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Abstract We have obtained propagators in the position
space as an expansion over Landau levels for the charged
scalar particle, fermion, and massive vector boson in a con-
stant external magnetic field. The summation terms in the
resulting expressions consisted of two factors, one being rota-
tionally invariant in the 2-dimensional Euclidean space per-
pendicular to the direction of the field, and the other being
Lorentz-invariant in the 1+1-dimensional space-time. The
obtained representations are unique in the sense that they
allow for the simultaneous study of the propagator from both
space-time and energetic perspectives which are implicitly
connected. These results contribute to the development of
position-space techniques in QFT and are expected to be of
use in the calculations of loop diagrams.

1 Introduction

In the vast majority of QFT problems, the momentum-space
paradigm is adopted due to the simplicity of respective cal-
culations and the ability to apply a variety of regularization
methods. However, for some problems (e.g., sunrise-type
diagrams) the position-space techniques allow for a much
simpler [1–4] evaluation of integrals. These integrals (which
are called Bessel moments [5]) consist of products of dif-
ferent types of Bessel functions. There exist a plethora of
analytic expressions for such integrals containing a prod-
uct of two, three, four, and even more Bessel functions as
integrand [6,7]. For integrals with unknown closed analytic
forms, numerical analysis remains a feasible choice due to
the underlying symmetries allowing to reduce the dimension
of integration space to one.

The analysis of divergences (which arise in loop pro-
cesses) is also possible in the position space. In several papers
[8,9] there was discussed the dimensional regularization pro-
cedure for the position-space expressions. It consisted in the
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control of the degree ν of the respective Bessel functions
which depend on ν analytically. Another possibility for a
correct treatment of infinities, namely a cutoff in the position
space, was also reported [10].

Finally, the position-space calculations are indispensable
when it comes to studying processes with space-dependent
external fields and initial-state wavepackets of arbitrary
shapes, e.g., when considering finite-spacetime problems,
such as those related to neutrino oscillations [11,12].

All of this demonstrates the growing significance of
position-space methods in QFT and serves as a motivation for
obtaining the most important ingredients for these calcula-
tions, i.e., the position-space expressions of particles’ propa-
gators. Such formulas for free particles were well known for a
long time [13,14]. Other valuable examples of position-space
propagators were also considered in the literature, namely,
the propagator of the Dirac equation in an external plane wave
[15] and propagators of charged particles in a constant mag-
netic field. In the latter case, the list of published representa-
tions includes (i) the proper-time [16] representation in the
position space [17–21], (ii) the proper-time representation in
the momentum space [22–24] and (iii) the Landau-levels rep-
resentation in the momentum space [22,25–27]. To the best
of our knowledge, no Landau-levels position-space formulas
were reported, except for our previous work where we pre-
sented the position-space representation of the charged scalar
particle propagator in a constant magnetic field expanded as
a sum over the Landau levels [28].

Landau-levels expansion of a charged particle propagator
allows for a straightforward interpretation. Each term in the
series has a factor corresponding to a 1+1-dimensional par-
ticle with a modified mass that depends on the Landau level
(see Sect. 2). Under certain conditions, a truncation of the
series is possible, allowing to achieve a confident approxima-
tion with a compact closed-form expression. However, there
exist several precedents when misunderstanding of such con-
ditions led to wrong conclusions. For instance, a calculation
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of the neutrino self-energy operator in a magnetic field was
performed in Refs. [29,30] by analyzing the one-loop dia-
gram ν → e− W+ → ν. The authors restricted themselves
to the contribution to the electron propagator from the ground
Landau level. As it was shown in Ref. [31], in that case, the
contribution from the ground Landau level did not dominate
due to the large electron virtuality, and contributions from
other levels were of the same order. Ignoring this fact led
the authors [29,30] to incorrect results. Another example of
this kind was an attempt to reanalyze the probability of the
neutrino decay ν → e−W+ in an external magnetic field
in the limit of ultra-high neutrino energies, calculated via
the imaginary part of the one-loop amplitude of the transi-
tion ν → e− W+ → ν. Initially, the result was obtained in
Ref. [32]. Later, the calculation was repeated in [33] where
authors insisted on another result. The third independent cal-
culation [34] confirmed the result of Ref. [32]. The most
likely cause of the error in Ref. [33] was the use of only
linear terms in the expansion of the W -boson propagator,
whereas the quadratic terms were essential as well.

