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Abstract Considering supergravity theory is a natural step
in the development of gravity models. This paper follows
the “algebraic path and constructs possible extensions of
the Poincaré and Anti-de-Sitter algebras, which inherit their
basic commutation structure. Previously achieved results of
this type are fragmentary and show only a limited fraction
of possible algebraic realizations. Our paper presents the
newly obtained symmetry algebras, evaluated within an effi-
cient pattern-based computational method of generating the
so-called ‘resonating’ algebraic structures. These supersym-
metric extensions of algebras, going beyond the Poincaré
and Anti-de Sitter ones, contain additional bosonic genera-
tors Z,p (Lorentz-like), and U, (translational-like) added to
the standard Lorentz generator J,;, and translation genera-
tor P,. Our analysis includes all cases up to two fermionic
supercharges, Q, and Y,. The delivered plethora of super-
algebras includes few past results and offers a vastness of
new examples. The list of the cases is complete and contains
all superalgebras up to two of Lorentz-like, translation-like,
and supercharge-like generators (JP + Q)+ (ZU +7Y) =
JPZU+ QY . Inthelatter class, among 667 founded superal-
gebras, the 264 are suitable for direct supergravity construc-
tion. For each of them, one can construct a unique super-
gravity model defined by the Lagrangian. As an example, we
consider one of the algebra configurations and provide its
Lagrangian realization.

1 Introduction

General relativity (GR) has been the subject of various fun-
damental extensions and generalizations. One of the remark-
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able realizations embodies the idea of the supersymmetry
between bosons and fermions. The supersymmetry joins
a bosonic spin-2 (graviton) field with fermionic spin 3/2
(Rarita—Schwinger) field to form the so-called supergravity
(SUGRA) [1-4].

The corresponding 4D supergravity action formulation,
exploiting supersymmetry transformation interchanging bo-
sons with fermions and vice versa, is built from the vielbein
e?, spin connection w®”, and the Rarita—Schwinger spinor 1/
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It is based on the underlining structure of the superal-
gebra formed by the generators of local gauge symmetries:
translations P,, Lorentz transformations J,;; and supercharge
Qq- There are two established types of algebra closing, lead-
ing to two separate actions. They correspond to either the
supersymmetric extensions of the AdS (Anti-de Sitter) (with
A= _e%) or the Poincaré (with £ — o0) algebras.

A further natural development was to enlarge the number
of fermionic charges. However, in recent years, an effort has
been made to include new generators on the bosonic part. The
first such example, the so-called Maxwell algebra, originates
from the past work of [5,6]. Soroka and Soroka have intro-
duced another case [7], leading altogether to an interesting
generalization called the semigroup expansion [8—15]. With
adifferent approach, some similar results have been obtained
by several other groups [16—18].

The semigroup expansion delivered a consistent way of
proceeding with the task of finding other algebraic examples
[19], eventually leading to the notion of the resonant algebras
[20-22].

If decomposition of the semigroup satisfies the same struc-
ture as the sub-spaces of the original algebra, then the semi-
group expansion is called resonant. In this work, we fully
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exploit resonant character of algebraic structures, understood
as obeying the same structure constants pattern of the super-
symmetric extension of the AdS (super)algebra, even for the
extended content of the (super)generators. In the rest of the
paper, we shall call such algebraic structures as the resonant
algebras.

Besides the bosonic discussion within the semigroup, res-
onant, framework, the emphasis has also been placed on
finding fermionic extensions. Recent examples correspond
to Refs. [23-31] but they are limited to just a few explicit
cases for a particular content of generators.

The program of computational brute-force finding of all
bosonic algebras within the semigroup/resonant framework
was concluded in Ref. [22]. In the following paper [32],
using different approach based on generator considerations,
the supersymmetric J PZ + Q configurations were obtained
(with one additional Lorentz-like generator Z,p).

To construct the supersymmetric extensions of AdS
enlarged algebras we rely on their algebraic structure realiza-
tion defined in 3 and 4 dimensions. However, the generality
of our approach, under proper algorithm adaptation account-
ing for the new base algebra, may also find applications in
higher dimensions or other base scenarios.

Additional generators in the bosonic and fermionic sec-
tors make further analysis of the algebras extremely dif-
ficult because of an overwhelming number of variants to
check. Indeed, we estimate that the computational frame-
work (Cadabra environment [33]) used in [32] needs about
27 h and 2 months of running time on one CPU to ana-
lyze JPZ + QY and JPZU + QY scenarios, respectively,
where U, and Y,, correspond to a new translation-like and
supercharge-like generators.

In this paper, we present the significantly improved
method for getting resonant algebras, whichfor J PZU + QY
configuration, reduces the time of analysis from 2 months to
1 day. The pattern-based algorithm is implemented in Wol-
fram Mathematica language. To fasten analysis, it exploits
the stochastic procedures known in Monte Carlo simulations.
The approach allows us to obtain the complete list of the pos-
sible resonant superalgebras, up to two fermionic generators,
including only a few results known so far.

