already found to be tiny, and at the invariant mass
O = 150 GeV of a pair of leptons, they reduce the cross
section by 1%. The renormalisation and factorisation scale
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uncertainties as well as the uncertainties from the choice of
PDFs give about 2.5%.

Dedicated efforts like in [17] to obtain perturbative QCD
results provide a theoretical laboratory to understand the
structure of the perturbation series. Due to the complexity
involved in performing many body phase space integrals
in higher order computations, one resorts to the method of
threshold expansion. For example, at every perturbative order
in the strong coupling constant, the Feynman diagrams are
computed as a series expansion around the threshold region
denoted by Q% & §, where Q is the invariant mass of the pair
of leptons produced in the partonic reaction whose center of
mass energy is V5. Such an expansion not only provides
reliable estimates of the higher order effects but also shed
light on the logarithmic structure in higher order perturba-
tive results. The leading terms in the threshold region contain
contributions from virtual subprocesses as well as from soft
gluons from real emissions. These are often called soft plus
virtual contributions (SV). The SV terms at third order were
known for some time, see [10-13,15,21-24]. In addition,
using the resummation framework developed in [25,26] for
threshold logarithms in SV contributions, several numerical
studies were carried out to NNLL accuracy to improve the
predictions, see [15,27-29]. In [30], we reported the numer-
ical impact of threshold corrections within the resumma-
tion framework. We found that the inclusion of large thresh-
old logarithms to N3LL accuracy further reduces theoretical
uncertainties.

The subleading terms in the threshold expansion contain
logarithms of the form In/ (1—z), j > 0 and numerically they
are found to be as important as leading SV terms in the expan-
sion, see [31-34] in the context of Higgs production. These
are called next-to-soft virtual (NSV) logarithms. There have
been several dedicated studies to understand the structure of
these logarithms in inclusive reactions at higher orders and
efforts to resum them like one does for SV terms, see [33,35—
46]. Using the resummation framework of NSV terms at LL
proposed in [35], their numerical impact was studied in [47]
taking into account SV terms at N3LL for DY and Higgs
boson productions. Similar studies were done for the scalar
and pseudo scalar Higgs boson productions in [32,48]. All
these studies were at LL level as far as NSV logarithms are
concerned and also restricting to diagonal partonic channels,
namely quark anti-quark for Drell-Yan, gluon fusion or bot-
tom quark annihilation for Higgs boson productions.

Recently, in [49], we set up a formalism for the first time to
study all order structure of these NSV logarithms in order to
go beyond LL approximation. While NSV logarithms show
up both in diagonal and off-diagonal partonic channels, we
have restricted to only to the former. We found that unlike
SV logarithms, the NSV ones were controlled in addition
to the process independent anomalous dimensions, the func-
tions that depend on the process under consideration through
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certain differential equations. The latter allowed us to sys-
tematically resum NSV logarithms in Mellin N-space to all
orders along with SV ones to obtain results at N'LL, n > 0
accuracy. In order to distinguish between SV and SV + NSV
resummed results, we denote the NSV included results by
NOLL. In this article, we study the numerical impact of NSV
logarithms in the invariant mass distribution of a pair of lep-
tons in DY process at the LHC up to NNLL accuracy.

The paper is structured as follows. In Sect. 2, we briefly
describe the theoretical framework for computing the invari-
ant mass distribution of a pair of leptons in DY process, taking
into account the NSV effects. Further in Sect. 3, we review
the formalism given in [49] for computing the SV + NSV
resummed cross section of di-lepton production in DY pro-
cess. In addition, we also discuss different resummation pre-
scriptions to explore the ambiguity involved in exponenti-
ating the N-independent constants. In Sect. 4, we study the
phenomenological aspects of NSV logarithms in great detail
and present our findings and finally we conclude in Sect. 5.

2 Theoretical framework

In the QCD improved parton model, the invariant mass distri-
bution of a pair of leptons produced in hadron colliders can
be expressed as a convolution of perturbatively calculable
coefficient functions (CFs), Agp, and non-perturbative flux
®,p. That is,

do 0 -
E(CI ) ()/ — ab( MF) Aab(qz,,u%.z).

ey

Here a,b = ¢, g, g refer to incoming partonic states and

0 .
a[())), is the born cross section:

21
oy =2 [250] @

with Q = /g2 being the invariant mass of the lepton pairs
and n, = 3 in QCD. The factor .Z @ is found to be

S0 _ 4 24*(q* — M2)
FO _ ?[Qﬁ—((q VIR D) 048: 8g
4
q 2
+ ((q M%)z +M2F2) chs ((ge)
+ @) (e + (g >)} 3

with « being the fine structure constant and ¢y, sy, are respec-
tively the sine and cosine of Weinberg angle. Mz and Iz are
the mass and the decay width of the Z-boson. Also,
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where Q, being the electric charge and Ta3 is the weak isospin
of the electron or quarks. The flux @, is defined in terms
of parton distribution functions (PDF) f,, f of incoming
partons a and b respectively at the factorisation scale wr:

éab (E’ M%w“) :/ _fa(y MF)fb( y?:uF) (5)

where 7 = ¢2/S is the hadronic scaling variable with S being
the square of hadronic center of mass energy. The fits of non-
perturbative PDFs are available to NNLO level while the
CFs are perturbatively calculable in powers of renormalized
strong coupling constant, a; = g; 2 /1672

[e¢)

Aap(q® 1} 2) =Y al(uR) AL (@ k. ud2)  (6)
where g is the QCD coupling constant and 1t is the renor-
malisation scale. Higher order corrections from QCD are
inevitable at hadron colliders as they are often large and they
reduce uncertainties resulting from the scales wg, ir, the
choice of PDFs and a,. Note that DY predictions are sta-
ble with respect to factorization (i) and renormalisation
(uR) scales already at NNLO in QCD. One finds 2% uncer-
tainty in the predictions at NNLO for a canonical variation of
factorization and renormalisation scales compared to NLO
where it is about 9.2%. Similarly, the K-factor increases
marginally from 1.25 at NLO to 1.28 at NNLO. At third
order, the scale uncertainties can be determined from previ-
ous order DY results. However, such estimates make sense
only if we include the scale independent parts which origi-
nate genuinely at third order. The recent third order results
[17] predict decrease in the cross section by less than 1% for
QO = 150 GeV and the uncertainties from scales and from
the choice of PDFs give about 2.5%. While this is a great
improvement in the predictions, it is important to estimate
other missing higher order effects.

2.1 Threshold expansion

Computing CFs beyond N3LO is highly challenging, hence
one can look for alternative approaches to identify the domi-
nant contributions to the CFs. In the case of leptons with high
invariant mass, the threshold expansion of CFs around z & 1
was observed to be a good alternative to exact computation.
Here, z is the partonic scaling variable defined by z = ¢2/5,
with § the square of partonic center of mass energy. At the
threshold, we decompose the CFs as

V(@ 13,2 + AL (P 1nE 2).
@)

Aap(@*, 15, 2) = 8apASY

Here Ajg denotes the soft-virtual (SV) corrections which
comprises pure virtual contributions from ¢ +q — [TI~
and leading threshold contributions from quark anti-quark
initiated partonic channels with at least one emission of on-
shell parton. The former depends on the scale z through § (1 —
z) while the latter through both § (1 —z) and plus distributions
D (z) defined by

Ink(1 —
D) = (M> , ®)
+

11—z

and are integrable with any regular function f(z):

-2y _ [!
/dzf()(—z>+—/0dz(f(2)—f(1))

k
x (_m a _Z)>. 9)
1—1z
reg

The second term in (7), A_,°, refers to regular CFs, which
contain terms of the form (1 — z)™ lnk(l —2z),mk =
0, 1, ..., co with rational and irrational constants. Expand-
ing both SV and regular CFs perturbatively in powers of ay,

J,
Agh(qzv M%‘a Z) Za (H’R)A (l)(qza MzRﬂ /\‘L%" Z)’

J =SV, reg (10)
we find
2i—1 )
A3 0 (@) = bap ( s 81—+ > Ag’j,@k@km) :
k=0
(11)
and
2i—1 oo
AV =33 a0 - mfa -2, a2

k=0 =0

The above expansion is called threshold expansion. The sys-
tematic threshold expansion of CFs in partonic scaling vari-
able z will be useful provided the partonic flux @, (t/z) that
multiplies them to give hadronic cross sections also domi-
nates in the same region for a given hadronic scaling vari-
able 7.

In general, the CFs in inclusive cross sections such as
DY and Higgs productions, the energy scales g2, M%e and
MZF appear as logarithms, in addition to the partonic scal-
ing variable z appearing through §(1 — z), plus distribu-
tions Z(z) and regular functions of z. The coefficients of
these terms are perturbatively computable and are controlled
by set of differential equations that depend on the UV and
IR anomalous dimensions. The solutions to these equations
demonstrate rich universal structure which can be exploited
to understand the structure of the coefficients to all orders in
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perturbation theory. The IR structure of multi-loop ampli-
tudes beyond two loops [50-53] (see [54,55] for a QFT
with mixed gauge groups), of inclusive cross sections to
third order [1,3,17,56-58] provide better understanding of
CFs. For complete list of Higgs production in gluon fusion
see [3,10-12,16,33,46,56,59-71] and [1-17] for Drell-Yan
production.

Among the aforementioned terms that contribute to CFs,
the SV terms are known for several observables. In partic-
ular for DY and Higgs productions beyond second order,
see [10—13,15,21-24]. We obtain these results from process
dependent pure virtual subprocesses and soft gluons from
real emissions in the threshold region. The latter is a univer-
sal quantity in such a sense that they do not depend on the
hard process under study, but only on the nature of incoming
states. The soft and collinear modes in a scattering process
can be captured at the Lagrangian level using effective the-
ory approach. For example, soft-collinear effective theory
(SCET) [72-74] provides a convenient framework to com-
pute the SV results order by order in perturbation theory. In
addition, the intrinsic scales in the theory can be used to set
up renormalisation group equations whose solutions sum up
large logarithms from threshold regions to all orders.

When SV terms are convoluted with the appropriate PDFs
to obtain hadronic cross sections, one finds that they give
large contributions at every order, questioning the reliabil-
ity of the predictions from the truncated series. This was
successfully resolved in the seminal works by Sterman [25]
and Catani and Trentedue [26] through reorganisation of the
large logarithms to all order in the perturbative series, called
the threshold resummation. There is a vast literature on this
which is applied to variety of processes, see [27,32,75-78]
for Higgs production in gluon fusion, [79,80] for bottom
quark annihilation, for DY [15,27-30] and for DIS and SIA
of eTe™ [81]. Threshold resummation is conveniently per-
formed in Mellin space where the conjugate variable to z is
N.In Mellin space, all the z-space convolutions become nor-
mal products. The threshold limit in Mellin space is when
N goes large, which corresponds to z — 1 in z-space.
Due to smallness of ag (M%e)’ one finds that the exponent in
the N-space at each order in aj (,u%e) contains &'(1) terms
defined by w = 2a (/L%?) BoIn N. Such terms spoil the trun-
cation of the perturbative series. Using renormalisation group
improved solution to RG of ay, one can reorganise the per-
turbative series in the exponent wherein w terms are summed
up at every order in ay. Following [25,26] one finds that for
Ay = Jy dzz¥ T A (D),

Jim In A%y, = In gG(as (7)) +In Ngf (@)

+ ) al(up)gl (@), (13)
i=0
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where g (ay (:““%e)) is N independent. Inclusion of succes-
sive terms in (13) predicts the leading-logarithms (LL), next-
to-leading (NLL) etc. logarithms to all orders in as. The
exponents g7 (w) depend on process independent/universal
IR anomalous dimensions while the constant g; depends
on the specific hard process. Results for the resummation
of threshold logarithms in N-space up to third order are
available for variety of inclusive processes such as DY
and Higgs productions to perform threshold resummation
to next-to-next-to-next-to leading logarithmic (N°LL) accu-
racy [15,27,30,80]. Threshold resummation is also found to
play important role for differential observables like rapid-
ity [19,26,82-84]. Inclusion of these effects are shown to
improve the fixed-order results.

