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Abstract In this work we use the vanishing complexity
factor as a supplementary condition to construct uncharged
and charged like-Durgapal models. We provide the gtt com-
ponent of the metric of the well-known Durgapal IV and V
solutions and a particular form for the anisotropy, related to
the electric charge, to close the system of differential equa-
tions. The physical acceptance of the models is discussed.

1 Introduction

The use of a great variety of physical conditions in the con-
struction of real compact configurations satisfying Einstein
field equations remains a great challenge. In some cases the
material content filling the interior of the stellar object is com-
posed by an isotropic fluid distribution where Pr = P⊥ [1].
Although locally isotropic models constitute a very common
assumption in the study of compact objects, there is strong
evidence suggesting that for certain density ranges a large
variety of physical phenomena of the kind we expect to find
in compact objects can cause local anisotropy (see Refs. [2–
11], for an extensive discussion on this point). One possible
source is related to the intense magnetic fields observed in
compact objects such as white dwarfs, neutron stars or mag-
netized strange quark stars [12–16]. Another source is the
high viscosity rates expected to be present in neutron stars,
in highly dense matter produced by the opacity of matter to
neutrinos in the collapse of compact objects [17–22], and
the superposition of two isotropic fluids, that allows one to
evaluate the fractional anisotropy in a neutron star due to
the contamination of electrons and protons required to stabi-
lize neutrons against β decay [23], just to name a few. It is
important to remark that, although the degree of anisotropy
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may be small, the effects produced in compact stellar objects
may be appreciable [24]. For these reasons, the assumption
of isotropic pressure is a very restrictive condition, especially
in a situation where the compact object is modeled as a struc-
ture with high density (such as neutron stars, for example).
Besides, the isotropic pressure condition is rendered unsta-
ble by the presence of physical factors such as dissipation,
energy density inhomogeneity and shear [25]. For these rea-
sons, relaxing the stringent isotropic condition to allow local
anisotropy within stellar matter constitutes a more realistic
situation from the astrophysical point of view. In addition
to the anisotropy, we may consider other possible character-
istics in the internal composition of the stellar fluid as for
example an electric charge. The first reported solution for
charged interior configurations was given by Bonnor [26] and
subsequently the effects of electrical properties on compact
objects have continued to be studied [27–40]. Even though
it has been said that astrophysical systems are expected to
be globally charge-neutral it is expected that at certain evo-
lutionary stages a charged astrophysical object could arise
especially in transient dynamic processes.

From a more technical point of view, self-gravitating flu-
ids are characterized by a number of physical variables that
exceeds the number of equations provided by the theory so
that additional conditions must be given in order to close the
system and solve the Einstein’s field equations. For instance,
in the case of a static spherically symmetric anisotropic fluid,
we have a set of three ordinary differential equations for the
five unknown functions (metric and thermodynamic func-
tions) so two extra conditions must be given in terms of an
equation of state or an heuristic assumption involving metric
and/or physical variables. In the case of considering stel-
lar objects that have a net electric charge, obviously, we have
another degree of freedom or indeterminacy that must be sat-
isfied. In this regard, we need to provide (in addition to the
boundary or initial conditions) extra information related to
the local physics or restrictions on the metric variables such
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as the conformally flat [41,42] or the Karmarkar condition
which allow to choose one of the metric functions as genera-
tor of the total solution [43] (see, also [44–49]). In the same
direction, a relevant and well known concept in physics as
is the complexity, applied to the scope of General Relativity,
can perfectly be considered to provide the extra necessary
information.

Complexity, rather than an intuitive notion, is a physi-
cal concept that deeply relates the fundamental structure of
nature and has attracted a broad spectrum of researchers in
various branches of science [50–55]. So far, although there
is not an unifying definition applied to all scenarios, several
efforts have been made to provide a definition of complex-
ity associated with the concepts of information and entropy
[56–61]. However, in Ref. [62] it is proposed for the first time
a complexity factor for self-gravitating spheres defined by
means of a structure scalar arising from the orthogonal split-
ting of the Riemann tensor [63–65], that manifestly exhibits
that the complexity of a gravitational system is closely related
to the internal structure of the object. This new approach
of complexity, defined for static spherically symmetric rel-
ativistic fluid distributions , stems from the basic assump-
tion that one of the less complex systems corresponds to a
homogeneous (in the energy density) fluid distribution with
isotropic pressure, assigning a zero value of the complexity
factor for such a configuration. As we shall see, the van-
ishing complexity can be achieved also for inhomogeneous
and anisotropic self-gravitating spheres so that this condition
may be regarded as a non-local equation of state [62], that
can be used to obtain non-trivial configurations with zero
complexity.

This paper is organized as follows. We dedicate the next
section to introduce Einstein’s equations for a spherically
symmetric static and anisotropic fluid. Also some useful def-
initions and conventions are introduced. In Sect. 3 we sum-
marize the basics of defining the complexity factor and the
vanishing complexity condition. In Sect. 4, we introduce all
the variables, conventions and the equations for charged sys-
tems as well as the coupling conditions we will employ. Sec-
tions 5 and 6 are devoted to the study of the Durgapal IV
model both uncharged and charged respectively. Sections 7
and 8 are dedicated to the study the uncharged and charged
Durgapal V model. Finally, the last section is devoted to some
discussions and concluding remarks.