Indeed, thanks to the new algorithm, starting from J P+ Q,
we consider further configurations until the scheme is dou-
bled, namely (JP + Q) + (ZU +Y) = JPZU + QY.
Therefore, we present all cases up to two fermionic charges
0, and Y, in the presence of additional bosonic generators,
Zap or U, added to the standard Lorentz generator J,;;, and
translation generator P, with all intermediate configurations.
These superalgebras can be directly used for the construc-
tion of supergravity actions. In particular, the superalgebras
JPZU + QY give us a possibility to discuss bi-supergravity.
Among 667 founded supersymmetric extensions, for 264 the
relation {Q, Q} ~ P + - - - is satisfied.

@ Springer

Eventually, we discuss the impact of the resonant algebras
structures on the action content. We also consider one of the
JPZU + QY superalgebras, using it to construct the three-
dimensional (3D) supergravity.

In the following sections, we will give the basis of the
framework resulting from the required conditions and explain
details of the designed searching method, interesting by its
own merits. We will show the algebraic outline and finish by
providing some details of the supergravity construction. This
paper comes with supplementary materials containing all the
found algebras explicitly.

2 From AdS algebra to resonant superalgebras

We start with the Lie algebra of the Lorentz generators, J’s,
which satisfy the commutation relations

[Jab, Jeal = MbeJad — NacTva — NMbaJac + Nad Ibes (2)

where a, b = 0, 1, 2, ... are the group indices, and 7, is the
Minkowski metric. Adding translations requires

[Jabs Pel = npe Pa — Nac Pp. 3)

To close above algebra three different variants are considered,
namely, either:
[Py, Pb]=0 or

[Pa, Pyl = Jap or [Py, Pyl = —Jup.

“

These three scenarios correspond to the Poincaré 1SO (D —
1, 1), Anti de-Sitter (AdS) SO(D — 1, 2), and de-Sitter (dS)
SO (D, 1) group of symmetries, respectively. The cosmolog-
ical constant defined as A = :F(% results from the re-scaling
of generators in [¢P,, £ P.] = +J,.. The conventions used
throughout this paper, due to possible supergravity applica-
tions, will account only for the first two cases (Poincaré and
AdS) upon whose other structures will be based.

Restricting to the negative cosmological constant (AdS),
the above commutation relations can be written in the form
of

[Jaba ch] = fab,cdms Jmm
[]aln Pc] = fab,cumy
[Pm Pb] = fa,bms-]ms’ (5)

where structure constants are defined as

k
fab,cdms = _8azlnkn§g§’
k
fab,cm = —Sufﬂlmfﬁ',
fua™ = 815, ©)
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The S-expansion [8—10, 13] supply an interesting approach
to systematically construct further bosonic algebras. That
generalization having origins in the concept of the algebraic
contraction [34] represents the product of S x g. The new
generators are provided by the semigroup ‘scaling’:

Jab iy = $2iJaps  and Py ) = $2i+1Pa, @)
fori = {0, 1, 2, ...}, where

PaZSIﬁm
Uy = 53P,, ... ®)

Jab = s0Jab,

Zap = $2Jab,

with the original algebrag = Ad S given by Jab, P, and some
semigroup elements s; € S obeying the so-called resonant
condition [8,10,13]. Mathematically, for the bosonic part,
this could be seen a parity requirement:

Seven * Seven = Seven
Seven * Sodd = Sodd»
Seven» 9)

Sodd * Sodd
reflecting the AdS algebra structure
[P, P]~J. (10)

Differently to the standard Inonii—-Wigner contraction
[34], we do not have some limit describing the transition
from AdS to Poincaré as cosmological constant vanishes by
£ — oo. Instead, there is just an evaluation of the products
determining the appearance of the new generators. At the
same time, zero in the commutators is carried by the process
of so-called Og reduction or simply including zero element
as the semigroup absorbing element [20].

As the semigroup only changes the type of generator, the
S x g product assures inheriting the structure constants, which
are built with the same scheme as the starting g = AdS. We
later exploit this feature directly also in the supersymmetric
generalization.

The semigroup expansion is called resonant when the
decomposition of the semigroup satisfies the same structure
as the sub-spaces of the original (super)algebra. In prac-
tice, focusing on 4D, to construct the so-called resonant
(super)algebras, we start from the traditional (super)AdS
algebra with generators J P(Q). Then we include the gener-
ators J-like, P-like, and Q-like type, keeping the same pat-
tern of structure constants as for J P Q. Our framework can
be then seen as simply filling out all possibilities depending
on the generator content:

L,

af
(11
Available content of generators concerns
Dab — Jub, Zab, ... (Lorentz — like)
a — Py, Uy, (translation — like)
Og > Qo> Yor - (supercharge — like) (12)

and can be carried out further to include even more extended
generator content. Above we introduce the Dirac matrices I,
aswellasI'yp = 1/2(T'; 'y, —'p,) and charge conjugation
matrix C, whereasa, b, ¢, d are Lorentz indices running from
0 to 3 and «, B are spinorial indices.