2.2 Next-to SV

Perturbative predictions of beyond SV terms are available
for partonic sub processes up to third order for a variety of
hadronic cross sections, namely Drell-Yan production and
bottom quark as well as gluon initiated Higgs boson produc-
tions at the hadron colliders. Like SV terms, these results not
only play an important role to precisely predict the respective
observables, but also shed light on the structure of beyond
SV terms in the threshold expansion at higher orders. Among
these, let us consider a class of leading terms:

o0
ANV(2) =Y dl (i al V). (14)
i=0
where AZ’SV’(")(Z) is defined by setting [ = 0 in (12), i.e.,
_ 2i—1 '
ANV D@y =3 Al k(1 - 2). (15)
k=0

These contributions are often called next-to SV (NSV) or
next to leading power (NLP) contributions. There have been
several studies to understand the NSV terms in inclusive
processes [35,38-45]. The physical evolution equation was
exploited earlier in the work by [36] to understand the effect
of these terms. A remarkable development was made by
Moch and Vogtin [37] (and [33,46]) using the physical evolu-
tion kernels (PEK) and the fixed-order results that are avail-
able for DIS, semi-inclusive eTe™ annihilation and Drell—
Yan production of a pair of leptons in hadron collisions. They
found that in kernels that govern the physical equations, there
is an enhancement of single-logarithms at large z up to third
order. Conjecturing that it will hold true to all orders around
z = 1, the logarithms were systematically resummed to all
orders exactly like the way of SV resummation. In addition,
absence of certain powers of In(1 — z) terms in the kernel at
a given order in ag can be used [37] to predict certain next-to
SV logarithms at higher orders.
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Recently, in [49], we investigated the structure of NSV
terms present in the quark anti-quark initiated channels in
the inclusive production of pair of leptons in Drell-Yan pro-
cess and gluon/bottom anti-bottom initiated ones for Higgs
boson production. We also analyzed the all-order perturba-
tive structure of the NSV logarithms in the coefficient func-
tions of deep inelastic scattering (DIS) and semi-inclusive
eTe™ annihilation (SIA) processes in [85]. The formalism
is even extended in the context of rapidity distributions to
study the all-order behaviour of the NSV terms in addi-
tion to the SV distributions in the aforementioned threshold
processes, namely Drell-Yan and Higgs production through
gluon fusion and bottom quark annihilation in [86]. We used
the well known factorisation properties and renormalisa-
tion group invariance along with certain universal structure
of real and virtual contributions obtained through Sudakov
K + G equation. Like, SV terms, NSV terms do demonstrate
rich perturbative structure with certain universal anomalous
dimensions. We found that the NSV logarithms in Mellin
space can also be resummed in a systematic fashion to all
orders in perturbation theory. fixed-order results known up
to third order for DY productions can be used to deter-
mine the threshold exponents from the NSV logarithms with
third order logarithmic accuracy. The present article explores
the numerical impact of these resummed results taking into
account both SV and NSV logarithms in the quark anti-quark
initiated channels for the DY process at the LHC.

3 Resummation of SV + NSV

In [49], some of us have developed a theoretical formalism to
systematically resum the NSV contributions in the diagonal
channels of inclusive cross sections of Drell-Yan and Higgs
boson productions at the hadron colliders. For completeness,
we briefly describe the formalism [49], which shows how
the building blocks of perturbative results in the threshold
region can be organised using their factorisation properties
and the logarithmic structure. Thanks to a set of differential
equations that govern these building blocks, it is possible to
sum up certain class of threshold logarithms to all orders
in perturbation theory. In particular, the solutions to such
equations lead to a compact integral representation in z-space
that captures SV and NSV terms of inclusive rates in these
processes. The integral representation can be conveniently
used in Mellin N-space to resum &'(1) terms that show up
in large SV and NSV contributions at every order to obtain
reliable theoretical predictions at colliders.

We begin by defining A, as a sum of SV and NSV con-
tributions to diagonal channels:

Ag(2) = A% @+ A2V () (16)

where the SV part is defined in (11) and NSV in (14). Using
the mass factorisation that separates collinear singular part
from the bare partonic cross sections and the UV and IR
renormalisation group equations that various building blocks
satisfy we can cast the CFs of inclusive cross sections in
dimensional regularisation (n = 4 + ¢) as

Ay(G% uk, 1%, 2)

=% exp (lI/q (qz, 1 W 2, 8))

) (17)
e=0

where ¥ is finite in the limit ¢ — 0 and is given by

2
v (qzv M%{» M%"s 2, 8) = <]n (ZUV,q (dh sz /’LZR’ 8))

+In |I:"q (&s, W, —qz, 8)‘2)5(1—2)

+2®, (a5, 1%, g%, 2, €)

—2€ In Iy (a5, 02, 1%, 2, €),
(18)

where Zyy 4 is the overall renormalisation constant which
is unity for vector/axial vector interactions in quark anti-
quark initiated channels. The bare strong coupling constant,
ag = g2/16m2, with g the bare QCD coupling constant
and the scale p results from dimensional regularisation. The
square of the form factor (FF), ﬁq , encodes pure virtual con-
tributions to ¢ +g — [T~ while the soft-collinear function,
®,, contains contributions from remaining partonic subpro-
cesses normalised by square of the form factor. Thanks to
the fact that mass factorisation terms required for the SV
and NSV contributions to diagonal channels depend only on
diagonal kernels I';7 where we need to keep only diagonal
splitting functions P, the logarithm of these kernels com-
pletely decouples from the rest.

The symbol “6” refers to convolution, which acting on
any exponential of a function f(z) takes the following expan-
sion::

. 1 1
Tl =51 -0+ @O+ (fR N+ (19
Since we have restricted ourselves to SV + NSV contributions
to A,, we keep only those terms that are proportional to SV
distributions namely 8 (1 —z), Z; (z) and NSV terms In’ (1 —z)
withi = 0, 1, ... and drop rest of the terms resulting from
the convolutions.

The form factor, soft-collinear function and Altarelli—
Parisi (AP) kernels that contribute to A, are computable
order by order in a; in perturbation theory. One finds that
each of them demonstrates rich infrared structure through
certain differential equations. For example, the form factor
satisfies Sudakov’s K + G differential equation while the
mass factorisation kernels satisfy AP evolution equations.

@ Springer
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In addition, they are independently renormalisation group
invariants. These differential equations are controlled by uni-
versal UV and IR anomalous dimensions that are perturba-
tively calculable. Thanks to these differential equations and
the fact that A, is finite, one finds that soft-collinear func-
tion @, also satisfies K + G like differential equation. The
solution to the form factor is expressed in terms of cusp
(A7), soft (f?), collinear (B?) anomalous dimensions and
process dependent constants, while for the mass factorisa-
tion kernels, one finds the solution in terms of diagonal AP
splitting functions which contain only (1 — z), Zy(z) and
In/(1 — z), j = 0, 1 terms. Unlike the form factor and AP
kernels, the solution to @, is hard to obtain without the
knowledge of their kernels K and G (see [49]). The singular
kernel K can be determined from singular terms of FF and
AP kernels while the finite part is obtained from the fixed-
order results of A,. We use the perturbative results known
to third order to parametrise the kernels in terms of §(1 — z),
plus distributions and In(1 — z) in dimensional regularisa-
tion. The resulting z dependent solution of @, depends on
process independent anomalous dimensions A7, f9, C? and
D4 and certain process dependent quantities. Combining the
solutions from all the differential equations one obtains an
all order exponentiation of SV and NSV contributions to 4,
as given in (17). While each piece contains both UV and
IR divergences as poles in ¢, the divergences cancel among
themselves when ¢ — 0, leaving finite ¥9. In [49], an inte-
gral representation for the function &9 in terms of z was
obtained:

Ce(q* nxs 13)

X € exp <2l1/%(q2, 1, Z)>, (20)

Aq(q2’ H’%{v I'LZFa Z) =

where

q.2 2 1 g*a- Z)zd 5 I
Yo ug,2) =5 — P}, (as(A%), 2)
"

2 /)2 A2

F

+2%(as(g*(1 — 2)%), 2), 1)

with

1 —
2(a5(q*(1 = 2)%).2) = (1 — Gy (a,(q*(1 - z)2>)>
+

+orqas(@®(1—2)%),2).  (22)

The coefficient Cg is z independent and is expanded in pow-
ers of ag (,u%) as

o0
> al (i) Co@P nks 17, (23)
i=0

Co(q% uh. uh) =

The results for Cg can be found in [15] and the coefficients
Cgl. are given in Appendix C.1. The splitting function PL; q 18
related to the AP splitting functions Py (z, 113.). Expanding
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the latter around z = 1 and dropping those terms that do not
contribute to SV + NSV, we find

Pyq (2. as(uf)) = 2B (ag(up)d(1 — )+P, (2, as(up)),

(24)

where,

P}, (2 as(uf)) = Z[A‘fms(u%))%(z)

+ C9(as(u3)) In(1 — 2) + Dq(as(ufr))}
(25)

The constants C? and D9 can be obtained from the splitting
functions P,; q which are known to three loops in QCD [87,88]
(see [87-96] for the lower order ones). The cusp, soft and the
collinear anomalous dimensions and the constants C? and
D1 are expanded in powers of a; (/ﬁ,):

Xas(u}) =Y al(uh)x?,

i=1

X=A,fB,C, D
(26)

where X l.q to third order are available in [87,88] and are listed
in Appendix A. The function E?V (as (q2 (1— z)z)) is related
to the threshold exponent DY (a,(¢*(1 — z)?)) via Eq. (46)
of [11] (see Appendix A). The function ¢, in powers of a;
is given by

9rq(as(@®(1 —2)%),2) =

Za;(qz(l —2)%)
x Z(p(k) In*(1 — 27)

The coefficients (p ) are known to third order and are listed
in Appendix B (see also [49]).

The resummation of threshold logarithms can be conve-
niently done in Mellin space, where z — 1 translates to large
N limit. In the latter, /(1) terms from w = 2Bpay (u%) In N
show up at every order in a, spoiling the truncation of pertur-
bative series in the exponent. This can be resolved by reor-
ganising the series using the integral representation (21) and
the resummed strong coupling constant. To include SV and
NSV terms in the resummation in Mellin space, we need to
keep In N as well as O(1/N) terms in the large N limit.
We find that (21) can correctly predict only SV and NSV
terms while the predictions beyond the NSV terms namely
O((1 —2)"In/(1 — z));n, j > 0in z-space and terms of
0(1/N?)in N-space will not be correct!. The Mellin moment
of A, was obtained in [49] and is given by
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Aq,N(qza /"LzRv H‘%«‘)

= Cl @ o udy exp (¥ (@ ih)) 28)
where
1
v =2 [z G . 29)

Also, Cg are N-independent constants coming from FF and

the (1 — z) part of soft-collinear function and AP kernels.
Note that the §(1 — z) pieces in z-space translates to N-
independent pieces in Mellin space. And the Mellin trans-
formation of the plus distributions, given in (29), give rise to
In N and N-independent constants. Hence expressing llqu’ N
as

q q q
Yo v =Y¥vn + sy (30)

0,1,...
while lllﬁs\,’  contains terms of the form (1/N) In/ N, j =
0,1, .... We find that lIJSqV w takes the form:

q : j s
where st, y contains In/ N, j = terms and

Wy v = In(gd (a5 (i) + g (@) In N

+ Y ai(uR)gl (o). (31)
i=0

Here the g? coefficients are universal and they depend only on
the initial partons. The constants In gg are the N-independent
pieces obtained after Mellin transformation of lI/% and they
satisfy the condition ¥¢y, v — In(g) = 0 when N = 1.
Expanding them in poweré of a; we get,

In g (as(ug)) = Y ai(ug) g4 ;- (32)

i=1

These exponents agree with those given in [26,27,80], and
they are listed in the Appendices C.2 and C.4. In standard
N-approach we absorb the N-independent pieces gg’l. into

Cg and collectively define it as
20(q° nko up) = CJ@*, g 1) &6 (as(uR).  (33)

Thus the resulting quantity comprises of §(1 — z) contribu-
tions from the form factor, soft-collinear function, AP kernels
and N-independent part of the Mellin moment of the distri-
butions in W%(qz, 13, 2).

The coefficients gg, ; are listed in the Appendix C.3.

The function gy y in (30) is given by

0]

1 : _
Wsvn =5 24 w%e)(g,ﬂ] (@) + 1 (@, N)>, (34)
i=0

with
i
(@, N) =Y hf () "N (35)
k=0

where g? (w) and h?k (w) are presented in the Appendices C.5
and C.6 respectively. In each exponents, g? (w), glq (w) and
h?k (w), weresum (1) term w in Mellin space to all orders in
perturbation theory. This is possible because of the argument
in the coupling constant a, (¢ (1 —z)?) resulting the integrals
and from the function 29.