2 Relevant equations and conventions

We consider a spherically symmetric distribution of static
fluid, which is assumed to be locally anisotropic and bounded
by a spherical surface Σ . The line element is given in
Schwarzschild like coordinates by,

ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin2 θdφ2

)
, (1)

where ν and λ are functions of the radial coordinate only.
The metric (1) satisfy Einstein field equations given by,

Gν
μ = 8πT ν

μ . (2)

The matter content of the sphere is described by the energy–
momentum tensor

Tμν = (ρ + P⊥)uμuν − P⊥gμν + (Pr − P⊥)sμsν, (3)

where,

uμ = (e−ν/2, 0, 0, 0), (4)

is the four velocity of the fluid and sμ is defined as

sμ = (0, e−λ/2, 0, 0), (5)

with the properties sμuμ = 0, sμsμ = −1 (we are assuming
geometric units c = G = 1). The metric (1), has to satisfy
the Einstein field equations (2), which are given by

ρ = − 1

8π

[
− 1

r2 + e−λ

(
1

r2 − λ′

r

) ]
, (6)

Pr = − 1

8π

[
1

r2 − e−λ

(
1

r2 + ν′

r

) ]
, (7)

P⊥ = 1

8π

[
e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

) ]
, (8)

where primes denote derivative with respect to r .
From the conservation of the energy momentum tensor it

is a simple matter to find the Tolman–Oppenheimer–Volkoff
(hydrostatic equilibrium) equation for anisotropic matter,
which reads

P ′
r = −ν′

2
(ρ + Pr ) + 2 (P⊥ − Pr )

r
. (9)

Alternatively, using

ν′ = 2
m + 4π Prr3

r (r − 2m)
, (10)

which follows from the field equations, we may write (9) as,

P ′
r = − (m + 4π Prr3)

r (r − 2m)
(ρ + Pr ) − 2Π

r
, (11)

where m is the mass function defined by

R3
232 = 1 − e−λ = 2m

r
, (12)

or, equivalently

m = 4π

∫ r

0
r̃2ρdr̃ , (13)
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and Π is the local pressure anisotropy

Π = Pr − P⊥. (14)

The exterior description of the spacetime is given by the
Schwarzschild exterior solution [66],

ds2 =
(

1 − 2M

r

)
dt2 − dr2

(
1 − 2M

r

) − r2
(
dθ2 + sin2 θdφ2

)
.

(15)

Moreover, the matching conditions require the continuity of
the first and the second fundamental form across the bound-
ary r = rΣ = constant , implying

eνΣ = 1 − 2M

rΣ
, (16)

e−λΣ = 1 − 2M

rΣ
, (17)

[Pr ]Σ = 0, (18)

where the subscript Σ indicates that the quantity is evaluated
on the boundary surface Σ . Equations (16)–(18) are the nec-
essary and sufficient conditions for a smooth matching of the
two metrics (1) and (15) on Σ .

3 The complexity factor

This section is dedicated to summarizing the essential aspects
of the definition for the complexity factor introduced in [62].

The Riemann tensor can be expressed through the Weyl
tensor Cν

αβμ, the Ricci tensor Rμν and the curvature scalar
R,

Rν
αβμ = Cν

αβμ + 1

2
Rν

βgαμ − 1

2
Rαβδν

μ + 1

2
Rαμδν

β

−1

2
Rν

μgαβ − 1

6
R

(
δν
βgαμ − gαβδν

μ

)
. (19)

In the spherically symmetric case, the magnetic part of the
Weyl tensor vanishes so we express it only in terms of its
electric part:

Eμν = Cμγ νδu
γ uδ. (20)

Note that Eμν may also be written as [64],

Eμν = E

(
sμsν + 1

3
hμν

)
, (21)

with

E = −e−λ

4

[
ν′′ + ν′2 − λ′ν′

2
− ν′ − λ′

r
+ 2(1 − eλ)

r2

]
.

(22)

Eμν satisfies the following properties:

Eμ
μ = 0, Eμν = E(μν), Eμνu

ν = 0. (23)

Now, it can be shown [65] that the Riemann tensor may
be expressed through the tensors

Yμν = Rμγ νδu
γ uδ (24)

Zμν = ∗Rμγ νδu
γ uδ (25)

Xμν = ∗R∗
μγ νδu

γ uδ (26)

in what is called the orthogonal splitting of the Riemann
tensor [63]. Here ∗ denotes the dual tensor, i.e. R∗

μνγ δ =
1
2ηεσγ δR εσ

μν and ημνλρ corresponds to the Levi-Civita ten-
sor.

Using Einstein’s field equations (2) in (19) we obtain a
decomposition of the Riemann tensor given as a function
of the components of the energy–momentum tensor. In [62]
Eq. (3) was expressed in a particularly useful way so that after
some manipulations (see [64] for details), we can find explicit
expressions for the tensors Yμν , Zμν and Xμν in terms of the
physical variables, namely

Yμν = 4π

3
(ρ + 3P)hμν + 4πΠμν + Eμν, (27)

Zμν = 0 (28)

and

Xμν = 8π

3
ρhμν + 4πΠμν − Eμν, (29)

with

Πμ
ν = Π

(
sμsν + 1

3
hμ

ν

)
; P = Pr + 2P⊥

3
hμ

ν = δμ
ν − uμuν . (30)

From the tensors Xμν and Yμν we can define four structure
scalars functions [64] in terms of which these tensors may
be written, these may be expressed as,

XT = 8πρ, (31)

XT F = 4πΠ − E, (32)

YT = 4π (ρ + 3Pr − 2Π) , (33)

and

YT F = 4πΠ + E . (34)

From the above it follows that local anisotropy of pressure is
determined by XT F and YT F by