Naturally, not all possibilities are physically viable; there-
fore, we introduce a certain number of requirements. We also
allow zero to appear as the output of the commutators and
anticommutators on the right-hand sides of Eq. (11).

The algebraic and physical requirements which must be
satisfied are the following:

holding the same structure constants as original super
AdS;

— preservation by the Lorentz generator, i.e. for all gener-
ators [J, X] ~ X;

anticommutator {Q, O} being non-zero;

fulfilling graded super-Jacobi identities.

The first two conditions dismiss any breaking of the [J, P] ~
P. Discarding [J, P] constraint would lead to the problem
of defining the torsion. It causes complications in obtaining
proper transformations of vielbein and spin connection and
establishing the equivalence with a metric theory of gravity
assured by the w(e) dependency.

Above constraints assure algebraic structures suitable for
constructing actions but mind that some would be considered
exotic. For the proper supergravity construction, we demand
additional condition:

{0, 0} ~P+--- (13)

Note that our framework, although containing an addi-
tional fermionic charge, does not include the central exten-
sion [35-38]. Such extension allows us to encode U (1) gen-

@ Springer
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erator T into the framework as the output of anticommutation
of Q with Y. We leave such considerations for future work. In
this work, we allow two fermionic charges to appear similarly
to Refs. [16,23,26,27]. Note that in the three-dimensional
case with a,b = 0, 1, 2 we can introduce dual generators
like J, = 1eab" Jpe, that offer possibility of rewriting AdS
uniformly as

[Ja, Jp] = 6achcv [Ja, Pyl = 6abcpcv
[Pa. Pp]l = €apc €. (14)

Including a fermionic supercharge Q, gives us two superal-
gebra options: Poincaré and AdS respectively

[Ja, Jp] = 6alchc»
[Jaa Ph] - GathC»
[Py, Pp] =0,
1 (15)
[V, Qal = 5 ()% 0,
[Py, O] =0,
{0a. 08} =— (F“C)aﬁ P,
[Jaa Jb] = 6abc-’c’
[Ja, Pp] = eabcPc»
[Py, Pp] = GachC,
1
[Ja Qul =5 ()% 0, (16)

Y
[Pa, Qo] = E (Fa)a Q/fia

{Qu: @p} == ((1C) y Pa+ (T Chapa)

It is an obvious realization of the super-Jacobi identities,
where we leave out the trivial examples with the Lorentz
generator:

([Pa, Ppl, Jel + [[ Py, Jel, Pl + [[Je, Pal, Pp] =0,
[([Pa, Ppl, Qal+ ([P, Qul, Pal + [[Qa. Pul, Po] =0,
{[Pa, Qul, Op} + {Qa, Op}, Pal —{[Qp, Pul, Qu} =0,

HOn, Qul, Ol + [{Qa, O}, @il +[{Qp. 01}, Cul =0.
a7

To better see the structure of Poincaré and AdS laid out in
(15) and (16), let’s rewrite it schematically as

LJ|J P 1] o (.} ] o (18)
J | J P J | o 0 | P
P |P O P |0

@ Springer

and
L.1|J P L.1] 0 .J| o0 (19)
J |J P J | o Q | P+J
PP J P |Q

That way of presenting algebras turns out to be very con-
venient. Not only it comes in a concise form, but it immedi-
ately highlights all the differences between algebras. It also
emphasizes the independence of the form of structure con-
stants. Depending on a given subject and particular applica-
tions, we can use either notation of AdS structure constants
from (11) in a 4D case or (15), (16) for 3D.

3 Dynamical searching for resonant (super)algebras

The main idea of our approach is the following, having the
set of the given generators, {X;} = {Jup, Py, Qo ...}, We
postulate the algebra tables (such as in (18) and (19)), with
the action being super-commutator denoted by the (X;, X ;).
For the valid algebra all the super-Jacobi identities must
be satisfied. Note that the number of algebra candidates
((anti)commutation tables as an input) grows tremendously
with the growing set of generators. At the same time, the
number of super-Jacobi identities also grows as the number
of generators increases.

In the previous work [32], all (anti)commutation relations
were explicitly encoded and evaluated using I'’s identities
(like Typ'e = nepl'a — neap) and the explicit represen-
tations, which was extremely time and resource consum-
ing. Below, due to the resonant character of the discussed
(super)algebras, we point out significant simplification that
omits the mathematical evaluation of particular structure con-
stants allowing us to perform a highly efficient computer
check disregarding wrong candidates.

3.1 Super-Jacobi identity

Certainly, for the correct algebra example the super-Jacobi
identity is satisfied

Jacobi(X,Y, Z) =0, (20)
where

Jacobi(X, Y, Z) = ((Xi, X;) , X)
® ((X). Xt) . Xi)
® ((Xe, Xi) . X;). 1)
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We use here i, j as the any pair of indices attached to the
various types of generators, and @ sign for accounting (—1)
factor in the graded relation.