In the SV part of the resummed result, the intrinsic ambi-
guity that exists while dealing with what needs to be expo-
nentiated gives scope to explore their impact. Among dif-
ferent prescriptions, the standard approach is to exponenti-
ate only large-N pieces coming from the threshold region.
Also, for large N, the expansion of Euler Gamma functions
gives Euler—Mascheroni constant, yr and considering these
large effects, one can exponentiate ‘N, which is defined as
N = N exp(yg), instead of N without disturbing the fixed-
order predictions. Numerically, however this can make a dif-
ference at the leading logarithmic accuracy as was already
seen in [97] where the perturbative convergence was shown
to improve with N terms. In a different scheme, called Soft
exponentiation one exponentiates the Mellin moment of soft-
collinear function [11,21] which contains all the plus dis-
tributions and §(1 — z) terms. Alternatively, one can also
exponentiate the complete form factor along with the soft-
collinear function in the Mellin space. This approach was
explored in [32,78] to study the inclusive Higgs boson pro-
duction in gluon fusion. It was found to predict results that
are less sensitive to the unphysical scales compared to the
standard threshold approach. This approach is theoretically
justified because the form factor satisfies the Sudakov K + G
type equation [11,21,98-101] whose solution is an exponen-
tial of N independent constant. For the numerical study of
DY production this approach was used in [102]. We give the
expressions for different resummation schemes below.

— Standard N exponentiation: In this scheme, we expo-
nentiate only the large-N pieces that contribute to the
CFs and the exponent is devoid of N-independent pieces.
Note that this will only change the ¥, . The Wlgy v
will remain same as it contains only N-dependent terms.
Hence we write:

Ag.n (G @) = &5 (q%)
exp (Gly v (a2 o) + Wiy y(@® @), (6)

where NSV part is defined in (34). And the SV part is
given as,

@ Springer
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Gy (@ ©) =¥y \ (g% ) —In(g)) 37)

which can be obtained from the Mellin transformation
of llfé and keeping only those terms that vanish when
N = 1. This is the standard approach adopted all along
this paper and we compare other prescriptions with the
N-exponentiation scheme in later sections.

Standard N exponentiation: Here, the large logarithms
are expressed in functions of N instead of N, where
N=N exp(yy). Hence along with large N-pieces, the
yE terms are also taken into exponentiation as they also
contribute to &(1) terms. The resulting exponent takes
the form:

4, 5@ 1wk 1) = 8@ ik nhr exp (G (6 @)

vl (g w)). (38)

NSV,N
Here the 5:78 (g2, u%, ,u%,) are given by
80(q° nk. ny) = CJ(@®, g, 17) &) (as(ug)),  (39)
where ng results from the N-independent part of the
Mellin transformation of the distributions and the yg’s

are all absorbed into the N-dependent functions. In doing
so, the N-dependent part of SV, i.e., G? is obtained

SV,N’
. q i _ N
by setting WSV,N In 80 = 0 when N = 1. Hence,
q q .
GSV,N and lIINSV,ﬁ are given by
OO .
Goyy =81 @IN+3 ai(up) gl ,@).  (40)

i=0

1 & . . o
vy = z;a;w%e)@?“(w) +h (@, N)), (41)
1=

with
i
hl (@, N) = thk(a) In* N, (42)
k=0

The expansion parameter @ = 2Bpay (M%) In N. Numeri-
cally, this can make difference at every logarithmic accu-
racy. For the SV, the perturbative convergence was shown
to improve with N terms in [30]. We will address the
impact of the same in NSV case in next section.

Soft exponentiation: Another scheme one can adopt is the
Soft exponentiation, where we exponentiate the complete
finite part of soft-collinear function @4. This includes the
N-independent pieces arising after the Mellin transfor-
mation of lllé, along with the N-dependent ones which
we used in Standard N-exponentiation. For this scheme
the resummed result takes the form:

@ Springer

~q,Sofl ,Soff
Agn(g? @) = 855" @D exp (W3 (@2 )

+ Wiy v (@ a))). 43)

with

o0
Sof Sof ; g.Sof
d/sqv,?v[(q{w):lnN ! Ot(w)+2a§g?+2°t(q2,w).
—
(44)

Here the complete finite part coming from the soft-
collinear function is absorbed into the resummed expo-
nents, which thereby gives rise to the exponents, giq’ oft.
The remaining N-independent terms coming from finite
part of form factor and AP kernels contribute to gwg's"“,

whose expansion in powers of aj is given as:

oo

~q,Sof i ~q,Soff

g @ =1+ a g7 @D, (45)
i=1

The N-independent constants §gl.’s°ﬁ(q2) and the

resummed exponents g?’SOﬁ (w) are listed in Appendix E.
— All exponentiation: In light of (17), which came out as a
consequence to the first-order differential equations sat-
isfied by each of the building blocks results in an all-
order exponential structure for A, y. Hence it is natural
to study the numerical impact of entire contribution taken
in to Mellin space, which is done in All exponentiation
scheme. The resummed result then takes the form:

LAl
248G @) = exp (W (@2 0) + Wy (@ ).
(46)

where

o0
LAlL LAl i q,All
wdiv @ 0) =InN gl (gh) + D ale! S (% w).
i=0

(47)

The resummed exponents g?’AH(a)) contain both N-
dependent and independent terms and are listed in
Appendix F. This scheme was explored in [32,78] to
study the inclusive cross section for the production of
Higgs boson in gluon fusion at the LHC. For similar study
for the DY in DIS and MS schemes, see [102].

In [30], we had studied how various schemes discussed
so far can affect the predictions of invariant mass distribu-
tion of lepton pairs, inclusive Z and W* production rates.
In the present paper we extend this analysis in the presence
of resummed NSV exponent and study the numerical impact
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on the production of a pair of leptons in DY process at the
LHC. At NNLO level, we have the contributions from all the
channels. Our numerical predictions are based on fixed-order
NNLO results for the CFs and on parton distribution func-
tions known to NNLO accuracy. The resummed results are
matched to the fixed-order result in order to avoid any double
counting of threshold logarithms. The resummed result at a
given accuracy, say N"LL, is computed by taking the differ-
ence between the resummed result and the same truncated
up to order ai . Hence, it contains contributions from the SV
and NSV terms to all orders in perturbation theory starting
from a"+1:

N'LO+N"LL _ _N"LO
O’N =0y

c+ioo dN Y ) )
x > / — (O V8 5 fan (WF) o (UF)

abeigg) Jemice 2T
) , (48)
tr N"LO

X (Aq,N

where o is the Mellin moment of do /d Q. The Mellin space
PDF (f:.n) can be evolved using QCD-PEGASUS [103].
Alternatively, we use the technique described in [26,66] to
directly deal with PDFs in the z-space. The contour c¢ in the
Mellin inversion can be chosen according to Minimal pre-
scription [75] procedure. In the above (48) the second term
represents the resummed result truncated to N”LO order. To
distinguish between SV and SV + NSV resummation, all
along the paper, we denote the former by N”LL and the lat-
ter by NULL for the n'" level logarithmic accuracy.

In Tables 1 and 2, we list the resummed exponents which
are required to predict the tower of SV and NSV logarithms
respectively in A, y at a given logarithmic accuracy. Let
us first review the predictions for the SV logarithms which
are already known in the literature [15,25-30]. As can be
seen from Table 1, using the first set of resummed exponents
{ggjo, g7} which constitute to the SV-LL resummation, we

+o©

— Aq,N
NLL

can predict the highest SV logarithm of A;i)N at every order

in a; in perturbation theory, i.e, L% at the order a§ for all
i > 1. Similarly using the second set of resummed expo-
nents {g{ |, g7} along with the first set, one can predict the
next-to-hi ghest SV logarithms to all orders, i.e., two towers of
logarithms namely {LE\%’_I), Lg\%l_z)} in A;l’)N foralli > 2.
These towers of logarithms belong to the SV-NLL resumma-
tion. In general, using the n-th set {gg,n, gZ 41} along with
the previous sets, we can predict the highest (2n + 1) towers
of SV-logarithms, at every order in a! for all i > n + 1 with
n =20,1,2...and these towers constitute to the SV-N"LL
resummation.

Now let us turn to the predictions for NSV logarithms
present in A, . From Table 2, we can see that the first set
of resummed exponents {g( . g7, g%, h{;} which contributes

to the LL resummation, facilitates the prediction of highest
NSV logarithms of AE;’)N to all orders in perturbation the-

ory, i.e, Lﬁi_l) at a§ for all i > 1. Furthermore, the second
set of resummed exponents {g¢ |, g7, g%, h{} along with the
first set, predicts the next-to-hi zg’hest NSV logarithms besides
the highest NSV logarithms to all orders, namely the tower
of L%’fz) for A;ly)N with i > 2. This tower of logarithms

belongs to the NLL resummation. In general, using the n-th
set {gg,n, g1+ 8hy s hit) along with the previous sets, we
can predict the highest (n + 1) towers of NSV logarithms at
every order in a§ foralli > n+1withn =0,1,2....
These n + 1 towers of NSV logarithms constitute to the
NOLL resummation. In summary, the predictive nature of
SV and NSV logarithms start to differ from next-to-leading
logarithmic accuracy (which is NLL for SV and NLL for
NSV) onwards. For the SV case, beyond LL accuracy, we
can predict additional two towers of logarithms at each log-
arithmic accuracy to all orders in a;. On the other hand, for
the NSV case, only one additional tower of logarithms can
be predicted at each logarithmic accuracy. This implies that
the NSV resummation is less predictive compared to the SV
counterpart, however this is the inherent property of the sub-
leading logarithms present in the NSV part.

In the following, we expand the resummed results in power
series in ag at various logarithmic accuracy and compare them
against the known fixed-order results in the literature. Prior
to this, we compare our result at LL accuracy against that
of [104]. In [104] , within the framework of soft-collinear
effective theory (SCET), the authors have obtained leading
logarithmic terms at NSV for the quark—antiquark produc-
tion channel of the DY process to all orders in ay. This was
achieved by extending the factorisation properties of the cross
section to NSV level and using renormalisation group equa-
tions of NSV operators and soft functions. Using our N-space
result, in the LL approximation, we have

0T . 1
Ay =86 exp |:1nN gl(w) + N(g‘{(a)) + hi (o, N)):|.
(49)

After expanding the exponents in powers of a; and keeping
only terms of &'(1/N), we obtain

T InN
AL =exp |:8CFas<ln2 N—i—T)]. (50)

The above N-space result can be Mellin inverted to z-space
and it reads as

AE = A;LSV —16 Cr agexp [scm In%(1 —z)] In(1—72).
(51)
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Table 1 The set of resummed exponents {gg,n, el (w)} which is required to predict the tower of SV logarithms in A, y at a given logarithmic

accuracy. Here L/ = In/ N

GIVEN PREDICTIONS - SV Logarithms Logarithmic accuracy
Resummed exponents Aff}v A(?N Afﬁ)zv A;S,)N Af;’;v AS,)N

g,g,o’ g(II L4 L6 L8 LIO L12 . L2i LL

8.1-8 .y @y @ty (1L {L¥-1, L% NLL

8620 83 (L% {L7,L% (L% L%) {L¥73,1*7%)  NNLL

Table 2 The set of resummed exponents {go o el w), gh(w), hi (a))} which is required to predict the tower of NSV logarithms in A, y at a given

logarithmic accuracy. Here L, =/ N /N

GIVEN PREDICTIONS — NSV Logarithms Logarithmic accuracy
Resummed exponents A[(IZ)N A;%)N A[(I‘gv A((:)N A ;6)N A ((;))N

= 2i—1 —

200 81+ 811G Ly Ly Ly LY LY LG L

g 2i-2 N A&

gg,l’ gl gl nt L4 L, L8 Lzl\? LEV’ ) NIL

g 2i-3 NS

2028383 13 Ly L] LY, - Ly NNLL

The above result agrees exactly with Eq. (4.2) of [104] for
w=0. o
Next, we expand the resummed expression at LL accu-
racy given in (50) up to aj (N*LO) and compare the predic-
tions for leading NSV logarithms against those from fixed-
order predictions. Note that, as can be seen from Table 2, the
LL resummation which comprises of only one loop anoma-
lous dimensions and SV + NSV coefficients from fixed-order

. : . N In’N
NLO results, predicts the leading logarithms “5~, *5~,

11117VN etc at a2 (NNLO), a} (N*LO), a} (N*LO) and so on
respectively.
For example, at a2 (NNLO), in N-space, we obtain

2 2 ln N

AP = A3 Pl {64CF] (52)
and the Mellin inverted result in z-space is
AR = A3V — (1 - z)[lZSC%}. (53)

The above predictions at NNLO level agrees with the known
results obtained in [1-3]. Our prediction at ag’ (N*LO) in N
and z-spaces are