Landau-levels position-space representation is unique in
the sense that it provides an explicit dependence of the propa-
gator on the space-time coordinates, at the same time splitting
the expression into individual terms according to the energy-
related quantum numbers (Landau levels). This allows for the
simultaneous treatment of the problem from both space-time
and energetic perspectives.

This paper is structured as follows. In Sect. 2, in addi-
tion to the results of our previous work [28], we red-
erive the position-space Landau-levels representation of
the charged scalar particle propagator in a constant mag-
netic field using three different methods, namely, the origi-
nal Fock–Schwinger approach [17,18], the modified Fock–
Schwinger approach [35,36], and the canonical quantization
approach. Overall, this section serves as a brief review of
methods for obtaining different representations of charged
particle propagators in a constant magnetic field. These meth-
ods demonstrate a high degree of consistency and provide
additional intermediate representations of the propagators.
Based on the results of Sect. 2, in Sects. 3 and 4, we obtain
previously unpublished Landau-levels position-space repre-
sentations for the propagators of charged particles with spin,
i.e., a fermion and a massive vector boson. In Sect. 5, we
discuss the properties of the obtained expressions using the
example of a scalar particle propagator.

Throughout calculations, we adhere to the “mostly minus”
metric convention gμν = (+,−,−,−). The constant mag-
netic field B is directed along the z-axis. This leads to the
decomposition of the spacetime vectors into parallel (‖) and
perpendicular (⊥) components

pμ
⊥ = (0, p1, p2, 0), pμ

‖ = (p0, 0, 0, p3), (1)

which belong to the Euclidean {1, 2}-subspace and the
Minkowski {0, 3}-subspace, correspondingly. Then, for the
arbitrary four-vectors pμ, qμ one has

(pq)⊥ = p1q1 + p2q2, (pq)‖ = p0q0 − p3q3, (2)

with the full scalar product written as

(pq) = (pq)‖ − (pq)⊥. (3)

2 Charged scalar particle propagator

2.1 Proper-time representation

In this section, we briefly outline the derivation of the proper-
time position-space representation of a charged scalar parti-
cle propagator in a constant magnetic field using the original
Fock–Schwinger (FS) approach.

In the FS approach, we are to solve the following propa-
gator equation:

H(∂X , X)G(X, X ′) = δ(4)(X − X ′). (4)

The FS method consists in representing the unknown func-
tion G(X, X ′) as an integral

G(X, X ′) = (−i)

0∫

−∞
dτ U (X, X ′; τ), (5)

where U (X, X ′; τ) satisfies a Schrödinger-type equation

i ∂τU (X, X ′; τ) = H(∂X , X)U (X, X ′; τ) (6)

with the following boundary conditions:

U (X, X ′; 0) = δ(4)(X − X ′), U (X, X ′; −∞) = 0. (7)

The solution then reads:

U (X, X ′; τ) = e−i τH(∂X ,X)+ετ δ(4)(X − X ′). (8)

The action of the exponential operator could be evaluated
directly (as will be discussed later), however, the original
FS method follows a different strategy. The relevant details
could be found in [17,18]. Here, we provide just the final
expression for the proper-time position-space representation
of the charged scalar particle propagator in a constant mag-
netic field:
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G(X, X ′) = − β

(4π)2 eiΦ(X,X ′)
0∫

−∞
dτ

1

τ sin(βτ)

× exp

{
i

[
Z2

�

4τ
− βZ2⊥

4 tan(βτ)
+ (m2 − iε)τ

]}
, (9)

where Zμ = Xμ − X ′μ and

Φ(X, X ′) = −eQ
∫ X

X ′
dξμ

[
Aμ(ξ) + 1

2
Fμν(ξ − X ′)ν

]
.

(10)

2.2 Landau-levels representation

In this section, we switch from the proper-time representation
(9) to the sum over Landau levels.

One can notice that the integral in (9) resembles the well-
known identity (see, e.g., [6]) for the modified Bessel func-
tions of the second kind:

Kν(z) = 1

2

( z
2

)ν
∫ ∞

0

dt

tν+1 e−t− z2
4t , (11)

which is valid for Re z2 > 0 and |arg z| < π/4.
To use (11), we transform (9) according to the following

recipe. First, a change of integration variable is performed:

t ≡ −i(m2 − iε)τ. (12)

This effectively rotates the integration contour by the angle
of ≈ −π/2 − ε/m2 and leads to the following formula:

G(X, X ′) = iβ

(4π)2

∫ 0

(i+ε)∞
dt

t
e− (−Z2

�
)(m2−iε)

4t −t

×
([

sinh
(
βt/m2

)]−1
e− βZ2⊥

4 cotanh
(
βt/m2

))
.