If one explicitly use the structure constants, then the super-
Jacobi identity reads

0=((Xi. X;). Xe) ® (X, Xi) . Xi) ® ((Xa. Xi) . X ;)
= fl]m (Xm, Xi) ® fj,km Xm, Xi) ® fk,im (Xm, X])
= fi,jm ﬁn,kn Xy @fj,km fm.in Xy @fk,im fm,jn X . (22)
—— —_—

——
A B C

Based on the fundamental properties of starting J P + QO
algebra and resonant construction, each of three pieces A,
B, C of the expression (22) must be expressed by the same
generator. Moreover, the structure constants in (22) are deter-
mined by the original J P 4 Q and curried further. Therefore,
to satisfy the Jacobi identity A = B = C, including the case
A =B = C = 0.For A # B, we get linear dependence
of A, B, C, and some generators being forced to be a linear
combination of others, which is not the case for a considered
list of uniquely defined generators. In the end, all that mat-
ters is a final consistency and matching of the final generator
coming from the three pieces of the super-Jacobi identity by
obtaining in the last step the same letter or get three zeros.

Before we go any further, let’s point out other certain sub-
tleties. After an evaluation of three fermionic generators in
the super-Jacobi identity, we observe

1
0= (—(TC)ap(Ta)pr — Z(F“”cw(rab)mo ’
1
+ (= C)pa(Ta) pa — Z(F“”C),sx(rmpa)@f’

1
+ (=(T*Ca(Ta)pp — Z(Fabc)ka(rab)pﬁ)Opv (23)

so our algorithm would see is as three times letter being
doubled. After gathering of terms we can show that three
I, and three I, contributions separately vanish by gamma
identities.

It also should be kept in mind while looking at (anti) com-
mutator tables that the schematic outcome of P + J corre-
sponds to I'? P, +T? J ;. and so on. With these out the way,
let us now focus on the implementation of the searching tool.

3.2 Algorithm

In this section, we formulate the algorithm based on the
results of the previous sections. Having a given set of gener-
ators, we create all possible tables of commutators and anti-
commutators obeying the requirements mentioned in the pre-
vious sections. Each table defines (super)algebra candidate,
denoted by Alg;. Then to determine whether it represents the
correct (super)algebra, one should check the fulfillment of

the (super)Jacobi identities. But we have shown that (20) is
satisfied if

((Xi, Xj), Xi) = (X, Xp), Xi) = ((Xg, Xi), Xj), (24

where = means that two sides of equation are equal up to the
sign. Note that

Jacobi(X,-, Xj, Xk) = Jacobi(Xi, Xk, Xj)
and so on. Also obviously
(Xi, X;) = (Xj, X;), and (X;,0) =0.

Having a given set of (super)algebra generators, we gen-
erate:

— set Alg = {Algy, ..., Algm} containing all possible
algebra candidate configurations, where Alg; is the list
of (anti)commutation rules defining given candidate of
algebra, and by Alg we denote the total number of can-
didates within the Alg set

— all the necessary Jacobi identities:

Jac = {Jacobiy, ... Jacobiy =}, where Jacobi
denotes the number of Jacobi identities and

Jacobi; = Jacobi(Xx, X, Xn).

Both numbers Alg and Jacobi depend on the particular gen-
erator content.

The first property we must keep while generating valid
candidates is

J, X)) ~ X, (25)

i.e., Lorenz generator with any other, to preserve the Lorentz
invariance.

Additionally, the generators can be divided into three sub-
sets: even indexed bosonic (like J,p, Zgp, ...), odd indexed
bosonic (like P,, U,, ...), fermionic (like Q,, Yy, ...). Used
even/odd separation has its direct roots in semigroup expan-
sion with even/odd number labels of the semigroup ele-
ments, which transits into bosonic generators with two/one
one group indices, respectively.

The resonant (super)algebras fulfills the following super-
commutation relations:

(even, even) ~ even or 0 (26)
(even, odd) ~odd or 0 27
(odd, odd) ~even or 0 (28)

(boson, fermion) ~ fermion or 0 (29)

(fermion, fermion) ~ even + odd or even, or odd. (30)

Note, we allow {Q, Y} and {Y, Y} to vanish, but we neglect
the possibility of zero from {Q, Q}.

Now assuming that algebra contains: p + 1, n and f of
even indexed bosonic generators, odd indexed, and fermionic

@ Springer
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ones, respectively, then the generated total number of candi-
dates configurations reads

Alg = (p+2) 2D n+ D (p+2) ntD) (f + Hpins
S—— ——
from (26) from (27) from (28) from (29)
S+Df
(p+2+1D=D(p+2m+1) = . 31
from (30)

The next step is to generate all Jacobi identities which must
be fulfilled by successful algebra candidate. To form single
Jacobi identity we choose three generators from the given
set of generators. However, Jacobi(X;, X;, X;) doesn’t offer
any new information. Also if J is one of these genera-
tors then Jacobi identity is automatically fulfilled. Indeed,
Jacobi(X;, X;,J) = ((X;,X)),J) ® (X;,]),X;) @
((J, Xi), X;) gives