In?
A(3) M= _Asv (3)| o4 4= n {256CF}

APl = ASY O — (1 —z){51ch] (54)

@ Springer

and are agreement with the results given in [58]. Now at af
(N*LO), our predictions in N and z-spaces read as

1n7 N (2048
) SV, (4) [ 4 ]
A = A —C%i,
NI = lLL N 5 Cr
4096
A = A5 O+ 71 - z){ -5 F}, (55)

and are found to be in agreement with the results obtained
using the physical evolution kernels (PEK) approach by
Moch and Vogt in [37]. In all of the above expressions, we
have set /‘%e = ,u%, =q>

We now consider the predictions of resummed result at
NLL and NNLL up to order a . At NLL, the resummed
expression takes the following form

ANE — (3o +ay 8 exp [lnzv ¢4 + g1 (@)

+ %(g‘f(a» + a5 B @)+ (. N) + as b o, N)ﬂ’
(56)

where the resummed exponents can be found in the Appen-
dices C.5 and C.6. Note that at NLL accuracy, we require
anomalous dimensions up to two loops and second order
SV + NSV coefficients obtained from NNLO results.
Expanding the resummed result in powers of a5, we obtain
the next-to leading logarithms lnj\,N , 1n16VN etc at as (N3LO),
a;‘ (N*LO) and so on respectively. At af (N3LO), in N
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and z-spaces, the predictions are given below by setting
2 _ 2 _ 2
Hr =MKp =4~

4
(3 3) SV.(3) In™ N 3520 2
A e = A + A5 |

N g “A%F
640 \
—TCan+<448+128OyE>CF},
7040
APl = A0 + 450V +1n' (1 - o S=cact

1280 }

= =5 Cins +1728C; (57)

where yE is the Euler—Mascheroni constant which arises due
to the Mellin transformation in N-space. The above predic-
tion agrees with the fixed-order result at order af given in
[58]. The predictions at a;‘ (N*LO) in N and z-spaces are as
follows

= A(4N|LL + ASV (4)|NLL
In® N{ 19712C 3
N g ~AVF

3584
9

(4) N = A(4) Jdc +

“
A, NINIT

14336
Cing+ (1792 4+ —= 3 ve)Ct},
A3 PN

39424

+1In®(1 — z){ CaC3

7168 19712
5 ——Cinp+ —— 3 C4} (58)

where we have set M%e = /JL%F = ¢>. The above predictions
at af are found to be in agreement with the results computed
using the physical evolution kernels (PEK) approach in [37].

Finally, using the NNLL resummation, which further
embeds the three loop anomalous dimensions and third order
SV + NSV coefficients obtained from N3LO results, we
predict the next-to-next-to leading logarithms mSTN at a;‘

(N*LO), WTN at ass (N’LO) and so on. The resummed expres-
sion at NNLL accuracy is given by

AYN = (@l +as 8y +al 8Ly exp [m N gl ()

1
+ &5 (@) + a5 g5 (@) + ~ (g‘{ (@) + a5 g4 (w)
+a2 g4 () + hi(@, N) +a; hi (@, N)

+a? (o, N)>:|. (59)

In° N
N

at af (N*LO) in N and z-spaces is provided below

(4) (4) SV, (4)
4 NINNLL A NlNLL + A, N INNLL

In’ N{61952C2C
N 27 FTA
206192 39424 ,
( — = yE—1536{2)CFCA

+ ( — 4992 + 10752y + 143362 + 4096;2)0;
258, 51968 7168

- = nrCica+( -5 e )nsCh
2048 ,

+ 57 iCh.

A(4) i = 4(4) AN ASV ‘@ aNLL
123904, (805376

(1 — {— -
+i°(l—2) 27 FtA 27

- 3072@)0}@ + (9088 + 20480@) Ct

45056
27

139520 . 4096 ,
nyCECA+ —5—n Ch = —=n}Ch }

+ 27
(60)
where we have set ,u% = u% = ¢2. The above predictions at
a? agree with those of [37] predicted using physical evolution
equations. In the next section we present the numerical results
of our predictions along with the scale uncertainties for the
neutral DY process at the LHC.

4 Phenomenology

In this section, we perform a detailed numerical study on
the impact of resummed soft virtual plus next-to-soft virtual
(SV + NSV) results for the production of di-leptons in neutral
DY process at the LHC. We include all the partonic channels
at the Fixed-order (FO) up to NNLO with off-shell photon
and Z boson intermediate states. We restrict ourselves to
center of mass energy of 13 TeV at the LHC, however our
analysis can be extended to other energies as well as to other
colliders. We use the following electro-weak parameters for
the vector boson masses and widths, Weinberg angle (6,,)
and the fine structure constant (c):

mz =91.1876 GeV, Iz =2.4952 GeV,

sin®6,, = 0.22343, o = 1/128. 61)
The parton distribution functions are directly taken from the
lhapdf [105] routine. All results are obtained using the
MMHT2014 [106] parton densities throughout. The strong
coupling constant is evolved to the renormalisation scale ug
using the three-loop QCD beta function in the MS-scheme
with ny = 5 active massless quark flavours.

We begin with a discussion on the relative contributions of
SV and NSV terms in the fixed-order results at the hadronic
level. We carry out this analysis in N-space as the resum-
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Fig. 1 Variation of SV and NSV functions with respect to T = Q%/S

mation is performed in the N-space. The partonic coeffi-
cient function, A, given in (16), comprises of functions
namely, SV distributions, {§(1 — z), Zx(z)} and NSV log-
arithms, In®(1 — z) in z-space. After performing the Mellin
transformation on A,, the SV distributions and NSV loga-

rithms transform to {1, In* N, #} in the Mellin N-space.
Here, ‘1’ stands for the Mellin moment of the SV distribution
8(1 — z). Before we present the corresponding contributions
of SV and NSV terms to hadronic cross sections, we plot the
following integral as a function of 7:

1
F (1) = f d—Zqu,; (3> MG N,
r Z Z

where @(N) = {1, InN, lnTN . (62)

In the above expression, .# ~1 stands for the Mellin inver-
sion. The plot given in Fig. 1 demonstrates the hierarchi-
cal behaviour of the terms in the threshold expansion at the
numerical level, in particular, it reflects to the fact that at
the threshold, .%# gets larger contribution from the SV terms
{1, In N} as compared to the subleading % terms. This hier-
archy remains the same when the corresponding coefficients
from the perturbative results of CFs are taken into account
along with these functions. This is shown in Table 3 for A((Iz),
i.e., at NNLO, we find that the SV logarithms contribute to
34.5% of the Born contribution, whereas the NSV distribu-
tions give 7.87% in N-space. We notice that this trend is
same at other known orders too. For example at NLO, the
total SV contributions amount to 22% whereas NSV gives
rise to a total of 6% of the Born contribution in N-space for
Q = 200 GeV. Similarly Table 4 shows the contributions
from SV and NSV logarithms at the N3LO level. Although
the contribution of NSV logarithms is subdominant to the
SV counterpart in N-space up to N3LO, it is still numeri-
cally sizeable and hence cannot be ignored.

@ Springer

Table 3 % contribution of SV distributions and NSV logarithms to the
Born cross section at NNLO for Q = 200 GeV

Q0=pr=pr GeV) SV NSV

200 m*N  00144% N g
3N 0.125% N 0.05%
2N 2.70% N 0.392%
InN 6.07% Ny 4.08%
m'N - 17.7% * 3.35%

Total 34.5% 7.87%

Table 4 % contribution of SV distributions and NSV logarithms to the
Born cross section at N3LO for Q = 200 GeV

Q=pr=pr (GeV) SV

Z
7

\%

200 meN  —00025% MN o
m N —0001% N 0.0004%
In* N 0.0244% N 0.006%
N 0.171% N 0.1%
2N 2.85% N 0.56%
InN  623% N 431%
N 18.3% + 3.30%

Total 27.6% 8.28%

Having studied the numerical relevance of subleading
NSV logarithms in the fixed-order results, we now turn to
assess the impact of their resummation on the cross sec-
tions. Besides the theoretical motivation of resumming the
large enhancements arising from these logarithms, it would
be interesting to see how phenomenologically important the
resummed NSV logarithms are, in addition to the well estab-
lished SV resummation for the Drell-Yan cross section. We
begin the analysis by addressing the following questions:

— In comparison to the fixed-order corrections, how large
are the SV + NSV resummed effects on the cross sec-
tions?

— How do the resummed NSV terms change the predictions
of SV resummed result?

— What are the impacts of different schemes on the
SV + NSV resummation?

We will discuss each of these questions in great detail in
subsequent sections. To begin with, let us look at the impact
of SV + NSV resummed results in comparison to the fixed-
order results, which is the topic of the next section.



Eur. Phys. J. C (2022) 82:234

Page 13 of 38 234

1.5

HR=pr=Q
MMHT2014
13TeV LHC

,
13 ~

Kyro RS

K-Factor

r Knnro -
1.2+

— Kro+iL
— Knro+NiL

[ KNNLO + NNLL
11

1'0'H1H"1Huxuuxu“x““x““
500 1000 1500 2000 2500 3000 3500

Q [GeV]

Fig. 2 K-factors till NNLO + NNLL level at the central scale Q =
UR = UF

4.1 Fixed-order vs resummed results

In the following we study how the inclusion of SV+
NSV resummation modifies the predictions from fixed-order
results for inclusive DY di-lepton pair production. For this
purpose, we get the matched predictions by appropriately
including the leading, the next-to-leading and the next-to-
next-to-leading resummed results with the corresponding
fixed-order results. By investigating how sensitive is the
SV + NSV resummed cross section to the choices of factori-
sation () and renormalisation (ug) scales, we study their
perturbative uncertainties. The quantitative impact of higher
order effects can be obtained using “K-factor” defined by
do

10 (ur = pur = Q)
Jol0 (63)
o
where we have set renormalisation (ug) and factorisa-
tion (1) scales at Q. The K-factor for NLO + NLL and
NNLO+NNLL are depicted in Fig. 2 along with the corre-
sponding fixed-order ones.

In Table 5 we present the K factors resulting from both
fixed as well as resummed contributions at three differ-
ent values of Q, namely QO = 500, 1000, 2000 GeV. We
find that there is an increment of {39.5%, 36.5%} in the
cross section when we go from LO to NNLO for the Q
values {500, 2000} GeV respectively. The inclusion of the
resummed results, for the same values of Q, increases, the
LO by {6.2%, 10.62%} when we include LL, the NLO by
{3.7%, 5.2%} due to NLL and the NNLO by {0.94%, 1.2%)}
due to NNLL. This is reflected in Fig. 2, where the resummed
curves can be found to lie above their corresponding fixed-
order ones signifying the enhancement due to the resummed
corrections.

K(Q) =

(MR =ur = 0)

Interestingly, we can also see from Table 5, that the K
factors at NLO 4 NLL are closer to those of NNLO hint-
ing that NLL from quark part mimics the contributions from
entire second order. The resummed curves at NLO 4+ NLL
and NNLO + NNLL are closer compared to the fixed-order
ones, namely NLO and NNLO. This accounts for the fact
that the addition of resummed effect improves the reliabil-
ity of perturbative predictions. The K factors at NNLO and
NNLO + NNLL are more closer than those at NLO and
NLO + NLL. This is attributed to the fact that the resummed
correction decreases as we go for higher order resummed
contributions.

7-point scale uncertainties of the resummed results

Both fixed-order as well as resummed results contain renor-
malisation and factorisation scales which are unphysical. We
now turn to assess the impact of these scales on our predic-
tions. The dependence on these scales quantifies the corre-
sponding errors due to their presence. The standard approach
to estimate this error is to use the canonical 7-point variation,
where & = {uF, g} is varied in the range % < % < 2,
keeping the ratio p g/ not larger than 2 and smaller than
1/2.

The left panel of Fig. 3 contains the invariant mass distri-
butions obtained using fixed-order CFs as a function of 7 and
the bands are due to 7-point scale variation, while the right
panel is obtained using resummed results at various logarith-
mic accuracy. We find that the width of the resummed band
at NLO + NLL is lesser than that of the corresponding fixed-
order ones from Q = 1000 GeV onwards but the width of the
NNLO+NNLL doesn’t show much improvement against the
fixed-order ones. The reason for this large scale uncertainty
can be attributed to the fact that the resummed predictions
lack the off-diagonal counter part. We will discuss more on
this point in detail in subsequent analysis while considering
the effect of both the scales independently.