(13)

The expression in brackets can be written as:

[
sinh

(
βt/m2

)]−1
e− βZ2⊥

4 cotanh
(
βt/m2

)

= 2
e−b

1 − c
ea

c+1
c−1 = 2

e−be−a

1 − c
e− 2ac

1−c , (14)

where a = βZ2⊥/4, b = tβ/m2 and c = e−2b.
Transition to the sum over Landau levels is performed via

the following formula for the generating function of Laguerre
polynomials Ln , which is valid for |c| < 1:

1

1 − c
e− 2ac

1−c =
∞∑
n=0

Ln(2a) cn . (15)

We additionally change the contour of integration from
((i + ε)∞, 0) to (0,∞), where the condition c = e−2b =
e−2tβ/m2

< 1 is satisfied.

After the straightforward rearrangements in the exponen-
tial factors in (13) and the following substitutions

t

m2 = s

M2
n
, M2

n = m2 + (2n + 1)β, (16)

we use (11) and obtain for Z2
�

< 0:

G(X, X ′) = − iβ

4π2 eiΦe−βZ2⊥/4

×
∞∑
n=0

K0

(
Mn

√
−Z2

�
+ iε

)
Ln

(
βZ2⊥

2

)
. (17)

For the case Z2
�

> 0, we transform K0 using a standard
relation for Bessel functions:

Kν(z) = − iπ

2
e−iπν/2H (2)

ν

(
ze−iπ/2

)
, (18)

where H (2)
ν are the Hankel functions of the second kind. The

final expression for the position-space Landau-levels repre-
sentation of the propagator reads:

G(X, X ′) = −iβ

4π2 eiΦ
∞∑
n=0

Φn

[
K0 − iπ

2
H (2)

0

]
, (19)

where the notations were used:

Φn = Lne−βZ2⊥/4, Ln = Ln

(
βZ2⊥

2

)
, (20)

K0 = K0

(
Mn

√
−Z2‖ + iε

)
θ(−Z2‖), (21)

H (2)
0 = H (2)

0

(
Mn

√
Z2‖ − iε

)
θ(Z2‖). (22)

The light-cone behaviour of K0 and H (2)
0 is discussed,

e.g., in [37].

2.3 Canonical quantization approach

An alternative way to obtain an analytic expression for the
propagator is to consider a time-ordered “sum over the solu-
tions” of the corresponding wave-equation:

H(∂X , X)ψ(X) = 0. (23)

The H operator can be written as:

H(∂X , X) = ΠμΠμ − m2

= (i∂)2
�
+ β

[
d2
η − η2

]
− m2, (24)

where η = √
β

(
x − Q

py
β

)
and β = eB. It gives the follow-

ing set of solutions:

ψ(±)
n (X) = β1/4√

2p0LyLz
e∓ip0t+ipy y+ipz zVn(η), (25)
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where

p0 =
√
p2
z + m2 + (2n + 1)β (26)

and Ly/Lz are the volume normalization factors. The func-
tions Vn are the quantum harmonic oscillator (QHO) eigen-
vectors

Vn(η) = 1√
2nn!√π

e−η2/2Hn(η), (27)

satisfying

[
d2
η − η2

]
Vn(η) = −(2n + 1)Vn(η), (28)

with Hn being the Hermite polynomials.
Performing standard calculations in the canonical quanti-

zation scheme, we obtain the propagator

G(X, X ′) = (−i)〈0|T {ψ(X)ψ∗(X ′)}|0〉 (29)

as the “sum over the solutions”:

G(X, X ′) = √
β

∞∑
n=0

∫
d2 p�dpy
(2π)3

× e−i(p(X−X ′))�+ipy(y−y′)

p2
�

− M2
n + iε

Vn(η)Vn(η
′), (30)

where η′ = √
β

(
x ′ − Q

py
β

)
. This form of the propagator,

however, is not symmetric with respect to x, y coordinates
and, therefore, does not reflect the internal symmetry of the
problem. To symmetrize (30), we should perform the py-
integration:

In,n′ =
∫

dpye
ipy(y−y′)Vn(η)Vn′(η′) . (31)

First, we make a change of the integration variable:

u = −Q
py√
β

+
√

β

2

[
(x + x ′) + iQ(y − y′)

]
. (32)

This leads to:

In,n′ = eiΦ(X,X ′)
√

2n+n′n!n′! π
√

β e− β
4 (X−X ′)2⊥ Ĩn,n′ , (33)

where

Φ(X, X ′) = Qβ

2
(x + x ′)(y − y′), (34)

Ĩn,n′ =
∫ ∞

−∞
du e−u2

Hn(u + a)Hn′(u + b), (35)

with the following substitutions:

a =
√

β

2

[
(x − x ′) − iQ(y − y′)

]
,

b = −
√

β

2

[
(x − x ′) + iQ(y − y′)

]
. (36)

The phase (34) can be shown to be in agreement with the one
in Eq. (10), see e.g. Ref. [22]. Second, according to Ref. [6],
the Ĩn,n′ integral evaluates to:

Ĩn,n′ = 2n
′√

π n! bn′−nL(n′−n)
n (−2ab)

= 2n
′√

π n! bn′−nL(n′−n)
n

(
β

2
Z2⊥

)
(37)

for n ≤ n′. Finally, we obtain the symmetrized representation
of the propagator:

G(X, X ′) = β

2π
eiΦ

∞∑
n=0

Ln

(
βZ2⊥

2

)
e−βZ2⊥/4

×
∫

d2 p �

(2π)2

e−i(pZ)‖

p2
�

− M2
n + iε

. (38)

We observe that, aside from the overall non-invariant phase
factor eiΦ , the summation terms in (38) decompose into two
factors. The first one depends only on the x, y-coordinates
and is invariant with respect to rotations in the x, y-plane
which is perpendicular to the direction of the magnetic field.
The second factor (the Fourier integral)

J‖ =
∫

d2 p �

(2π)2

e−i(pZ)‖

p2‖ − M2
n + iε

(39)

depends only on the t, z-coordinates and allows for further
simplification. In the case Z2

�
< 0, it evaluates to:

J‖ = −i

2π
K0

(
Mn

√
−Z2‖ + iε

)
. (40)

For Z2
�

> 0, we once again apply (18), which gives the same
final answer (19) for the propagator.

2.4 Modified Fock–Schwinger method

Yet another approach for finding propagators of charged par-
ticles in external electromagnetic fields, the modified Fock–
Schwinger (MFS) method [35,36], consists in the direct eval-
uation of (8). First, one should choose an appropriate repre-
sentation of the δ-function. For the considered problem, the
following decomposition is particularly convenient:

δ(4)(X − X ′) = √
β

∞∑
n=0

∫
d3 p �,y

(2π)3 e−i(pZ)
�,y Vn(η)Vn(η

′).

(41)
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Next, using (8), (24) and (28), we write (5) as:

G(X, X ′) = −i
√

β

∞∑
n=0

∫
d3 p �,y

(2π)3 e−i(pZ)
�,y

×
∫ 0

−∞
dτ e

−iτ
(
p2‖−M2

n+iε
)
VnV

′
n, (42)

which after integration over τ gives us (30). The rest of cal-
culations are identical to (31)–(40).

In the case of a scalar particle, the MFS method gives no
obvious advantage as compared to the calculations performed
in the canonical quantization scheme. However, for particles
with spin, it significantly simplifies the notation and provides
additional representations of the propagator. It should also be
noted that the effectiveness of the MFS method was demon-
strated in a different physical scenario, namely, the method
was applied by other authors to calculate the fermion prop-
agator in a rotating environment [38]. We also believe that
this approach could appear to be useful for the calculations
of particle propagators in various physical environments. For
example, in a self-dual field, very simple expressions for the
scalar and fermion propagators exist. While the self-dual
electromagnetic field (defined by the condition E = iH)
could not be a non-zero physical field, its analysis could be
useful as a preliminary step to more complicated non-abelian
fields, e.g. the gluon field in QCD, see [39].

In the following sections, we focus our attention exclu-
sively on the calculations using the MFS method.

3 Charged fermion propagator

The H(∂X , X) operator in Eq. (4) for a charged fermion in a
constant magnetic field reads:

H(∂X , X) = Πμγ μ − m . (43)

Squaring the operator by the following substitution

G(X, X ′) = (
Πμγ μ + m

)
S(X, X ′) (44)

leads to the equation from which the new unknown function
S(X, X ′) could be determined:

H(∂X , X) S(X, X ′) = δ(4)(X − X ′), (45)

with H redefined as:

H(∂X , X) =
[
(i∂)2

�
+ β

(
d2
η − η2

)
− m2

]
I + QβΣ3 .