XT F + YT F = 8πΠ, (35)

and a simple but instructive calculation performed in [62]
allows us to express YT F in terms of the inhomogeneity of
the energy density and the local anisotropy of the system like,

YT F = 8πΠ − 4π

r3

∫ r

0
r̃3ρ′dr̃ . (36)
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Also, this last result leads us to be able to write Tolman’s
mass [2,67] as,

mT = (mT )Σ

(
r

rΣ

)3

+ r3
∫ rΣ

r

e(ν+λ)/2

r̃
YT Fdr̃ . (37)

Then, it is assumed that at least one of the simplest systems
is represented by a homogeneous energy density distribu-
tion with isotropic pressure. For such a system the structure
scalarYT F vanishes. Furthermore, this single scalar function,
encompasses all the modifications produced by the energy
density inhomogeneity and the anisotropy of the pressure,
on the active gravitational (Tolman) mass so there is a solid
argument to define the complexity factor by means of this
structure scalar.

The complexity factor YT F , not only vanishes for the
homogeneous, isotropic fluid, where the two terms in (36)
vanish identically, but also for all configurations where the
two terms, in the same expression, cancel each other. Accord-
ing to (36), the vanishing complexity factor condition, reads:

Π = 1

2r3

∫ r

0
r̃3ρ′dr̃ . (38)

which may be regarded as a non-local equation of state (sim-
ilar to the one proposed in [68]), so we can use it to impose
a plausible condition on the physical variables when solving
the Einstein equations. Accordingly, if we impose the condi-
tion YT F = 0 we shall still need to provide more information
in order to solve the system.

Finally, we note that by using Einstein’s equation, that
(36) can be written as

YT F = e−λ
(
ν′ (rλ′ − rν′ + 2

) − 2rν′′)

4r
, (39)

which is summarized in terms of a relationship between the
metric functions, so this condition is joined with the rest of
the equations in order to integrate the system.

4 Field equations for charged systems

We start with the line element (1) which is now associ-
ated with a static, spherically symmetric anisotropic and
charged fluid distribution bounded by a surface Σ , described
in Schwarzschild-like coordinates. If the fluid is charged, we
must add the electromagnetic tensor Sαβ which is given by,

Sμν = 1

4π

(
F γ

μ Fνγ − 1

4
Fγ δFγ δgμν

)
, (40)

where Fμν represents the skew-symmetric electromagnetic
tensor defined as usual by,

Fμν = ∂μAν − ∂ν Aμ, (41)

satisfying Maxwell equations,

Fμν

;ν = 4π Jμ, (42)

where Aμ is the four potential and Jμ the four current. In the
static and spherically symmetric case, they are expressed as,

Aμ = Φ(r)δμ
0 , Jμ = σ(r)uμ (43)

where Φ is the electric scalar potential and σ the charge den-
sity (both functions of the coordinate r ). The electric charge
interior to radius r has been defined by using the relativistic
Gauss’s law as follows [69],

q(r) = 4π

∫ r

0
σ(r̃)r̃2eλ/2dr̃ , (44)

implying charge conservation. As we are dealing with a
spherically symmetric, static configuration, this implies that
the only non-vanishing components of the electromagnetic
tensor Fμν are F01, which correspond precisely to the elec-
tric field E(r) along the radial direction, namely

E = q(r)

r2 e−(λ+ν)/2. (45)

From now on we consider that the energy distribution
within the fluid corresponds to an anisotropic fluid, given
in (3), coupled to an electromagnetic field (40). The met-
ric must satisfy Einstein–Maxwell equations for the interior
spacetime,

Gμ
ν = 8π(Tμ

ν + Sμ
ν ), (46)

that in this case may be written as

κρ + q2

r4 = λ′

r
e−λ + 1

r2 (1 − e−λ), (47)

κPr − q2

r4 = ν′

r
e−λ − 1

r2 (1 − e−λ), (48)

κP⊥ + q2

r4 = e−λ

(
ν′′

2
− λ′ν′

4
+ ν′2

4
− ν′ − λ′

2r

)
. (49)

It is clear that the uncharged solution is recovered when q =
0. Next, the Misner and Sharp mass function m(r) (12) can
be generalized to include the electromagnetic contribution
by [70],

m = r3

2
R 23

23 + q2

2r
= 4π

∫ r

0
r̃2T 0

0 dr̃ , (50)

where T 0
0 is given by the left side of (47) in this case. So

when considering the total mass of the compact structure, if
the fluid distribution contains electric charge, it will increases
by a certain amount, and this effect is provided by the electric
field. This implies that the surface gravitational red-shift is
also altered and one could try to check the models using some
observational data.

Note that Eqs. (47)–(49) corresponds to a system of
three independent equations with six unknowns, namely
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{ν, λ, ρ, Pr , P⊥, q} so we need to provide three conditions in
order to solve the system. In this work we shall provide the
gtt metric component of the well known Durgapal IV and
Durgapal V solutions, the vanishing complexity condition
and a particular profile for the anisotropy of non-vanishing
charge solutions.

In order to find a complete and consistent stellar model,
one needs to satisfy the matching conditions in a smoothly
way at the surface interface Σ (that represents the compact
object surface) with the external space-time which we assume
as the Reissner–Nordström spacetime,

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dt2 −

(
1 − 2M

r
+ Q2

r2

)−1

dr2

−r2(dθ2 + sin2 θdφ2) , (51)

where M and Q denote the total mass and charge respectively.
Moreover, the matching conditions require [71]

eνΣ = 1 − 2M

rΣ
+ Q2

r2
Σ

, (52)

e−λΣ = 1 − 2M

rΣ
+ Q2

r2
Σ

, (53)

Pr (rΣ) = 0, (54)

q(rΣ) = Q. (55)

A null radial pressure at the boundary surface Σ is a neces-
sary mechanism to confine the matter content inside a bound
space- time region, which in turn determines the size of the
configuration.