In Table 6 we quote both fixed-order and resummed pre-
dictions at various logarithmic accuracies along with asym-
metric errors resulting from 7-point scale variation for two
values of O, namely O = 1000 GeV and Q = 2000 GeV. We
find that there is a systematic enhancement of the cross sec-
tions as we increase the order of perturbation. For example,
there is an increment of 24.2% when going from LO + LL
to NLO + NLL accuracy, which further improves by 0.58%
at NNLO + NNLL for Q = 2000 GeV. In addition, the
scale uncertainty gets reduced significantly while going from
LO + LL to NNLO 4 NNLL. This is also reflected in
Fig. 3 (right panel), where one finds the uncertainty band
of NNLO + NNLL is contained within the NLO + NLL
band throughout the considered Q-range. This was not the
case for the fixed-order predictions, where NNLO band was
found to differ from the NLO one at high energies. This hints
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Table 5 The K-factor values for

esummed rosult n compatison 1k = 1 = Q(GeV) LO + L NLO NLO+NLL  NNLO NNLO + NNLL
to the fixed-order ones 500 1.0624 1.3425 13925 13950 1.4082
1000 1.0728 13464 13995 1.4004 14138
2000 1.1062 13064 13739 13652 13818
15
o 4
T 3S5<2
s 9 L
= L MMHT2014
o =or 13 TeV LHC

~
= [
o 1.2
= L
~
S 1.1F
© T F
o ¥
2 1.0
'O -
Q L
Té: 0'9; E LO+LL
IS 08:— NLO i NLO+NLL
= OF R
o [ s NNLO [ NNLO+NNLL
2 o7k o
© T
'c -
06L L Lol L Lol L L L L Lol L Lol L M
1074 1073 1072 1074 1073 1072
T T

Fig. 3 7-point scale variation of the resummed result against fixed-order around the central scale choice (g, nr) = (1, 1)Q for 13 TeV LHC.
The dashed lines refer to the corresponding central scale Q = g = pr at each order

Table 6 Values of resummed cross section in 107> pb/GeV at various orders in comparison to the fixed-order results at different central scales

Q = ur = pur = 1000 and 2000 GeV for 13 TeV LHC

0 LO LO +LL NLO NLO + NLL NNLO NNLO + NNLL
1000 2347615400 2.5184743%% 3.16091}-0% 3.28571208% 3.28761030% 3.3191 143
2000 0.050115-30% 0.055479:89% 0.065413-83% 0.0688"133% 0.06841037% 0.0692039%

to the notable NSV contributions coming from the resumma-
tion effects in diagonal channels. These conclusions might
change if we include resummed effects from off-diagonal
channels which are currently not available.

In the above analysis, fixed-order results used for the
numerical predictions contained all the partonic channels
while the resummed contributions are only from quark anti-
quark initiated channels. In the absence of resummed contri-
butions, under the 7-point scale variations, the scale depen-
dence is expected to go down as we increase the order of per-
turbation. However, this may not be the case if we include
resummed effects only in quark anti-quark initiated chan-
nels. The quark gluon and gluon gluon initiated channels are
also important as they contribute significantly to the cross
section and more importantly they improve the stability of
perturbative predictions under the scale variations. In order to
understand the role of these partonic contributions, we drop
them in the previous analysis restricting to quark anti-quark

@ Springer

initiated contributions and then compare the outcomes given
in Fig. 4 and in Table 7 against Fig. 3 and the Table 6. We
find that there is a systematic enhancement of 28.19% when
going from LO + LL to NLO,; + NLL and 2.08% from
NLO,; + NLL to NNLO,; 4+ NNLL for Q = 2000 GeV.
These increments are more compared to those in the case
where all the channels are included in the fixed-order part.
This stems from the fact that the cancellation which results
due to the inclusion of other channels, in particular the gg-
channel, is not considered here. As a result of which the error
bands in Fig. 4 of NNLO,; + NNLL is wider than that of
NLO,; +NLL in comparison to the resummed curves shown
in Fig. 3 (left panel).

Hence in the 7-point variation, we find that the resummed
result shows a systematic enhancement of the cross section
as well as reduction of the uncertainties with the inclusion of
each logarithmic corrections. But the scale uncertainties of
the resummed result shows much improvement at the NLO+
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Fig. 4 7-point scale variation of the resummed result against fixed-order around the central scale choice (g, ir) = (1, 1) Q for gg channel

Table 7 Values of resummed cross section at various orders in comparison to the fixed-order results in 10~ pb/GeV for ¢ channel at different
central scales Q = ug = pr = 1000 and 2000 GeV for 13 TeV LHC

0 = g = 1rp(GeV) NLO; NLO,; + NLL NNLO4 NNLO,; + NNLL
1.91% 4.18% 3.46% 4.16%
1000 3.3204%3 0000 3.445245 0% 3.526013 ¢ 3.55761 135
1.65% 2.33% 1.63% 2.37%
2000 0.06761305% 0.071021 757 0.07171155% 0.07253 37
15¢
? 14} 3<% <2ur=0
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Fig. 5 ur scale variation of the resummed results against the fixed-order with the scale p g held fixed at Q for 13 TeV LHC
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NLL than at the NNLO + NNLL Ievel. To understand this
and also the cause of the uncertainties better we now turn to
analyze the effect of each scale individually on the resummed
result.

Uncertainties of the resummed results with respect to ©g
and ur

So far, we have studied the importance of both fixed-order
as well as resummed contributions using the K factor and
the uncertainties arising from unphysical scales ;g and wr.
The numbers in the Table 5 demonstrate the importance of not
only the fixed-order contributions but also the effects coming
from the resummed ones. The resummed results comprises
of both SV and NSV logarithms and the importance of large
coefficients of the NSV terms was illustrated for the case
of fixed-order corrections in Table 3. From the analysis of
7-point variation, we have shown that inclusion of leading,
next-to-leading and next-to-next-to-leading collinear loga-
rithms, in addition to the SV distributions, from the gg chan-
nel, to all orders in perturbation theory through resummation
significantly enhances the cross section. But this enhance-
ment comes with a price, namely the uncertainties result-
ing from unphysical scales. As we have seen in Fig. 3 that
while the width of the resummed band at NLO + NLL is
less than that of the corresponding fixed-order ones from
Q = 1000 GeV onwards, the width of the NNLO + NNLL
doesn’t show much improvement even at higher values of Q
as against the fixed-order result. In order to understand the
reason behind this we aim to study the impact of the two
scales separately. This is our next task.

The dependence of the cross section on wr is plotted in
Fig. 5, as a function of t with g held fixed at Q. The bands
are obtained by varying the scale ur by a factor of two up
and down around the central scale ug = ur = Q. Here, the
resummed bands look similar to that of Fig. 3 (right panel),
however the width of NLO + NLL and NNLO + NNLL bands
become slightly thinner as compared to the 7-point scale vari-
ation. This suggest that the contribution to the width of the
bands in Fig. 3 mainly comes from the uncertainties aris-
ing from the pr variations. For instance, the uncertainty at

NLO + NLL with respect to i, r variation is “_L(l):g%‘j whereas

the uncertainties arising from the 7-point variation is +1a3%
1.23%

for Q = 2000 GeV. Similarly at NNLO + NNLL, the uncer-

tainty arising from @ r variation is fg:gg% and from 7-point

variation is fg:gg% for the same value of Q. Now let us com-
pare the p r uncertainty of the resummed result with respect
to their fixed-order. We find that the width of the NLO band
decreases with the inclusion of NLL from Q = 1600 GeV
on wards. But the ur uncertainty for NNLO increases at
NNLO + NNLL. The reason behind this stems from the

contribution coming from gg-channel. The one-loop cor-
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rection from the gg-channel is 22.09% of the NLO cross
section, whereas the correction at the same order from the
qg-channel is about —5.04% of the NLO cross section. Now
at NLO + NLL, we sum up the collinear logarithms from
the diagonal channel which is also the dominating channel
at NLO and hence the improvement through resummation.
But the scenario is different at NNLO level. The a? cor-
rections from gg and gg-channel contribute to 4.86% and
—2.47% respectively to the NNLO cross section along with
the other sub-dominating channels. However the sources of
collinear logarithms at the threshold limit is only from gg and
gg-channels. Hence at NNLO there is a bigger cancellation
between gg and gg-channels than that at NLO. The cancel-
lation at NNLO + NNLL is not matched due to the unavail-
ability of the gg resummed collinear logarithms. Thus the
wr variation in Fig. 5 reflects the role of the other channels
and the need for g g resummation for betterment of the result.

Let us try to understand why the inclusion of resummed
contributions in quark gluon initiated channels is important.
Note that in the above analysis, we had taken all the partonic
channels for the fixed-order part and only quark anti-quark
initiated channels for the resummed part. We found that in
the fixed-order, the i dependence from the PDFs and from
quark anti-quark initiated as well as from the quark-gluon
initiated processes are expected to compensate each other
according to renormalisation group equation with respect
to factorisation scale. However, in the resummed part, this
will not happen due the absence of resummed quark gluon
counter part and this is the reason why one gets larger ur
dependence in the predictions at NNLO + NNLL level. A
symmetric analysis where we keep only quark anti-quark
initiated channels both in fixed and resummed contributions
can demonstrate this better and hence the Fig. 6. As one can
see easily, the bands in both fixed-order and resummed pre-
dictions are wider compared to those in the Fig. 5 indicating
the importance of quark gluon initiated channel both in fixed
as well as resummed parts.

Figure 7 shows the dependence of the cross section on (g
keeping 1 F fixed at Q. The bands are obtained by varying the
scale up by a factor of two up and down around the central
scale ug = ur = Q. We observe that at NNLO + NNLL
the error band becomes substantially thinner as compared
to Fig. 5. This is because each partonic channel is invari-
ant under pg variation when taken to all orders and hence
inclusion of more corrections within a channel is expected
to reduce the uncertainty. We find that the © g uncertainty at
NLO + NLL ranges between ﬂ:gg% whereas for NLO it is

between {35 for O = 2000 GeV. And at NNLO + NNLL

the uncertainty is found to be fgg%gj and for NNLO it is

Jjg:%%’ for the same value of Q. Hence from Fig. 7 one can

see that ;g dependence goes down for O = 800 GeV on
wards.
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Fig. 7 g scale variation of the resummed results against the fixed-order with the scale n r held fixed at Q for 13 TeV LHC

Since different partonic channels do not mix under the
variation of u g, the symmetric analysis of keeping only quark
anti-quark initiated channels will have similar behaviour as
that of the case where other partonic channels are included in
the fixed-order, which s givenin Fig. 8. The i g uncertainty is
significantly decreased as we go from NLO to NLO + NLL to
NNLO to NNLO + NNLL. We find the uncertainty at NNLO
fg:g%g gets improved to fg:gg%% for Q0 = 1000 GeV. And this
improvement continues to grow even for higher values of Q.
Therefore the inclusion of resummed result reduces the wg
uncertainly remarkably as compared to the fixed-order ones.

Hence in conclusion to this section, we find that the
uncertainty, which earlier manifested in the 7-point vari-

ation, shown in Fig. 3, was largely due to the ur uncer-
tainty. Now as we know that different partonic channels mix
under the variation of factorisation scale wr and so any
uncertainty arising due to its variation only hints towards
the “uncompensated” contributions from other channels. The
fact that the resummed result at NLO + NLL shows improve-
ment as compared to the fixed-order, emphasizes the impor-
tance of the resummed NSV logarithms. Similarly at the
NNLO +NNLL level the large cancellation between different
channels, mainly ¢g and g g, equally hints towards the impor-
tance of the collinear logarithms of the gg channel. Similarly
for the pp variation, where the dependency is supposed to
get better with the inclusion of more corrections within a
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Fig. 8 R scale variation of the resummed results against the fixed-order with the scale ur held fixed at Q for gg-channel for 13 TeV LHC

partonic channel, we see a substantial improvement due to
SV + NSV resummation in comparison to the fixed-order
result. But now that we have seen the effect of the combined
resummed result on the fixed-order let us analyze which part
of the SV + NSV resummation, i.e., whether its the resum-
mation of the distribution or of the NSV logarithms, plays
the dominant role in any kind of improvement discussed so
far.

4.2 SV resummation vs SV + NSV resummation

In the earlier section we have made a quantitative compari-
son of SV + NSV resummed results against the fixed-order
ones. We found that there is a significant enhancement of the
cross section and the g scale uncertainty gets substantially
improved with the inclusion of the resummed corrections.
We also found that the uncertainties related to the ur vari-
ation shows betterment at NLO + NLL for higher Q values
but not at the NNLO+NNLL level. Now, in this section we
turn to a detailed analysis on the inclusion of NSV resum-
mation over SV resummation so as to estimate the effect of
resummed collinear logarithms from the gg-channel.