(46)

Given that Σ3 = iγ1γ2 = diag(+1,−1,+1,−1) commutes
with the unit matrix I , we are able to separate the exponential
operator in (8) into two exponents:

S(X, X ′) = (−i)
√

β

∞∑
n=0

∫
d2 p�dpy
(2π)3

∫ 0

−∞
dτ

×e−iτQβΣ3 e−iτ
[
p2

�
−β(2n+1)−m2+iε

]

×e−i(p(X−X ′))
�,y Vn(η)Vn(η

′). (47)

Next, we evaluate exp(−iτQβΣ3) and combine it with the
second exponent, followed by the shift of the summation
index where appropriate. This allows us to perform the
proper-time integration and obtain the following expression:

S(X, X ′) = √
β

∞∑
n=0

∫
d2 p� dpy

(2π)3

e−i(p(X−X ′))
�,y

p2
�

− M2
n + iε

×
[
Vn−1V

′
n−1Π

(Q)
n−1 + VnV

′
nΠ

(Q)
n

]
, (48)

where

Π
(Q)
n−1 = 1 − Q

2
Π+ + 1 + Q

2
Π−,

Π(Q)
n = 1 + Q

2
Π+ + 1 − Q

2
Π−,

Π+ = diag(1, 0, 1, 0),

Π− = diag(0, 1, 0, 1),

and M2
n = m2 +2βn. Using intermediate expressions within

the original FS approach [17,18], one can derive a useful
relation:(

i∂μ − eQAμ

) [
eiΦ f

]

= eiΦ
(

i∂μ + Qβ

2
ϕμν(X − X ′)ν

)
f. (49)

Following the same techniques as in the case of a scalar par-
ticle and applying (49) and (44), we obtain the final result:

G(X, X ′) = −iβ

4π2 eiΦ
[(

i∂μ + Qβ

2
ϕμν Z

ν

)
γ μ + m

]

×
∞∑
n=0

e−βZ2⊥/4
[
Ln−1Π

(Q)
n−1 + LnΠ

(Q)
n

]

×
(
K0 − iπ

2
H (2)

0

)
. (50)

Here, ϕμν = Fμν/B. We leave the representation (50) as is,
not performing the evaluation of derivatives. In real calcu-
lations involving propagators, these derivatives are usually
integrated by parts.

4 Charged massive vector boson propagator

Lastly, let us consider the charged vector boson. The corre-
sponding propagator equation is given by:

Hμ
νG

ν
ρ(X, X ′) = δμ

ρδ4(X − X ′),
Hμ

ν = (H0)
μ
ν + (HF )μν + (

Hξ

)μ

ν
, (51)
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where

(H0)
μ
ν =

(
ΠΠ − m2

)
δμ

ν, (52)

(HF )μν = −2ieQFμ
ν, (53)

(
Hξ

)μ

ν
=

(
1

ξ
− 1

)
ΠμΠν. (54)

We proceed with calculations exactly as in Ref. [36].
Briefly, we note that [H0 + HF , Hξ ] = [H0, HF ] = 0. This
allows for a step-by-step separation of the exponential oper-
ator e−iτ(H0+HF+Hξ ):

e−iτ(H0+HF+Hξ ) = e−iτHξ e−iτ(H0+HF )

= e−iτHξ e−iτHF e−iτH0 . (55)

Expanding the exponents
[
e−iτHF

]μ

ν
=

[
e−2Qβτϕ

]μ

ν

= δ
μ
‖ν + ei2βτ

2

(
δ
μ
⊥ν + iQϕμ

ν

) + e−i2βτ

2

(
δ
μ
⊥ν − iQϕμ

ν

)
(56)

and
[
e−iτHξ

]μ

ν
= e

−iτ
(

1
ξ
−1

)
ΠμΠν

= δμ
ν + Πμ e

−iτ
(

1
ξ
−1

)
ΠΠ − 1

ΠΠ
Πν, (57)

we shift the summation index (as for the fermion case) and
evaluate the corresponding τ -integral. Performing the trans-
formations (31)–(37), we obtain the symmetrized represen-
tation of the propagator:

Gμ
ν(X, X ′) = β

2π
eiΦ

∞∑
n=−1

∫
d2 p�

(2π)2

e−i(pZ)‖ e−βZ2⊥/4

p2‖ − M2
n + iε

×
(
dμ

ν + ξ − 1

p2‖ − M̃2
n + iε

f μ
ν

)
, (58)

dμ
ν = δ

μ
‖νLn + 1

2
δ
μ
⊥ν

(
Ln+1 + Ln−1

)