It is opportune to clarify that the same expression pre-
sented for the complexity factor YT F and the non-local state
equation that defines the vanishing complexity of the system,
for the non-trivial case (38), is perfectly valid in the general
case of an electrically charged fluid distribution. The com-
plexity factor for a charged (spherically symmetric) fluid is
known, because the structure constants in that case have also
been found (see [70] for details and discussion). The inclu-
sion of electric charge results in defining “effective” thermo-
dynamic matter variables that “absorb” the contribution of
the electric charge. The effective variables are just the corre-
sponding ordinary variables with all contributions (electric
charge) included.

5 Durgapal IV solution using vanishing complexity

Let us first consider the uncharged case. For this we set q = 0
in Eqs. (47)–(49). We use the gtt metric coefficient as a seed
known solution

eν = A
(

1 + cr2
)4

, (56)

where A and c are constants. The vanishing complexity con-
dition (38) enables us to find the radial metric coefficient

eλ = (1 + cr2)2. (57)

Replacing both metric coefficients in Eqs. (47)–(49) (with
q = 0) we find

ρ = c
[
6 + cr2

(
cr2 + 3

)]

8π
(
1 + cr2

)3 , (58)

Pr = c
[
6 − cr2

(
cr2 + 3

)]

8π
(
1 + cr2

)3 , (59)

P⊥ = 6c

8π
(
1 + cr2

)3 . (60)

Using Eqs. (59) and (60) or just evaluating (38) we obtain
directly

Δ = c2r2(3 + cr2)

8π(1 + cr2)3 . (61)

Now, we proceed with the matching conditions (52), (53) and
(54) (with Q = 0) and find that

A = 64

(1 − √
33)6

, (62)

M = 15 − √
33

(1 − √
33)2

R , (63)

c = −3 + √
33

2R2 . (64)

It is worth noticing that from Eq. (63) the compactness
parameter (M/R) is 0.4112 which corresponds to a very com-
pact object. Besides, the matching conditions exhaust the free
parameters of the model so we do not have any parameter that
modulates the anisotropy of the system (in other words if R
is given then also c is given).

In in Figs. 1 and 2 we show the metric functions eν and
e−λ as a function of the radial coordinate. Note that both are
positive, finite and free of singularities, as expected. More-
over, at the centre, they satisfy e−λ(0) = 1 and eν(0) = const .
From this we can observe a monotonously increasing correct
behavior for the mass function, this is consistent with the
adequate behavior of the metric function λ [72–74].

Now, in Figs. 3, 4 and 5 we show the behavior of the mat-
ter sector (thermodynamic variables) plotted as a function of
the radial coordinate r using R = 1. Note that the density
is positive inside the star, reaches its maximum at the center
and decreases monotonously outwards, as expected. Also,
we observe that the radial pressure and tangential pressure
are positive quantities inside the star, they reach their maxi-
mum at the center and then monotonously decrease outwards,
representing an appropriate behavior. This, obviously trans-
lates into a suitable behavior for the anisotropy of the system
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Fig. 1 Metric eν as a function of the radial coordinate r with R = 1
for Durgapal IV (q = 0) solution

Fig. 2 Metric e−λ as a function of the radial coordinate r with R = 1
for Durgapal IV (q = 0) solution

Fig. 3 ρ as a function of the radial coordinate r with R = 1 for Dur-
gapal IV (q = 0) solution

as we verify by means of Fig. 6. Besides, for this model
the dominant energy condition (DEC) is satisfied as it can be
appreciated in both Figs. 7 and 8, where the density is greater
than both pressures, radial and tangential.

Fig. 4 Pr as a function of the radial coordinate r with R = 1 for
Durgapal IV (q = 0) solution

Fig. 5 P⊥ as a function of the radial coordinate r with R = 1 for
Durgapal IV (q = 0) solution

Fig. 6 P⊥ − Pr as a function of the radial coordinate r with R = 1 for
Durgapal IV (q = 0) solution

6 Charged like Durgapal IV solution

We use as a seed, in order to solve the system, the gtt com-
ponent of the Durgapal IV solution given by,

eν = A
(

1 + cr2
)4

, (65)
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Fig. 7 ρ − Pr as a function of the radial coordinate r with R = 1 for
Durgapal IV (q = 0) solution

Fig. 8 ρ − P⊥ as a function of the radial coordinate r with R = 1 for
Durgapal IV (q = 0) solution

but now we will consider the charged case where q �= 0. As
before, the vanishing complexity condition given by Eq. (38)
leads us to a relationship between the metric functions that
produces

eλ = (1 + cr2)2. (66)

Replacing (65) and (66) in (47), (48) and (49) we obtain

ρ = − q2

8πr4 + c
[
6 + cr2

(
cr2 + 3

)]

8π
(
1 + cr2

)3 (67)

Pr = q2

8πr4 + c
[
6 − cr2

(
cr2 + 3

)]

8π
(
1 + cr2

)3 (68)

P⊥ = − q2

8πr4 + 6c

8π
(
1 + cr2

)3 . (69)

Now, let us consider the following anisotropy [75,76]