We begin with the K-factor, which is presented in Table 8,
to examine the impact of resummed NSV logarithms. Keep-
ing all the partonic channels in the fixed-order, we find that
the inclusion of the resummed NSV logarithms enhances the
SV resummed corrections significantly throughout the con-
sidered Q range. In particular, for Q = 2000 GeV, there is
a considerable amount of increment of 2.08% when we go
from NLL to NLL and 0.64% from NNLL to NNLL.

Figure 9 demonstrates this for a wider range of Q val-
ues. We can also observe that the curves corresponding to
SV + NSV resummed results at NLO + NLL and NNLO +
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NNLL are closer compared to the SV counter parts, account-
ing for the perturbative convergence when NSV effects are
taken into consideration. It also shows that the resummed
correction decreases when we go to higher logarithmic accu-
racy as the resummed curves at the second order are closer
than that of the first order ones.

We now analyze the scale uncertainties of the SV + NSV
resummed results in comparison to the SV resummation. In
Fig. 10 we plot the SV and SV + NSV resummed results
at various logarithmic accuracy as a function of 7 taking
into account the respective 7-point scale variations. Note
that the SV + NSV resummed predictions are more sensi-
tive to the scales compared to the SV ones. For instance,
for O = 2000 GeV, we find the scale uncertainty of SV

resummed results, which was in between fg:g%go’, is enhanced

to fg:ggg‘; when the resummed NSV corrections are added.

This further hints towards our earlier findings in Sect. 4.1,
that the absence of complete resummation of collinear loga-
rithms, which includes both diagonal as well as off-diagonal
contributions, causes the SV + NSV resummed predictions
to be more sensitive to the unphysical scales.

However the SV resummation, which gets contributions
only from the diagonal channel, shows improvement in
7-point scale uncertainties for higher values of Q. Simi-
lar findings are observed even if we restrict ourselves to
only diagonal (¢g) channel as shown in right panel of
Fig. 10. For comparison, we present the SV and SV + NSV
resummed results along with the fixed-order predictions for
Q = 1000, 2000 GeV with their respective percentage scale
uncertainties in Table 9 at the second order.

The width of the band is expected to reduce when we
fix the factorisation scale and vary only the renormalisation
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Table 8 The K-factor values for

NSV resummed result in Q=uRr =UF NLO + NLL NLO + NLL NNLO + NNLL NNLO + NNLL
comparison to the SV resummed 5 13711 1.3995 1.4053 1.4138
predictions at various
logarithmic accuracy 2000 1.3459 1.3739 1.3729 1.3818
LS W F variations, it is worthwhile to consider resummed PDFs
HR=pr=Q . .
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Fig. 9 A comparison of the K-factors of both SV and SV + NSV resum-
mation for 13 TeV LHC

scale, since the effect of latter gets cancelled within a given
partonic channel. Hence we now turn to analyze the effect of
each these scales separately on the resummed result.

As seen in Sect. 4.1, the large uncertainties in the 7-point
variations were mostly from the p r variation and hence we
compare in Fig. 11 the wF sensitivity of SV and SV + NSV
resummed cross sections as a function of t, keeping p g fixed
at Q. Note here that the bands are obtained by varying only
ur by a factor of 2 up and down around the central scale
ur = ur = Q. We find, that where the @ r band of fixed-
order, i.e., at NLO, starts widening for higher values of Q,
the resummed bands i.e., at NLO + NLL and NLO + NLL,
shows a systematic reduction in the width for the same range
of Q. But there is larger reduction in the SV resummed case
in comparison to the SV + NSV. On the other hand the ur
band of NNLO is better than both SV and SV + NSV for the
considered Q range. This clearly hints towards the level of
cancellation between different partonic channels. At NNLO
there is a significant cancellation between g¢ and g g-channel
which leads to the reduction of the pr width from NLO to
NNLO and the SV resummation, which resums the distribu-
tions present only in the diagonal channel, doesn’t require
any compensation from other channels. But when it comes
to SV + NSV resummation there is a compensation required
from the other partonic channels to enhance the u F stability.
Note that in all these analysis, we studied the impact of fixed-
order and resummed CFs using same PDF sets to desired
logarithmic accuracy for both of them. For studies related to

However, this is not the case if we keep the p r intact and
study the sensitivity due to g variation as the latter effects
are supposed to cancel within a partonic channel. This is
depicted in Fig. 12, where we vary the g dependence of
cross section as a function of t with wg held fixed at Q.
As can be seen from the plot, the width of the ug band is
significantly reduced in case of resummed bands in compar-
ison to the fixed-order band, leading to a reliable predictions
from the resummation. And among the resummed bands, the
uncertainty of SV + NSV resummed results are comparable to
those of SV resummation. For instance, for Q = 1000 GeV,
the uncertainty is f}:f?gz at NLO + NLL whereas it is J_r} :%gg”)
at NLO + NLL. Similarly, the uncertainty at NNLO + NNLL
is tg:?é%% whereas at NNLO+NNLL is it found to be fg:%;‘;
for the same value of Q.

In order to see the NSV effects more clearly, let us focus on
the sensitivity of the predictions to the choice of the scale g
within the gq channel as a function of 7, which is depicted
in Fig. 13. Interestingly, the behaviour of NNLO,z + NNLL
is significantly improved from the corresponding SV results,
NNLOyz + NNLL, for a wide range of Q. There is a large
increment in the central value, in addition to the significant
reduction of the g uncertainty. To see this quantitatively, we
quote in Table 10 both the fixed-order and SV and SV + NSV
resummed predictions along with asymmetric errors result-
ing from p g variation with u r held fixed at Q, say Q = 1000
and 2000 GeV. The uncertainties, in Table 10, are obtained
with respect to the p g scale variation with pr held fixed at
Q. This evidently shows that there is a considerable improve-
ment when adding NSV resummation over the existing SV
results and hence leading to more reliable predictions.

To summarise, our analysis on the sensitivity of hadronic
results to ;r and g scales where the resummed parts from
qq channel is taken into account, helps us to understand the
role of various channels as well as on the PDFs that con-
tribute. As far as the pg scale is concerned, inclusion of
SV as well as NSV resummed contributions in CFs alone
helps to reduce the sensitive to this scale. However, this is
not the case for up as our numerical study shows the need
for resummed NSV contributions to CFs of gg-channel as
well as the resummed PDFs.
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Fig. 10 7-point scale variations of NNLL and NNLL matched to NNLO for all-channels (left panel) and gg-channel (right panel)

Table 9 Values of SV and SV + NSV resummed cross section in 10~ pb/GeV at second logarithmic accuracy in comparison to the fixed-order
results at different central scales

Q= ug = ur NNLO NNLO + NNLL NNLO + NNLL
1000 3.2876+0:20% 3.2993+0:36% 33191 rgerr
2000 0.06841027% 0.068710377% 0.069210 5%
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Fig. 11 pF variation between SV and SV + NSV resummed results matched to NLO (left panel) and NNLO (right panel) with the scale g held
fixed at Q
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4.3 SV + NSV resummation in different schemes

This section is devoted to the study of SV + NSV resum-
mation effects in different schemes, namely N and N expo-
nentiations. The details of both the schemes are discussed
in Sect. 3 and here we illustrate their numerical impact. The
main point of difference between these two scheme arises
from the “additional” resummation of yg, i.e., in N. We
resum yg terms along with In N whereas for N exponen-
tiation we only resum the In N terms. The effect of this
“additional” resummation of yr has shown better conver-
gence for SV resummation, now here it would be interesting

to see what changes does SV + NSV resummation bring to
the observations made earlier in [30].

At first we begin with the analysis of K factor which is
defined in (63). To differentiate between these two scheme
we denote K for N and K! for N exponentiation as given
in Fig. 14. Earlier in Sect. 4.1, we found that the K factor
for N exponentiation shows certain hierarchy which grows
from LO + LL to NLO + NLL to NNLO + NNLL. Now for
N we find, that the Ky o, xr is greater than Ky o NRIT-
However at NNLO + m, we observe a striking feature,

! Tt is to be noted that both K and K follows the same definition as given
in (63).
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Table 10 Comparison of SV

and SV + NSV resummed cross Q=u1r="Kr NNLOg; NNLO,z + NNLL NNLO,z + NNLL
section in 107> pb/GeV for +0.49% +0.25% +0.006%
gq-channel at different central 1000 3.5260 s34, 3.5376 9599, 3.5576 0509
scales 2000 0.07175 053 0.07217013% 0.07257 %,

namely the K factors for both N and N exactly overlap on
each other for the considered Q range. To quantify the overlap
at NNLO + NNLL, we quote that for N at 0 = 2000 GeV,
the K factor is 1.3823 while for N it is 1.3818 (see Table 5).
This implies that the correction at NNLO + NNLL is inde-
pendent of any schemes.

Moreover, like N exponentiation, we see an overall incre-
ment in the cross section for N with the inclusion of
higher order logarithmic corrections. For instance at Q =
2000 GeV, the LO prediction is enhanced by 27.34%, the
NLO by 6.88% and similarly the NNLO by 1.31%. As a
whole the resummed result at NNLO + NNLL increases the
LO prediction by 38.32% for the same value of Q. And the
perturbative convergence between resummed curves in N is
better than N exponentiation by a very small margin as can
be seen from Fig. 14.

Now we proceed to study the uncertainties resulting from
wug and jp for both N and N. This is presented in Fig. 15.
We find that there is a systematic enhancement in the cross
section and in scale reduction for both the schemes. However,
in contrast to N exponentiation, studied in sec. 4.1, we find
that the bands of NNLO + NNLL is not contained within the
band of NLO + NLL in N-scheme, as the enhancement from
NLO + NLL to NNLO + NNLL is negative. For instance,
there is an increment of 9.6% from LO +LL to NLO + NLL
accuracy, which decreases by —0.85% at NNLO + NNLL
for 0 = 2000 GeV. This can also be seen from Fig. 14.
Although the width of NNLO + NNLL band is smaller
than that of NLO + NLL yet the uncertainties associated
with these two bands are more than N exponentiation (see
Table 11). Hence in summary, we find that when we go from
LO+LL to NNLO+NNLL, the cross section increases more
in N scheme compared to N and the uncertainty in N scheme
is smaller compared to N. Interestingly at NNLO+NNLL
level, their central values are very close to each other com-
pared to previous order hinting better scheme independence
as we increase the order of perturbation.

Besides N and N there are two other schemes as we dis-
cussed in Sect. 3, which are Soft and All exponentiation.
While in Soft -scheme, we exponentiate only the Mellin
moment of complete soft-collinear function, in All -scheme,
the form factor contributions are also taken into exponenti-
ation, additionally. We have explored the NSV resumma-
tion under these two schemes along with the N- and N-
schemes for two different Q-values, namely Q = 1000 GeV
and 2000 GeV and the results are enlisted in Table 11
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Fig. 14 Comparison between the K-factors for the N and N exponen-
tiation at the central scale Q = ugr = ur

for different logarithmic accuracies. Noting various values,
we find that at LO+LL and NLO + NLL, the N scheme
gives the large corrections, say 0.0638 x 10™> pb/GeV and
0.0699 x 107> pb/GeV respectively at Q = 2000 GeV,
whereas, at NNLO+NNLL i.e., after adding more logarith-
mic corrections, the large contributions are arising from A/l
-scheme. However, the uncertainties coming from pg and u
variation are found to be least in N and All exponentiation at
any logarithmic accuracy for the considered Q-range.

4.4 Numerical results for different collider energies

InTables 12, 13 and 14, we summarise the results for different
collider energies and different values of the invariant mass of
di-leptons. We estimate the theoretical uncertainty by inde-
pendently varying the scales © = {ir, g} up and down, by
a factor of two i.e. % < L < 2. We find that the inclusion of
SV NNLL increases the NNLO distribution by 0.24-0.55%
whereas the inclusion of NSV at NNLL increases it by 0.72—
1.65%, in the considered collider energies and the Q range.