Jacobi(X;, X;, J) = (X;, X)) ® (X;, X;) & (X;, X)).
(32)

Thanks to above, the number of generators used to obtain
necessary Jacobi identities equals p + n + f. From this set
we must choose three elements though combinations with
repetition, so the total number of unique identities to check
reads:

Jacobi = <p o -; f+ 2) ) (33)

Then having given candidate Alg; with a unique set of
(anti)commutation rules, the upper number of checks to exe-
cute is equal 6 - Alg - Jacobi . Factor six accounts for two
rounds of super-commutator evaluations in a single super-
Jacobi identity as shown in (22). For Cadabra, in the case of
JPZU + QY , it would be unavoidable to perform 35 unique
super-Jacobi identities multiplied by six super-commutator
substitutions for each of 344 373 768 possible algebra can-
didates. Therefore, we naturally turn towards Mathematica
and non-standard searching described below.

The algorithm consists of several steps, namely:

1. Consider given set of generators. Then following rules,
explained above, form the set of candidate algebras, Alg,
as well as a set of Jacobi identities, Jac.

2. Leti =1,k=1,where(i =1,... Alg), (k=1,...,
Jacobi).

3. Consider algebra Alg; and then

(a) consider the k-th Jacobi identity, Jacobiy, and check
its correctness. If test is:
i. positive and k = Jacobi then the algebra is saved
and go to the step (3b) else k — k + 1 and go to
step (3a);

@ Springer

ii. negative, then stop verification, save the Jacobi
identity for which the test failed and go to step
(3b).
(b) If i mod 10 is zero then shuffle the order of Jacobi
identities and go to next step.
(c) Seti — i + 1,k — 1 andif i < Alg go to the step
(3) else stop.

Notice that during the process of verification, by register-
ing the problematic Jacobi identities, we construct the dis-
tribution, histogram, of the most troublesome Jacobi’s iden-
tities for fulfillment. Then in every 10-steps of i-loop, we
re-order the Jacobi identities in Jac by drawing the order
from the reconstructed distribution. It makes the algorithm
partially stochastic and significantly accelerates the process
of searching for the correct algebraic structures. This way,
we avoid many trivial identities being satisfied by most of
the algebra candidates.

Summarizing: the algorithm “learns” the most problem-
atic Jacobi identities and uses them in the search process. In
Fig. 1 we show the final histogram obtained for J PZ + QY
algebra. We see that for the algorithm, the most critical iden-
tities to verify are:

- Jacobi(P, Y, Q), Jacobi(Z, Y, Q), Jacobi(Y, Q, Y), etc.

4 Overview of superalgebras

Eventually, closing of the supersymmetric algebras can be
achieved in many distinctive ways, according to the provided
Table 1.

Starting J configuration is the Lorentz algebra, and two
mentioned examples of J P configurations obviously corre-
spond to the Poincaré and AdS algebras. Including super-
charge leads to J P 4+ Q Poincaré and AdS superalgebras.
If we continue extending the generator content, we eventu-
ally reproduce known examples and find a plethora of new
(super)algebras. We emphasize in bold the complete listings
of the newly obtained configurations reported in this paper.

To assure the construction of the supergravity models, we
demand {Q, Q} = P + - -- (with or without further contri-
bution). This constraint reduces significantly obtained cases.
Such examples we will call resonant supergravity algebras
(Table 2).

Resonant J, JP, JPZ, JPZU algebras

As mentioned above, J is the Lorentz algebra, whereas J P
contains Poincaré and AdS. The JPZ and J P ZU cases are
bosonic resonant algebras one can find in [20-22]. Among
them we obtain well known examples like Maxwell algebra
B4 [5,6] and €4 given by Soroka—Soroka [13,18,23], as well
as their generalization to ®8,, and ¢, families.
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JZP+QY
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Fig. 1 The final distributions of the most ‘problematic’ Jacobi identities during the search process. “PQQ” refers to Jacobi(P, Q, Q) and so on

Resonant J + Q, JP + Q, JPZ + Q superalgebras

Configuration J + Q is simply super Lorentz. The next exam-
ple, J P + Q, offers N’ = 1 supergravity formulation in the
form of the supersymmetric extensions of the Poincaré and
AdS algebras. Configurations with the additional Lorentz-
like generator Z,p, namely J P Z+ Q, appeared recently [32],
although here we point out the corrected number of examples
!'being 9. That accounts to 6 SUGRA examples and 3 non-
standard (exotic) cases for which {Q, Q} gives something
else than P. Adopting names from [32], we have exactly one
SUGRA case for Soroka—Soroka €4, as well as By, and Cy,
whereas 1§4 has 2 SUGRA versions + 1 non-standard, 64

! Present reevaluation result of [32] has showed a typo in one of the
tables carried from the original article of [20]. That has an impact on the
correct outcome of the branch claimed not to have a supersymmetric
counterpart. Instead, we find that there is one more consistent super-
symmetric extension with one spinor charge for the B4 to be included
in prepared errata of [32]