Π = −α
q2

4πr4 , (70)

from where, introducing (68) and (69) we arrive at

q = cr3
√

3 + cr2

√
2(1 + α)

(
1 + cr2

)3/2 . (71)

The matching conditions with the outside metric leads to

A
(
cR2 + 1

)4 = −2M

R
+ Q2

R2 + 1 (72)

1(
cR2 + 1

)2 = −2M

R
+ Q2

R2 + 1 (73)

Q2

R4 = c
(
cR2

(
cR2 + 3

) − 6
)

(
cR2 + 1

)3 (74)

Q2 = c2R6
(
cR2 + 3

)

2(α + 1)
(
cR2 + 1

)3 , (75)

from where we get the expressions

Q

ξ1
=

(
3
√

3R2(2α + 1)
√

(2α + 1)(22α + 19)

−9(4α(37α + 67) + 121)R2
)1/2

(76)

c =
√

3
√

(2α + 1)(22α + 19)

(2α + 1)2R2 − 3

2R2 , (77)

A

ξ2
= 1 − 2M

R
+ 9(4α(37α + 67) + 121)

8(8α + 7)3

−3
√

3(2α + 1)
√

(2α + 1)(22α + 19)

8(8α + 7)3 , (78)

M

ξ3
= 3(10α + 9)R2 − ξ4

(34α + 29)R2 − ξ4
, (79)

with

ξ1 = 1

2
√

2
√−(8α + 7)3

(80)

ξ2 = 16

( √
3(22α + 19)√

(2α + 1)(22α + 19)
− 1

)−4

(81)

ξ3 = (4α + 5)R

(8α + 7)
(82)

ξ4 = √
3R2

√
(2α + 1)(22α + 19). (83)

Due to the choice of the specific function for the local
anisotropy, which is proportional to the electric charge,
increasing the charge (or field) value is equivalent to increas-
ing the anisotropy of the system (note that it can also be
modulated with the α parameter) as seen from Eq. (70). In
addition, we observe from Eqs. (67)–(69) that, in effect, one
could choose effective variables for the fluid in the sense that
they incorporate the term associated with the electric field,
which will be translated into the effective anisotropy of the
system.

In Figs. 9 and 10 we show the behavior of the metric
functions, with respect to the radial coordinate r for the Dur-
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Fig. 9 Metric eν as a function of the radial coordinate r for the Dur-
gapal IV charged (q �= 0) model. R = 1 and α = 0 (black line), α = 1
(blue dashed line) and α = 3 (red dotted line)

Fig. 10 Metric e−λ as a function of the radial coordinate r for the
Durgapal IV charged (q �= 0) model. R = 1 and α = 0 (black line),
α = 1 (blue dashed line) and α = 3 (red dotted line)

gapal IV charged (q �= 0) model. We observe that these
functions are positive, finite and free of singularities, as they
should be for a physical accepted solution. Furthermore, eval-
uated at zero, both reach the expected values, e−λ(0) = 1 and
eν(0) = const .

In Figs. 11, 12 and 13 the matter sector and the fluid
tensions are shown. Note that the density and pressure
(radial and tangential) behave as expected: positive quan-
tities inside the star, their maximum is at the centre and then
decrease monotonously outwards. As a consequence of this,
the anisotropy shown in the Fig. 14 will have the appropri-
ate behavior. For this model we note that the α parameter
controls the anisotropy present in the compact object, so that
α = 0 represents the isotropic charged case. Also, setting
q = 0 automatically returns us to the previous anisotropic
un-charged Durgapal IV model. In the internal regions (up
to values for the radial coordinate between 0.4 − 0.6) of the
stellar object, all these variables decrease with the increasing
anisotropy, as shown in the Fig. 14. For the same interval of
values of r the curve of the anisotropy function is smoothed

Fig. 11 ρ as a function of the radial coordinate r for the Durgapal IV
charged (q �= 0) model. R = 1 and α = 0 (black line), α = 1 (blue
dashed line) and α = 3 (red dotted line)

Fig. 12 Pr as a function of the radial coordinate r for the Durgapal IV
charged (q �= 0) model. R = 1 and α = 0 (black line), α = 1 (blue
dashed line) and α = 3 (red dotted line)

(reaches a maximum approximately for r = 0.6) so from
there on the behavior of the matter sector is the opposite.
Also, for this charged Durgapal IV anisotropic model, the
energy condition (DEC) is also satisfied since ρ ≥ Pr , and ρ

≥ P⊥, as can be seen in the Figs. 15 and 16.
Finally we show in Fig. 17 the behavior of the interior

electric charge (the electric field will be proportional to the
charge) for this model. Initially, in the center Gauss’s law
tells us that it must be zero and then grows monotonously
to its full value at the surface q = qΣ = Q, as it should
be. Although the behavior of the interior charge is linked to
the anisotropy of the system, we can observe this fact from
the expression (70), the existence of charge inside the stellar
object is independent of whether or not there is anisotropy
present, as we can see for the black line (α = 0) of the same
figure. The internal charge decreases, throughout the range of
values of r by increasing α and therefore the local anisotropy.
This could have been read directly from the Eq. (71).
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Fig. 13 P⊥ as a function of the radial coordinate r for the Durgapal
IV charged (q �= 0) model. R = 1 and α = 0 (black line), α = 1 (blue
dashed line) and α = 3 (red dotted line)

Fig. 14 P⊥−Pr as a function of the radial coordinate r for the Durgapal
IV charged (q �= 0) model. R = 1 and α = 0 (black line), α = 1 (blue
dashed line) and α = 3 (red dotted line)