5 Discussion and conclusions

Production of pair of leptons in Drell-Yan process is one
of the cleanest processes at the LHC, also well studied both
in SM and beyond SM. The perturbative predictions tak-
ing into account radiative corrections from strong and elec-
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Fig. 15 A comparison between 7-point scale variation in both N and N exponentiation around the central scale choice (g, ur) = (1,1)Q for

13 TeV LHC

Table 11 A comparison of resummed cross-sections in 10> pb/GeV between different resummation schemes up to NNLO + NNLL

0 = ugr = ur (GeV)

N-Exp

N-Exp

Soft-Exp

All-Exp

Order

LO+LL 1000
2000

NLO + NLL 1000
2000

NNLO + NNLL 1000
2000

2.5184153%%
0.055479:39%
3.28571308%
0.0688" 1537
331917 8%
0.069210 507

2.86361 2 00%
0.063811021%
3.34187241%
0.069971-97%
3.3204F|35%

+1.28%
0.06937 154

+4.49%
2.51847, 554,

0.055415- 9%
3.302713-12%
0.0691F} 70
3.3222% 0 50%
0.06937 937

2.5184155%%
0.055479:39%
3.31011]89%
0.0693 1417
3.3264 g0
0.06947 0857

Table 12 Resummed results for invariant mass distribution of di-lepton pair against fixed-order (in pb/GeV) at different centre of mass energies at

the LHC for Q = 200 GeV

N NNLO NNLO + NNLL NNLO + NNLL

7 TeV 2.56 x 10210207 2.57 x 10-27082% 2.59 x 10-21210%

8 TeV 3.06 x 10727027 3.07 x 1020 %6% 3.00 x 10-2128%

13 TeV 5.63 x 107270417 5.65 x 107270507 5.69 x 10 2F243%

14 Tev 6.16 x 10-2T08% 6.18 x 107271 90% 6.22 x 10-2728%
_1+0.62% _1+1.16% _1+2.79%

100 TeV 5.13 x 10717 (5a 515 x 10717 e 5.18 x 10775 0ar

Table 13 Resummed results for
invariant mass distribution of
di-lepton pair against
fixed-order (in pb/GeV) at
different centre of mass energies
at the LHC for Q = 500 GeV

V3 NNLO NNLO + NNLL NNLO + NNLL

7 TeV 3.5 x 10410227 3.26 x 10-4 10100 3.28 x 10411 25%
§ TeV 4.13 x 10741017 4.14 x 10-410412% 4.17 x 10-41]40%
13 TeV 9.04 x 10-4T020% 9.07 x 107410 200% 9.13 x 1074120
14 TeV 10.09 x 10~4T0213% 10.13 x 10-4T0365% 10.19 x 10-4+1-39%
100 TeV 1214 x 1021037 1217 x 10720 087% 1223 x 10727} 547
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Table 14 Resummed results for

invariant mass distribution of Vs NNLO NNLO + NNLL NNLO + NNLL
di-lepton pair against _6+0.42% _6+0.32% _6+0.99%
fixed-order (in pb/GeV) at 7 TeV 7.55 x 107°_¢'7049 7.59 x 10 —~0.26% 7.65 x 107°_y'g7¢,
different centre of mass energies 8 TeV 1.092 x 10*%8;23;/2 1.098 x 10*%8:?% L.11 x 10*5:1):(8)2;2
at the LHC for @ = 1000 GeV _5+0.28% _5+0.36% _5+1.135%
13 TeV 3.29 x 10751035 3.30 x 107510 20 3.32 x 1075
14 Tev 3.79 % 107570 o 3.81 x 1075050 3.83 x 10757y oer
100 TeV 6.96 x 10~4T021% 6.98 x 10-4T0%0% 7.01 x 10~4730%

troweak interactions are known to unprecedented accuracy.
Third order perturbative results in QCD improved with the
SV enhanced resummed contributions and with partial sec-
ond order results in electroweak sector have already played
important role in our understanding of the underlying dynam-
ics and in addition, these results have set stringent constraints
on the parameters of various beyond the SM scenarios. In
this article we have improved the predictions by including
next-to-SV enhanced resummed contributions from strong
interactions. We have used the recent formalism that sys-
tematically resums such next-to-SV logarithms to all orders.
We have restricted ourselves to the production mechanism
where only neutral gauge bosons such photon and Z boson
produce leptons. For our study, we have included fixed-
order results from QCD upto NNLO and resummed results
upto NNLL level. The latter contains both resummed thresh-
old SV contributions as well as next-to-SV resumed ones.
Using the so called matched results, we study the impact of
resummed NSV contributions on the invariant mass of the
pair of leptons. As the fixed-order predictions have already
indicated that NSV logarithms dominate over SV distribu-
tions, the inclusion of resummed NSV terms along with the
SV resumed predictions are expected to show appreciable
numerical effects that can not be ignored. We have stud-
ied their impact over a wide range of Q values, i.e., 100
to 3500 GeV for 13 TeV LHC. We find that about 6—11%
increase when we go from LO to LO + LL while at second
order it stabilises to 1% when we include NNLL to NNLO.
These predictions were obtained by setting both renormali-
sation pg and factorisation wr scales at Q. The sensitivity
of our predictions with respect to these scales can be stud-
ied using 7-point scale variation and single scale variation.
In the seven point scale variation, we find that the inclusion
of resummed E, NLL and NNLL terms to fixed-order LO,
NLO and NNLO contributions increases the sensitivity of the
predictions to these scales. A detailed investigation reveals
that the resumed results are more sensitive to factorisation
scale compared to renormalisation scale and in particular we
find that NSV part of the resumed result is largely responsible
for this. The reason for this is the absence of NSV resummed
terms from quark gluon initiated processes in our analysis.
These contributions would provide right logarithms of ur

@ Springer

to compensate against those from the PDFs at the hadronic
level. Note that different partonic channels mix under fac-
torisation scale variations when they are convoluted with
appropriate PDFs. Hence, absence of any partonic channel
at any given order can increase the sensitivity to ur at the
hadronic level. We have also noticed that the u r sensitivity
is large at second order compared to lower orders. This is
easy to understand if we observe that the quark gluon ini-
tiated channels give larger negative contribution at NNLO
level compared to NLO level. In order to understand the role
of quark-gluon initiated channel in the context of unphysi-
cal scales, we have computed both SV and NSV resummed
contributions with and without gg-channels and performed
7-point and single scale variations. We find that at af, the
corrections from gg and gg-channel are 4.86% and —2.47%
respectively to the NNLO cross section along with the other
sub-dominating channels. As these corrections are closer to
each other at the fixed-order level, we expect that resumed
NSV from gg-channel is as important as the one from ggq
channel.

Unlike in the case of u g, different channels that contribute
do not mix under the variation of g as each of them is
renormalisation group invariant with respect to i g. Hence,
we expect that the predictions based on single scale varia-
tion should be less sensitive to g as we increase the order
of perturbation. Our numerical study confirms this both for
fixed-order as well as for resummed predictions.

We have also investigated the role of resummed NSV
terms in the resummed predictions in comparison to the
known SV resummation. We find that there is about 2% incre-
ment when we go from NLL to NLL and about 0.64% from
NNLL to NNLL demonstrating the importance of resummed
NSV contributions from quark anti-quark initiated channels.
The 7-point scale variation gives larger scale uncertainty if
we add resummed contributions from NSV terms. This stems
from the scale ur as resummed NSV part lack contributions
from gg channel. The single scale variations where we keep
one scale fixed and vary the other scale confirms our inter-
pretation.

One finds that the SV part of the resummed predictions
depends on how one treats the N-independent part of the
resummed results. Such terms come from both form factors
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and SV part of the soft-collinear function. Different schemes
are adopted to deal with such terms and they give different
numerical predictions. We consider four schemes and study
their numerical impact on the predictions taking into account
NSV terms. Interestingly we find that the difference in pre-
dictions from N and N schemes gets reduced as we increase
the logarithmic accuracy signaling the scheme independence.
Finally, we conclude our detailed numerical analysis by pre-
senting predictions for invariant mass distributions at scales
Q = 1000, 2000 GeV for different hadronic center of mass
energies along with uncertainties resulting from unphysical
scales.

In summary, our analysis provides the precise numerical
predictions from resummed NSV terms upto NNLO+NNLL
level for the first time to the invariant mass distribution of a
pair of leptons produced at the LHC.
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Appendix A: Anomalous dimensions

Here we present all the anomalous dimensions used in per-
forming the resummation.

A.1 Cusp anomalous dimensions A?

In the following we list the cusp anomalous dimensions A;’
till four-loop level:

Al =4cCp,

. 40 268
Al =Cpny - + Cr Caq 7—842,

(A.1)
(A2)

16 836 112
Al=cpn?|-=)+CrcC - = _-—_=
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81 9 3
24137

352 2 2
— 1288283 — ?{2 +CACan — T

2096 23104 20320 448 352 ,
TCS - 753 Té“z + 75253 - F§2>
+ CE\CF<M - @4“5 + 20944 3
81 9 27 7
ey - 0 2 X 20032;3),
- 81 3 5 105
(A4)

where 7 ¢ is the number of active quark flavours in the theory.

2_
The quadratic Casimirs Cr and C4 are given by % and
n. respectively. The quartic Casimirs are given by

d%dedeCd _ nC(an, +6)

Na 48
dabed gabed _ (nf—6nZ+18) (A.5)
Na 96nz |

with N4 = n? — 1 and Np = n, where n. = 3 for QCD.

A.2 Collinear anomalous dimensions B

The collinear anomalous dimensions B? are given till three-
loop as,

B =3C, (A6)

. 18 17
By, =Cpny —§—§§2 +CFr Cx €—12§3
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+5 o) +Ch (St ue-120), (A7)
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A.3 Soft anomalous dimensions fiq

(A.8)

The soft anomalous dimensions fl.q till three-loop are given
as

f=o, (A9)
f=c 2 4 Ntcrc 28
5 =Cpny >7 352 Flal 5 €]
2
-2 o) (A.10)
s c 2080 112 40
3 =Crnj 29 T 8T8
. 1842 728 2828 9
Frang 720 T Bt g 258
136781 1316
Cr C% 192 &5 — ——
+Cr Cy ( 729 + s 3 &3
12650 176 352
- §2+*C2§3+*§2
81
1711 304
+C%nf(— 7 f53+4§2+—{2> (A.11)

A.4 NSV anomalous dimensions C{ & D/

The NSV anomalous dimensions C; and D/ till three-loop
are given as

cl=o, (A.12)

C =16C%, (A.13)
g ) 2144 ) 320

C3 = CFCA T — 64;2 +7’lfCF — T (A14)

D = —4cCp, (A.15)
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A.5 SV threshold exponents

The function G5,/ (as(g*(1—2)?), &) given in (22) is related
to the threshold exponent D (a, (¢%(1 —2)?), £) via Eq. (46)
of [11] where the universal D? coefficients, till three-loop,
are given as,

D! = (A.18)
D (24 c 1616 (. 176
2 =Crnp\ 57— 3 & A 7 {3 {2
(A.19)
DI = cpm2( 23712 320 640 N (342
= n [ — —_ - nel ——
3T Y 720 Tar Bt g ) e Ty
608 64 125252 2480
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Appendix B: NSV coefficients

Here we present all the NSV coefficients <p((]]f? given in (27).

<P;01 =4Cp,
(1)
Pg1 = 0,
©) 1402 112 )
Yg2 = =CrpCax 7 2883 — _4‘2 + Cr(=328)
tnop( =328 4100,
. _2=% 10
FRF\ "7 T3

¢y = 10CrCa — 10CF,
2
¢y = —4CF,
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In the aforementioned equations, 7 r, is proportional to the
charge weighted sum of the quark flavours and N4 = (n% —

4)/n. [107]. Here Ly, = ln(

)ande,—ln( )

C.2 The N-independent coefficients gg’ ;

The N-independent coefficients gg’i in Eq. (32), till three-
loop, are given by
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Here, yE is the Euler—Mascheroni constant.