B4 . [ ]

L] {

N o~
N N~
T o v
~ W N[N
N o~
1Q SO0

Qf

Table 1 Resonant algebras and superalgebras depending on the gener-
ator content

1x7J 1xJ+Q 0 x J+QY
2 x JP 2xJP+Q 10 x JP + QY

6 x JPZ 9 x JPZ+Q 102 x JPZ + QY
30 x JPZU 43 x JPZU +Q 667 x JPZU + QY

Table 2 Possible resonant superalgebras to construct supergravity

2xJP+Q 8 x JP + QY
6 x JPZ+Q 71 x JPZ + QY
17 x JPZU +Q 264 x JPZU + QY

has 1 SUGRA + 1 non-standard, and the Maxwell case B4
delivers only 1 non-standard example.

Resonant JPZU+Q superalgebras

For the first time, we derive here the class of JPZU + Q,
where we deal with the supersymmetric extension for the
generator content equipped with additional Lorentz-like Z,
and translational-like U, generators. Thirty bosonic resonant
algebras J P ZU have 43 supersymmetric extensions with 17

@ Springer
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suitable cases for the valid supergravity formulation. For the
details, we send the reader to the attached supplemented file.

Resonant JP + QY superalgebras

In this paragraph, we present findings containing two
fermionic supercharge generators Q and Y. Configurations
JP 4+ QY come with ten total examples, among them
8 SUGRA and two non-standard exotic cases. Below we
present them organized as three AdS-like and seven Poincaré-
like ones:

0 Y
Q|P+JP+1J
Y|IP+JP+J

J P %
T[T P olP P
rPlpPo Ylpp

o~
S Q|0
o ~|~

~ 1

@ Springer

Interestingly, there is Inonii—-Wigner contraction scheme
with the parameter o scaling the generators:

Jap — Golabv P, — GlPav Zap — O'zzabv

Ua—>a3Ua, Qa—>o%Qa, Ya—>a%Ya. (34)

In the 0 — oo limit, we can directly relate three AdS-like
superalgebras with the first three Poincaré-like, leaving a
branch of last four Poincaré-like cases separated.

Resonant JPZ + QY superalgebras

For the JPZ 4 QY resonant superalgebras, there are 102
examples based on the six bosonic tables J P Z with the ‘fam-
ily’ names once again adopted from [32]. Extensive search
shows that we have:

— €4: 8 total (with 7 leading to SUGRA + 1 non-standard)
[Soroka—Soroka]

— B4: 7 total (with 2 leading to SUGRA + 5 non-standard)
[Maxwell]

-C 4: 14 total (with 9 leading to SUGRA + 5 non-standard)

By: 57 total (with 38 leading to SUGRA + 19 non-

standard)

Cy4: 10 total (with 9 leading to SUGRA + 1 non-standard)

— By: 6 total (with 6 leading to SUGRA + 0 non-standard).

Resonant JPZU + QY superalgebras

The last analyzed scenario concerns 667 examples of closed
superalgebras with effectively two sets of Lorentz-like,
translational-like, supercharge-like generators. These super-
symmetric extensions coming from thirty JPZU bosonic
resonant algebraic families, a priori require over 10'° checks
(achieved within 1 day instead of estimated 2 months of direct
Cadabra symbolic calculations).

Only 264 are suitable to construct the supergravity as they
have {Q, O} = P+---. Among them, we would like to point
out only three that restore supersymmetric AdS sub-algebra
with [P, P] ~ J and {Q, O} ~ P + J, which might turn
out interesting in some applications. They are

JPZU oY | 0 Y (35)
J|JPZU J|oY Q\P+JU+Z
P|lPJUZ PQY YU+Z 0
Zlzuoo Z|YO
viuzoo U|YO
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oY | 0 v (36)
J|IQY Q|P+JU+2Z
PlOY Y‘U—l—ZU—i—Z
Zly vy

Uly y

oY | 0 Y (37)
J|IQoY QIP+JU+Z
PlOY Y‘U+ZP+J
Zly 0

Uly 0

For convenience we write Cs superalgebra (37) in its explicit
form:

[ab, Jedl = [Zab, Zea]l = NbeJad
— NacIbd — Nbd Jac + Nad Jbe,
[Jabs Zcal = MbcZad — NacZbd — Mbd Zac + Nad Zbc,
[ab, Pel = [Zab, Ucl = Nbe Pa — Nac P,
[Jab, Ucl = [Zap, Pcl = n16cUa — NacUp,
[Pa, Pp]l = [Ua, Up] = Jap,
[Pa, Upl = Zab,

1
[ab> Qul = [Zab, Yal = 5 (Tan)t 0,
1
[ab Yo = [Zap, Qul = 5 (Cap)? Yg,
1
[P, Qo] = [Ua, Yal = 5 (T)E 0,

1
[Pa, Yol = [Ua, Qal = 5 (Tt vg,

{Qu: 05} = {Ya Yp} = = (TC) P

1
- r“bc) b,
+ 2 ( 753 ab

a 1 ab
{Qu: ¥p} = = (1C) s Ua+ 5 (T C)aﬂ Zap.  (38)

The rest of the JPZU + QY tables can be found in the
supplemented file.