Fig. 15 ρ− Pr as a function of the radial coordinate r for the Durgapal
IV charged (q �= 0) model. R = 1 and α = 0 (black line), α = 1 (blue
dashed line) and α = 3 (red dotted line)

Fig. 16 ρ−P⊥ as a function of the radial coordinate r for the Durgapal
IV charged (q �= 0) model. R = 1 and α = 0 (black line), α = 1 (blue
dashed line) and α = 3 (red dotted line)

Fig. 17 q as a function of the radial coordinate r for the Durgapal IV
charged (q �= 0) model. R = 1 and α = 0 (black line), α = 1 (blue
dashed line) and α = 3 (red dotted line)

7 Durgapal V solution using vanishing complexity

We now proceed completely analogously with the Durga-
pal V model, both in the uncharged (q = 0) and charged
(q �= 0) cases. The objective of carrying out this other case
is to be able to have a comparative framework with the pre-
vious results and verify their consistency. In addition, for
completeness, we present a self-contained work. First we
consider the uncharged Durgapal V solution. Setting q = 0
in Eqs. (47)–(49) we use the gtt metric coefficient as a seed
(a well-behaved known solution) that will allow us to obtain
the complete solution of the problem considered. So, we start
with the metric temporal function,
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eν = A
(

1 + cr2
)5

. (84)

The vanishing complexity condition (38), as before, trans-
lates into a relationship between the metric variables and
enables us to find the radial metric coefficient, given by

eλ = (1 + cr2)3. (85)

Replacing both metric coefficients in Eqs. (47)–(49) (with
q = 0) we find

ρ = c
(
9 + 6cr2 + 4c2r4 + c3r6

)

8π
(
1 + cr2

)4 , (86)

Pr = c
(
7 − 6cr2 − 4c2r4 − c3r6

)

8π
(
1 + cr2

)4 , (87)

P⊥ = 7c

8π
(
1 + cr2

)4 . (88)

We note that in the previous equations we only have one free
parameter, the constant c. Also, using the previous equations
(for Pr and P⊥) we arrive to the local anisotropy function of
the solution,

Δ = c2r2(6 + 4cr2 + c2r4)

8π(1 + cr2)4 . (89)

Now, the matching conditions (52)–(54), with Q = 0 (which
corresponds to the Schwarzschild vacuum solution), allow us
to obtain the following expressions

A = 1

(1 − cR2)8 , (90)

M = R

2

[
1 − 1

(1 + cR2)3

]
, (91)

cR2 = 1

3

{ [
1

2

(
277 + 3

√
8529

)]1/3

−2

(
2

277 + 3
√

8529

)1/3

− 4

}
. (92)

Note that only the parameter R remains free, so as before
(un-charged Durgapal IV) this model presents the peculiar-
ity of not having free parameters that allows controlling the
anisotropy of the system. Also, note that for this model the
compactness parameter (M/R) is 0.4047 that is close to the
compactness obtained in the previous un-charged Durgapal
IV model.

In Figs. 18 and 19 we show the graphic behavior of the
temporal and radial metric functions respectively, plotted as a
function of r for the un-charged Durgapal V (vanishing com-
plexity) solution with R = 1. Note that both metric functions
present the appropriate behavior as it occurred in the case
of the Durgapal IV. The temporal metric function decreases

Fig. 18 Metric temporal component eν as a function of the radial coor-
dinate r for the un-charged Durgapal V (vanishing complexity) solution
with R = 1

Fig. 19 Metric radial component e−λ as a function of the radial coor-
dinate r for the un-charged Durgapal V (vanishing complexity) solution
with R = 1

while the radial increases as long as the radius increases up
to its value on the surface, as expected.

We continue showing the graphs corresponding to the mat-
ter sector, composed by its thermodynamic variables (ρ, Pr
and P⊥) in Figs. 20, 21 and 22 respectively, for the un-charged
Durgapal V (vanishing complexity) solution, as well as the
behavior of the resulting anisotropy Δ = P⊥ − Pr exposed
in Fig. 23. With this done, it is straightforward to see that the
dominant energy condition is trivially satisfied (since ρ ≥ P⊥
and obviously ρ ≥ Pr ) as shown in the respective Figs. 24
and 25.

8 Charged Durgapal V solution

Finally, to complete this work, we shall consider the charged
Durgapal V solution in conjunction with the choice of a par-
ticular anisotropy function (proportional toq2) and the condi-
tion for the vanishing of the complexity parameter YT F = 0.
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Fig. 20 ρ as a function of the radial coordinate r for the un-charged
Durgapal V (vanishing complexity) solution with R = 1

Fig. 21 Pr as a function of the radial coordinate r for the un-charged
Durgapal V (vanishing complexity) solution with R = 1

Fig. 22 P⊥ as a function of the radial coordinate r for the un-charged
Durgapal V (vanishing complexity) solution with R = 1

Again, the metric seed gtt component is

eν = A
(

1 + cr2
)5

, (93)

and the vanishing complexity condition (38) leads to

eλ = (1 + cr2)3. (94)

Fig. 23 Δ = P⊥ − Pr as a function of the radial coordinate r for the
un-charged Durgapal V (vanishing complexity) solution with R = 1

Fig. 24 ρ − Pr as a function of the radial coordinate r for the un-
charged Durgapal V (vanishing complexity) solution with R = 1

Fig. 25 ρ − P⊥ as a function of the radial coordinate r for the un-
charged Durgapal V (vanishing complexity) solution with R = 1