C.3 The N-independent coefficients gg

The N-independent coefficients gg,i in Eq. (33), till three-
loop, are given by

Zo=1 (C.30)

&= cF{ — 1641683 + 6Lgr — 6L sy — 8ygLgr +8yEL fr

+syg}, (C31)
127 64 34 16
goz—CF”f 7+ C **Q* Lqr+ Lqu
> 2 16 P 224
t2Lygr+ 3L+ S Ly =2l — ——vE
80 8 2 80 8 2 80 ,
+ EVELqr - EVELqr - gl’ELfr + §VEL r 9 VE
16 16 2, 32 4 L CrC 1535 i 604
3 YELqr 9 YE FlA 2 9 &3
376 92 , 193 88
+ 7( - *{2 + TLqr - 24Lqr§3 - *Lqu

e - Yy +24L 0 _ 8, o+ 1102
qr 3 fr frs3 3 frs2 fr

1616 536
7 VE~ 56yEts — 7V5Lqr +16yELgrin
44 536 44 P
+ ?VEL + 7VELfr —16yELfrin — ?VEL ,

536 88 176
+7yE 16y5¢0 — yELqr+ 5 y§}+c%{

511 552 ,
+ T - 60;3 - 198;2 + ?4'2 - 93Lqr + 48Lqr§3

+72Lgrty + 18L2, +93Lyy —48L 583 — T2L 10

—36L gy Lgr + 18L%, +128ypLgr — 128y Lgr i

—48ygL2, —128ygLy, +128yp Ly (o + 96yELf,Lqr
—48yELy, — 128y} + 128y300 +48yF Lgr + 32y L5, — 48y L,

— 64yELfrLar + 3275 LY, — 64y Lgr +64yEL g + 32y,‘,} }

(C.32)

- 160 28 4
gg,3 = CFN4”fv{8 - T§5 + ?C3 + 208 — gfzz}
e P 7081 16 " 1072 " 448
w2l b 0
FP T 24 et o 2t s 5
220 64 608 68
7 ~=Lgris — 27 5 Lgrto — 9 Lqr

2, 8 5 34 32 160
qurC 2+ 9Lq, + *Lfr + gLer - ELf’Q

4 4 +32L2 8L3 EZAE
’ 82— 729 VE VEQ
00 160 32

L + o ypL2, — oypLd, — L2
g1 VERar T oy VELGr = g VELGr = Sy VEL

24512 44540 880 1156
*SCS*T§3*7C +7C §3+§§2
3052 3440 7504 344
- 9 TLqu + — 27 qr§2 Lqr§2
850 ) 352 88 5
+ =5 Lar = 1615, — L2,6— ?Lq, —40Ly,
400 2672 8 146
- TLfr§3+7Lfr§2 Lfrs“z Lf,
352 88 125252
1612 o5 — —LZ 23—
+ 3 ") + f, 729 YE
n 1808 |, L8 1648 32 o 16408 L
27 YES3 31 YE$2 5 YES) g1 VELar
20 2312, 32,
— g YELgrla = ——vELy + T VELG D2
352 3 1672 224
+ a7 YELy — 7VELfr - TVELer
320 2312 12 32
+ TVELfrs“z + - 77 YEL}, — VELf,é“z
352 5 16408 , 320 5 4624
— o7 VEL = 7 vE + 5 VESL2 + 27 }’ELqr
4 352 5 5 9248 5 128
3 VELquZ 9 —~ YELgr — 871)/5 775(2
1408 5 704 1505881

3L 4 c2l _
oy vEker — ”E}J“CF A{ 972
139345 400 , 130295

—204%5 + B-z G+t 50
7228 23357 2 7088 5 . 3082L
g 28T st gt e
2600 20720
+80Lgris5 — 7Lqr§3 - TLquZ

1964 ) 2429

+ 15 L‘I”é‘Z _TL + 88L r§3+ 9 Lqr{Z

242 5 1657 3104
o Lar T ?Lfr —80Lfr¢5+ TLer

8992 493
= 7 Lpr@ + 4L &G+~ L, — 881,05

968 5 242 4 5940
+ 7L_ Mol TLf’ + 729 VE + 384yEes
24656 12784 et 52
27 YES3 31 —YES2 3 YES283
176 62012
- TVEQQ Y YELgr +352yELgr 3
2144 352 , 7120
+ TVELqu - ?VELqu + TVELqr
176 968 3 98l 176
- R VE quZ—W)’ Lgr+ 5 vELpr+ 57 VEL G
2144 352 7120 2
g VELfroat ?VELfrfz 7 YELY,
176, 968 5
+TVEL o2+ 7VEL -
62012 , 2144 5 352 ,
5 VE 3% VR — —5 VEL +7VE;2
14240 , 352

968 5 o

_TVELqr‘F 3 Lqr{Z"‘TVEL
28480 5 704 5 3872 4 1936
g1 VE T g VE©2 T 5y Viler + ”E}

@ Springer



234 Page 30 of 38

Eur. Phys. J. C (2022) 82:234

4+ C2n {,E,@; s PN L
FlLf 3 9 BT 7 BT 7 %2
256 36208 5 496

_TQ{S_ 135 ;2 +230Lqr—TLqr§3

~2T2Lgrly + - Lgry — 9215, + 3203, 3

2 3 275 256
+48Lqr§2 + 12L21r - TLfr + TLer +40Lfr§2

272 ) ) )
+ 5 Lyrt + 2Ly L —12L g L, + 2015,

= 32L%,¢3 —48L% 0y — 12L%, Ly + 1217, + 6y

608 3584 64

2
—_— - — — — 288ygL
+ 9 YEG3 27 YEG2 + 3 YES YE Lgr

536
YELqr&2 + —vELY,

0 2816
— VELgr&3 + —— 3

9 9
256 640
— 5 vELg 2 = 32yp Ly, + 288y Ly + —-vELprls

2816 608 2
- TVELfr§2 - TVELerqr + 32)/ELerqr

256
+24yp LY, + =—yEL}, 0 +32yp L, Lgr —32ypLY,

3
2144 , 640 , 2816 5 3968 ,
TVE+ YES3 — 9 —YES2 — 27 —-YELqgr

+128y2Lgrin — (9)8 vELa, + 63—4;/EL 22078 VEL ¢
128 , 992 , 64 5

+ TVELer + 7}’EL‘erqr - ?VELer r

- TR, =~ S e+ i“yz-ﬁ 5
512 5 1088 4 _ 1088

-5 ViR +TVELW—64VE —5 VELyr
128 64 3 5 640 , 640

+ TVELerqr + ?VEL rT 9 VET TVEL‘]’

_ @ 4y @ 5 C2C + @

o VELIrT g VERT 36
5512 51508 592 , 66544

g BTy 8T EE T8
3680 258304 , 123632 5 3439

R E T Ve R R et

5368
+240Lgr 85 + TLqu +1552Lgr 8 — 352Lgr 283

2912
5

3 2348 4048
- 66Lqr + TLfr —240L fr &5 — TLfr{S

T Lgrd + 55112, — 32012, — 264120

1136 )
— 100L £ & + 352L 8283 — ?Lfrgz
—420L ¢, Lygr +288L fr Lqrg3 +66L 7 L2, — 131L%,

+32L%, 83 + 26417, 83 + 66L%, Lgr — 66L7,
25856

25856
vE +89%6yE(3 + YES2 —896yE a3

7006 7856 19904

+ TVELqr - TVELqu - TVELqu
2016 o 3320

+ ?)’ELqrfz -3 ELqr + 192)/ELqr§g
1696 3 7006

+ TVELqu + 176y Ly, — TVELfr

7856 19904 2016 b
+ TVEL/'rQ + T)’ELer - ?VELfr{z

3824
+ ?)’ELerqr - 384VELerqr§3 - 192)/ELerqr§2

@ Springer

—176ypL Ly, — 168yg LY, + 192yp LY, 3
3 ——YELG 80— 176}/ELf,,Lqr + 176]/EL‘fr

17786 , 4832 5 19904 , 2016 , ,

9 VE+TVE§3+ 9 YES2 3 YES)
23288

VELqr + 256)/ELqr§3 800V§Lqr{2

27
1912 352
+ = vEL2, —128y3L2, 60 - TVI%Lgr
2056 416
T VELfr —256YELr03 — TVELer
6992 352
— 5 VELfrLar +256VEL e Larta + -viL oLy,
5080 352
+ g VEL — 128VELY 0 yELerq,
_352 5,3 4480 V3 — a4y} 2816
7520
~ 9 }’ELqr + 256yELq; o+ 352yEL
7520 5 ; 704 4
+ 9 YELpr —256ypLsrlo — TVEL/'qur
352 53 5 4288 4 3520 4
_TVEL r+79 }/E—128 E{z—TyELqr
1408 1408 5599
+ 9 yéLfr+TV§} CF{—T+1328§5
2936 5972
—460¢3 +32¢5 + 62 — 4000283 — 7(2

169504 1495
s G+ ——Lgr — 480Lgr {5 — 992L g, 03

2
1968, )
= T20Lgr 03 +T04Lgr 283 + ——Lgré3 —270Lg,

+ 288Lqr{3 +144L5,80 +36L, — TLf,

+480L 7,65 +992L 463 + T20L 50 — TO4L £,6283
1968

- —L;,;z +540L  Lgr — ST6L f,Lgr&3 — 288L £y Lqr&o

— 108L 4, Ly, — 270L%,
+288L% 03+ 144L% 02 + 10817, Lyr
—36L%, — 1022y Ly
4416 )
?VELqrfz
+ 744yEL — 384y Lq,{3 576yE Lq,s“z 144y Lgr
+1022yg L s —480ygL £y 83 — 1584yE L ¢r 0o
4416
+ — 5 ELjr{2 1488]/ELerqr +768}/ELerqr§3
+ 112y L prLgrta + 432y Ly L7, + T44yp LY,

_ 384VEL§fr 03— 576yEL2f,§2 - 432)’EL2erq’
+ 144yp L3, +1022y7 — 4807 ¢ — 1584y 30,

4416
ECZ — 744yELqr + 384yELqr &3

+480ygLgr&3 + 1584y Lgrin —

+576yfLarta —368yAL2, + 512y L2 00 +192p2 L3,
+ 744y 2L ¢ — 384y2L 4,03 — 5T6yEL 11 0o

+ 736y} L Lgr — 1024y} L gy Lgrty — 5T6y2L s/ L2,
—368yFL%, + 512y L%, 0 + 5T6yF LY, Ly

— 192y L, + 1024y} Ly — 1024y Lyr & — 384y L2,

256

v yila, — 1024y Ly, + 1024y 3 L7, 0



Eur. Phys. J. C (2022) 82:234

Page 31 of 38 234

+ 768y Lty Lgr + zsﬁygLf,LZ, —384yp L7,

256
- 256yE Fr Lgr + — fr - 512yE + SIZVEQ

192yt Ly, + 256yE 2 —192yfLyg —S12yEL sy Lyr

256 6}

+256y5 L%, — 25672 Lgr + 25672 L sy + SvE (C.33)

C.4 The SV resummed exponent gf’

The resummation exponents giq in Eq. (31), till three-loop,
are given by
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Here, L, = In(1 — w) and w = 2fpay (M%) InN. And B;’s
are the QCD g functions which are given by
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C.5 The NSV resummed exponents g7

The resummation exponents g/
given by

g; in (34), till three-loop, are
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C.6 The NSV resummed exponents A{;

9112
&+ —=—Lo

Ly,

4 2 2
7L‘ No

(C.40)

The resummation constants h?j in Eq. (34), till three-loop,

are given by
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Appendix D: Resummation coefficients for the N expo-
nentiation

For the case of N exponentiation, all the N-dependent
resummed exponents namely g/ (@), g7 (@), and h] (@) given
in Egs. (40) and (42), respectively can be obtained from the
corresponding exponents in standard N-approach through
setting all the yg terms to zero and replacing all the In N
terms by In N as well as all the ©'(1)  terms by @ as men-
tioned in Sect. 3. The N-independent constants §g given in
Eq. (39) can be obtained from their counterparts in standard
N-approach by simply putting the yr terms equal to zero.

Appendix E: Resummation coefficients for the soft expo-
nentiation

For the case of soft exponentiation, all the terms coming from
the soft-collinear function @4 are exponentiated and hence
this means all the contribution to the finite (N-independent)
piece from the soft-collinear function is also being exponen-
tiated. The resummation coefficients for the soft exponenti-
ation denoted by g¢’ Soft and gl Soft 4 Egs. (45) and (44),
respectively can be obtained from their counterparts in stan-
dard N scheme as described below.

The N-independent constants gg Soft

put in the following form:

in Eq. (45) can be

~q,Soft __

3" =g+ A (E48)
3> = gl + AT, (E.49)
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where the coefficients Aq’ " are given by,
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Appendix F: Resummation coefficients for the all expo-
nentiation

For the case of All exponentiation, the complete gg is being
exponentiated along with the large-N pieces. This brings
into modification only for the resummed exponent compared
to the ‘Standard N exponentiation’. We write the modified
resummed exponents denoted by g.[”A11 in Eq. (47) in terms

1
of exponents in standard N as,

q,All

gl =gl (F.59)
LAlL LAl

83" =g3 +ag ALY, (F.60)
JAIL LAl

i =gl +a, AL, (F61)

where AZ;AH terms are found from exponentiating the com-
plete gg prefactor and they are given as,

LAl ~
ALY =gl (F.62)
~q \2
LAl (&o1) -
Ayt = ( - ==+ g02>, (E.63)

where the coefficients ggl. are given in Appendix C.3.
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