5 Resonant supergravities and bi-supergravity

For each of the superalgebras shown in the previous section,
one can construct a distinct supergravity model defined by
the appropriate Lagrangian. The necessary elements of this
construction are the following: (i) the gauge connection one-
form A; (ii) the super-curvature two-form IF; (iii) the gauge
parameter ©, along with the gauge transformations; (iv) the
Killing form (. . . ). As it goes beyond the scope of the present
paper, we shall not provide a complete list of supergravity
Lagrangians. We leave it for future work. However, we give

some highlights concerning action construction base on the
resonant superalgebras.

5.1 Sub-invariant sectors from resonant superalgebras

The Killing metric (form), used to contract all the group
indices, takes the form of the invariant tensor given for any
combination of two generators, i.e. (Jup Jeg) = @0 €gbed,
(Pa Pp) = o0 Naps (Jab Zea) = 2€aped (Qa 0p) = (a1 —
ag) Cup,and so on. Note that resonant/semigroup framework
remarkably introduces the sub-invariant sectors through the
arbitrary valued «’s constants in front of invariant tensors.
The non-vanishing components for a given (super)algebra
can be established from the known super-AdS outcomes
and ([X;, X;] Xz) = (X;[X;, Xg]) identity with X; being
any generator. They also can be taken from the semigroup
expansion framework. Their appearance is directly asso-
ciated with the form of the particular algebras [20-22],
which leads to different term content and decomposition
of terms between various sub-sectors. As an example lets
consider JPZ + Q configurations with the transition to
the dual 3D fields o = Se®wp, h = e*“hye and
generators definitions, J, = %eab"]ab, Zy = %efl"'Zab.
Also we are going to introduce R = dw® + %G“bcwbwc,
Dye® = de® + €% wy, e, the Lorentz covariant derivative
acting on a spinor Dy, = dy + %w“ va¥, as well as define
F =D,y + ﬁe“ Yo + %h"ygw. The most general three-
dimensional A" = 1 CS supergravity action

k 1
1CS:4_/ <A/\dA+—A/\[A,A]>, (39)
T Jm 3

being invariant under the Soroka—Soroka €4 superalgebra
reads

k 1 .
Igg = E/ [ao <a)“da)a + ge”b‘a)awbwc>

2 1 X
4o <ZR“ea + @e”b‘eaebec

2 1 2
+5eaDoh” + Ze“bceahhhc + Zl//f)

1 1
+an (EeaDwe“ +2h,R* + E—zeabceaebhc

1 2
+hyDyh® + 5e“”%ahbhc — wa)] ) (40)

At the same time, for the Maxwell algebra B4 CS action is:
k 1
1394 = E/. |:Ol() (w“dwa + §€abcwawbwc>
2
4o ZRaea

1 2 -
a2 (E—zeaDwe” +2h, R — ZWleﬁ)] , (41)

@ Springer
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whereas the B4 case, mention in earlier section, leads to the
action of the form:

k 1

2 2
4o (zRaea + ZeyDyph® + =€ e hph,

¢
2. 1,
+Zwaw + thay v
1
+a <2ha72“ + ge“bchahbhc)} . (42)

5.2 Bi-supergravity

We have obtained all superalgebras up to doubling the J P +
Q configuration. In the latter scenario the gauge one-form
connection is being gauged overthe J P ZU+ QY generators:

1 1 1 1
A = Ea)ab.]ab + ZEaPa + Ehabzab + ZkaUa
+Lw“Q +
N

1 o

e 43)
Vi

where w® is the spin-connection one-form, e is the vielbein,
h?? is the additional gauge field related to Zp, k% related to
U, and ¢ is the gravitino and yx yet additional gravitino,
both being the Majorana spinors. Note the presence of the
two constants £ and £ to assure correct dimensions of fields.

The super-curvature two-form is built straightforwardly
from A connection, as F = dA + % [A, A]:

1 1
F=-F"%J,+ ;T Pat

1 1
5 EH”bZab + ZK“Ua

1 1
+ —=F*Qy + —=G"Y, 44)
il Vi (

with the particular parts depended on the chosen superalge-
bra.

The gauge parameter ® = %A“bJab + 1P, + %I\ahzab +
U, + €*“Qy + %Y, allows us to write transformation
law for the particular fields under the Lorentz 240 trans-
lations 79, so-called ‘Maxwellian’ transformations: A%?, 74
and both supercharges €%, ¢*. The transformation law g A =
DA® = dO + [A, O] describes particular laws uniquely
determined by the explicit (super)algebra, with particu-
lar Sow?, Soe?, 8oh®, sok®, Sor, o x transformations.
Remember also that §gF = [®, F]. Depending on the con-
struction, we can achieve the full gauge invariance (by 3D
Chern—Simons theory [30,31,42,43]) or in 4D just settle for
the Lorentz and supersymmetry invariance with a possibility
of additional invariance also due to the ‘Maxwellian symme-
tries’ [26,27,44].