Replacing (93) and (94) in (47), (48) and (49) we obtain

ρ = − q2

8πr4 + c
(
9 + 6cr2 + 4c2r4 + c3r6

)

8π
(
1 + cr2

)4 , (95)

Pr = q2

8πr4 + c
(
7 − 6cr2 − 4c2r4 − c3r6

)

8π
(
1 + cr2

)4 , (96)
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P⊥ = − q2

8πr4 + 7c

8π
(
1 + cr2

)4 . (97)

From the previous equations, it is inferred that it is possible
to absorb the electric charge in the thermodynamic variables
of the matter sector by redefining effective variables, this
constitutes a common procedure (see for example, [70]). Just
as in the previous treatment (charged Durgapal IV model) we
use the anisotropy given by Eq. (70). Then, introducing the
expressions (96) and (97) for both pressures in the left side
of (70) we find the interior charge function, given by

q = cr3
√

6 + 4cr2 + c2r4

√
2(1 + α)

(
1 + cr2

)2 . (98)

This function, like in the Durgapal charged IV model, is
inversely proportional to α. This dependence of the inter-
nal electric field function with the parameter that modulates
the local anisotropy has been reported before [76].

Finally we apply the matching conditions (52)–(55) with
the exterior Reissner–Nordström solution and we find that

A = 1

(1 + cR2)8 , (99)

M = M

8

{
4 − 4

(1 + cR2)3

+c4R10[6 + cR2(4 + cR2)]2

(1 + α)2(1 + cR2)8

}
, (100)

Q = cR3
√

6 + 4cR2 + c2R4

√
2(1 + α)

(
1 + cR2

)2 , (101)

c = Γ

3R6(1 + 2α)
− 2R2(1 + 2α)

3Γ
− 4

3R2 , (102)

with

Γ =
[
R12(1 + 2α)2(233 + 277α)

+3
√

3R24(1 + 2α)4[2011 + α(4782 + 2843α)]
]1/3

.

(103)

Note that in order to fix a specific solution, values must be
given to R and α. If we turn off the interior charge function
q = 0, we obtain the un-charged anisotropic Durgapal V
solution given in the previous case; but when there is indeed
a presence of electric interior charge, the α parameter is used
to control the anisotropy of the system, even to turn it off.
The behavior for this anisotropic-charged Durgapal V model
is in essence very similar, in practically all aspects, to that
discussed for its Durgapal IV analog, so we proceed to sum-
marize the most relevant issues.

In Figs. 26 and 27 its exposed the behavior of metric func-
tion variables with respect to the radial coordinate r for the
anisotropic Durgapal V charged (q �= 0) model, with R = 1
and different values for the parameter α (that implies different

Fig. 26 Metric component eν as a function of the radial coordinate r
with R = 1 and α = 0 (black line), α = 1 (blue dashed line) and α = 3
(red dotted line) for the charged Durgapal V anisotropic solution

Fig. 27 Metric component e−λ as a function of the radial coordinate r
with R = 1 and α = 0 (black line), α = 1 (blue dashed line) and α = 3
(red dotted line) for the charged Durgapal V anisotropic solution

anisotropies). Both functions are positive, finite and free of
singularities, as they should be for a physical accepted solu-
tion. Both metric functions increase in value with increasing
anisotropy as determined by the parameter α.

In Figs. 28, 29 and 30 we show the thermodynamic vari-
ables that constitute our stellar compact fluid, the density
and pressures behave as expected so the inherited anisotropy
present in the system (Fig. 31) will do as well. In the deepest
regions of the stellar body (r < 0.5) all quantities that make
up the matter sector decrease in value with the increasing of
the anisotropy via the α parameter. Then, when approach-
ing the surface, the same figures show the opposite behavior
(even all curves tend to converge). Consistent and similar
results were found for the previous charged case (Durga-
pal IV). Furthermore, it is straightforward to observe that
the energy conditions are correctly met as it is exposed in
Figs. 32 and 33.

Finally, the electric charge (or electric field) trend against
the radial coordinate r for the latter case, is shown in Fig. 34.
As in the previous model containing electric charge, our
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Fig. 28 ρ as a function of the radial coordinate r with R = 1 and
α = 0 (black line), α = 1 (blue dashed line) and α = 3 (red dotted
line) for the charged Durgapal V anisotropic solution

Fig. 29 Pr as a function of the radial coordinate r with R = 1 and
α = 0 (black line), α = 1 (blue dashed line) and α = 3 (red dotted
line) for the charged Durgapal V anisotropic solution

results are totally consistent. Both electric charge q(r) (and
electric field E(r)) must be strictly positive and increasing
functions with radius, meaning that at the origin both must
be null (Gauss’s law) i.e., q(0) = E(0) = 0. On the surface
of the stellar object it is equivalent to the total charge Q. As
before, the same decrease for the interior electric charge with
increasing anisotropy is observed.

9 Discussion

Einstein’s system of field equations in the case of a spher-
ically symmetric static, anisotropic fluid form a system of
three differential equations for five unknown quantities, the
two metric functions ν, λ and the three thermodynamic
variables (that constitute the so-called material sector): the
energy density ρ, radial Pr and tangential pressure P⊥ of the
fluid used to model the interior of the relativistic object. If we

Fig. 30 P⊥ as a function of the radial coordinate r with R = 1 and
α = 0 (black line), α = 1 (blue dashed line) and α = 3 (red dotted
line) for the charged Durgapal V anisotropic solution

Fig. 31 P⊥ − Pr as a function of the radial coordinate r with R = 1
and α = 0 (black line), α = 1 (blue dashed line) and α = 3 (red dotted
line) for the charged Durgapal V anisotropic solution

Fig. 32 ρ − Pr as a function of the radial coordinate r with R = 1
and α = 0 (black line), α = 1 (blue dashed line) and α = 3 (red dotted
line) for the charged Durgapal V anisotropic solution
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Fig. 33 ρ − P⊥ as a function of the radial coordinate r with R = 1
and α = 0 (black line), α = 1 (blue dashed line) and α = 3 (red dotted
line) for the charged Durgapal V anisotropic solution

Fig. 34 Electric interior charge q as a function of the radial coordinate
r with R = 1 and α = 0 (black line), α = 1 (blue dashed line) and
α = 3 (red dotted line) for the charged Durgapal V anisotropic solution

also consider an electrically charged fluid, we will therefore
have an additional unknown variable (the charge or elec-
tric field within the fluid distribution). Accordingly, we shall
need to provide extra information to be able to build a consis-
tent model. One way to achieve this, allows us to use a well
known solution as a seed to generate new ones. Unlike many
previous works, where the radial component of the metric
(mass function) is used as the seed solution [62], we base
the present work using the temporal component of the met-
ric for Durgapal IV and V models, as a seed, and explore
the possibility of finding solutions to Einstein’s equations.
If we consider the un-charged (charged) case we shall need
still another (two more) condition (s) in order to solve the
system. In this work, together with the Durgapal IV and V
temporal metric as a seed solution we impose the vanishing of
the complexity parameter YT F = 0 (known as the vanishing
complexity condition) that represents a non-local equation of
state that allows to obtain a relationship between the metric
functions. In general, setting some value for the complexity

factor (for example, a system with vanishing complexity),
works like an equation of state that leads to close the Ein-
stein’s field equations. Besides considering anisotropy as a
quantity playing a fundamental role in relativistic compact
stars, we explored the effect of this other interesting physical
quantity that involves both the anisotropy and the gradients in
the energy density (density contrast), namely the complexity
factor.

The new concept of complexity for static spherically sym-
metric relativistic fluid distributions, arises from the basic
assumption that the less complex systems corresponds to an
homogeneous (in the energy density) fluid distribution with
isotropic pressure [62]. In the case of fluid distributions the
variable measuring the complexity of the fluid (the complex-
ity factorYT F ) appears in the trace-free part of the orthogonal
splitting of the electric Riemann tensor (in vacuum the Rie-
mann tensor and the Weyl tensor are the same) [63–65]. If we
consider a spherically symmetric static distribution of fluid,
the magnetic part of the Weyl tensor is zero, so the process
starts by calculating the scalar functions defining the electric
part of the Weyl tensor. The scalar function YT F contains
contributions from the energy density inhomogeneity and
the local pressure anisotropy, combined in a very specific
way so it measures the departure from the value of the Tol-
man mass of a homogeneous and isotropic fluid and allows
finding a great variety of models with vanishing complexity
(YT F = 0) different from the trivial case (perfect fluid). In
the case that we have a electric charged fluid it is useful to
introduce “effective” variables that are just the correspond-
ing ordinary thermodynamic variables with the contributions
of electric charge included (see [70]). The remarkable fact
emerging from this is that the charge contribution is always
absorbed into the effective variables. In the absence of elec-
trical charge, the structure scalars are obtained just replacing
the effective variables by the corresponding ordinary ones
[70], question that allows us to define complexity in the same
way.

In this work, the equation of state resulting from canceling
the structure scalar YT F represents the other useful piece of
information necessary for the consolidation of the models
(in the case of configurations with electrical charge, it is also
necessary to choose an anisotropy function). We analyzed the
plausibility of each model based on the physical conditions
established for the existence of anisotropic compact stars.
All the considered cases behaved as expected in terms of
metric potentials, matter sector, anisotropy function, internal
charge of the system, energy conditions, redshift and stability
(although in these latter conditions we did not present the
graphs).

It is worth mentioning that the new definition of complex-
ity for self-gravitating relativistic fluids, has been extended to
consider the dynamic spherically symmetric situation (non-
static case) [37,77] and cases where the spherical symmetry
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is broken: the axially symmetric static case [78] and appli-
cations for some particular cases of cylindrically symmetric
fluid distributions may be also found [79,80]. In reference
[37] was treated complexity for dynamical spherically sym-
metric dissipative self-gravitating fluid distributions and in
[81] the complexity for the Bondi metric [82]. Besides the
fact that the Bondi metric covers a vast numbers of space-
times, Minkowski spacetime, the static Weyl metrics, non-
radiative nonstatic metrics, it has, among other things, the
virtue of providing a clear and precise criterion for the exis-
tence of gravitational radiation. Finally, electrically charged
fluid configurations have also been included (see references
[37,38] for details).

It is important to highlight that the role of charge distri-
bution in the stability of such configurations can be clearly
exhibited by equation (50). In particular it is worth stressing
the fact that electric charge, unlike pressure, does not always
produce a “regeneration effect” (does not always increase
the Tolman mass). This fact together with the presence of the
Coulomb term in the full set of the equations required for
a description of physically meaningful models of collapsing
charged spheres indicates the relevance of the electric charge
in the process of collapse and therefore in the stability of com-
pact spheres in hydrostatic equilibrium. Before concluding
this work, it is worth mentioning that a detailed analysis of
the solution by fixing the parameters to describe real stars is
compulsory. However, as this is out of the scope of this paper
we left this analysis to a future work.
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