@ Springer

To complete this section, we choose the superalgebra
configuration Cs given in (37), which is interesting due to
preserving sub-AdS superalgebra both in the commutator
between two translations and in anticommutator of super-
charges {Q, O} = P + J . After using 3D dual definitions
of fields (w” and h“) and generators (J, and Z,) we rewrite
the connection A = w%J, + %e“ P, +h*Z, + %k”Ua +

JLZI//“Q,X + \L/_EXO‘Y,X to obtain F = F%J, + %T“Pa +
a 1 ra 1 ra 1 o« : :
H Z“+EK Ua+ﬂf Qa+ﬂg Y, with the following

components:
1 b
=R w) + beope, + 56 = €Ckpk,
1
+*1/fra1/f+ ZXF X
. 1- ¢ _
T = Dye® + = € hpke + =T + —xTy,
7 b zw 14 YA

. 1 - _
(yebkc 4+ wl—-abx + XFabw»

1
2l 2wl
|
/eyrey + \/ £/€xT),

1
H® = D h® + —e
ol

i 1
K% = D k® + e""”hbec—i-

1 1 ~ 1 -
]::leﬁvae“l"aW—i—f Z/Nl“l"anLf ¢/ K Tax,

G=D,x + eFax+ Z/en ax//+ Tay. (45)

1
2ot

2¢

Corresponding 3D Chern—Simons model Ics = % J L for
the algebra Cs has Lagrangian:

1. 1
£% = ap (w“da)a + ge“h‘waa)hwc + gZ —eyDye® + hyDy,h”
1 2 - 2
+=ka Duk® + Z e hepk, — SYF -2 'g)
2 alw (fe a€bkc 1// @X

2 1
+ay (EeaR + Bk D,h® + 3—36 abey epe,

1 abc 1 abe 2 - 2 _
+Z6 eahbhc + @E eakbkc —+ Zw}- + ng

2 1 1,
+on <2ha72“ + ﬁeaDwk" + eze beopephe + ge“b‘hahhhc

+le“"fh kpk 2 VG 2 ;zr)
= aKbKe — —F/— - =
2 Vet Vi

2 2 1
+a3 [ ZkaR + SeaDph® + — € kykpke
7 1 303

—_

1
€Y hahpke + —€eesepke + —
i

2 2 )
M \/673
(46)

i

The described above framework opens the possibility of
bi-supergravity for J PZU + QY. Standardly, we assign the
gravity formulation with the gauge theory with the spin con-
nection ?’ and vielbein ¢ altogether encoding the gravi-
ton field. Doubling of the field content in the form of addi-
tional 147, k® suitably offers grounds for the bi-metric theory
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[39—41]. The connection A gauged for J PZU + QY super-
algebras enables the possibility of the bi-supergravity for-
mulation with two sets of Lorentz-like, translation-like, and
supercharge-like generators. Instead of the arbitrary mixing
in the bi-metric action, see Ref. [44], we can try to accom-
pany the base metric (assigned to J,, P,) with other rank-2
field (corresponding to pair Z,;, U,) and just follow particu-
lar superalgebra realization within the Chern—Simons con-
struction in the 3D, whereas for 4D use the Born-Infeld
type of action [45], MacDowell-Mansouri model [46], or
the deformed BF theory [18,27]. We leave evaluating the
field equations and the ansatz solution discussion for future
work.

6 Summary

Searching for the realization of supergravity theory should be
based on the algebraic structure’s proper choice describing
the underlying symmetry. In this work, we fully exploit the
‘resonant’ character of algebraic structures, understood as
obeying the same structure constants pattern of the super-
symmetric extension of the AdS algebra in 3D and 4D.
We proposed a new method of searching for the reso-
nant (super)algebras. The new approach allowed us signifi-
cantly go beyond the framework of Ref. [32]. The advance-
ment comes from the non-standard dealing with the Jacobi
identities and developing a new (stochastic-like) searching
algorithm. Thanks to our unique approach, we deliver the
complete overview of all possible configurations starting
from JP 4+ Q until the generator scheme is doubled, i.e.,
JPZU + QY. As aresult, we provide a plethora of super-
algebra structures that significantly complete the past frag-
mentary results.

The detailed analysis of the obtained results definitely
gives a broader perspective over the differences between var-
ious realizations of closing algebras and related features. For
instance, we note the unique and not interchangeable role
of the Lorentz generator that forces some of the constraints.
The same can be said about the outcome of { Q, Q}. Indeed, it
might be useful to bring forward some further commutation
limitations on the possible configurations to restrict the super-
algebra realizations, like non-vanishing of {Y, Y}. Eventu-
ally, we emphasize the direct applicability of our framework
in action construction, including bi-supergravity.
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