− iQ

2
ϕμ

ν

(
Ln+1 − Ln−1

)
, (59)

f μ
ν =

[
pμ
‖ p‖ν + βQ

2

(
pμ
‖ (Zϕ)ν + (ϕZ)μ p‖ν

)

−
(

(2n + 1)β − β2

4
Z2⊥

)
δ
μ
⊥ν + iQβ

2
ϕμ

ν

]
Ln

+ iβ

2

[(
pμ
‖ Z⊥ν + Zμ

⊥ p‖ν
)

− iδμ
⊥ν − Qβ

2
Z2⊥ϕμ

ν

]

×
(
L(1)
n + L(1)

n−1

)
− β2(ϕZ)μ(Zϕ)νL

(2)
n−1. (60)

Here, M2
n = m2 + (2n + 1)β, M̃2

n = ξm2 + (2n + 1)β

and all the Laguerre polynomials L(m)
n have βZ2⊥/2 as their

arguments: L(m)
n = L(m)

n (βZ2⊥/2).
Next, we have to consider both J‖ and a similar integral

J̃‖ =
∫

d2 p �

(2π)2

e−i(pZ)‖[
p2‖ − M2

n + iε
] [

p2‖ − M̃2
n + iε

]

= i

2π

1

m2(ξ − 1)

[
K0 − iπ

2
H (2)

0 − K̃0 + iπ

2
H̃ (2)

0

]
,

(61)

where K̃0 = K0

(
M̃n

√
−Z2‖ + iε

)
θ(−Z2‖) and H̃ (2)

0 =

H (2)
0

(
M̃n

√
Z2‖ − iε

)
θ(Z2‖). For the ground-state level, one

can notice that large field values lead to the vacuum instabil-
ity [40].

Replacing p‖ by i∂‖ in (60), we finally obtain the position-
space representation of the charged massive vector boson
propagator as an expansion over Landau levels:

Gμ
ν(X, X ′) = −iβ

4π2 eiΦe−βZ2⊥/4
∞∑

n=−1

{
Pμ
n ν − 1

m2 Q
μ
n ν

}
,

(62)

Pμ
n ν =

[
δ
μ
‖νLn + 1

2
δ
μ
⊥ν (Ln+1 + Ln−1)

− iQ

2
ϕμ

ν (Ln+1 − Ln−1)

][
K0 − iπ

2
H (2)

0

]
, (63)

Qμ
n ν =

[{
− ∂

μ
‖ ∂‖ν + iβQ

2

(
∂

μ
‖ (Zϕ)ν + (ϕZ)μ∂‖ν

)

−
(

(2n + 1)β − β2

4
Z2⊥

)
δ
μ
⊥ν + iQβ

2
ϕμ

ν

}
Ln

− β

2

{(
∂

μ
‖ Z⊥ν + Zμ

⊥∂‖ν
)

− δ
μ
⊥ν + iQβ

2
Z2⊥ϕμ

ν

}

×
(
L(1)
n + L(1)

n−1

)
− β2(ϕZ)μ(Zϕ)νL

(2)
n−1

]

×
[
K0 − iπ

2
H (2)

0 − K̃0 + iπ

2
H̃ (2)

0

]
. (64)

5 Discussion

In this section, we discuss the position-space Landau-levels
representation of the obtained propagators. To simplify the
analysis, we restrict our attention to the scalar particle prop-
agator.
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First of all, we notice that each expansion term in (19) is
a product of two factors that correspond to the propagation
in parallel and perpendicular directions with respect to the
field. The Euclidean x, y-plane and Minkowsky t, z-plane
are independent, yet, they are connected through the Landau
level n in the following sense. Each function

Φn(α) = Ln(α)e−α/2 α = βZ2⊥/2 (65)

describes perpendicular propagation, with its graph consist-
ing of two regions, oscillatory and monotonic (see Fig. 1). In
the monotonic region, the damping exponential dominates,
thus, making the respective contribution of the n-th Landau
level to the total propagation amplitude negligible.

The oscillatory region has the following bounds [41]:

αmin ≈ 0, αmax ≈ 4n, (66)

and Φn inside this region is approximated by:

Φn(α) ≈
√

2

π

sin μ(α)[
(αmax − α)(α − αmin)

]1/4 , (67)

where μ(α) is some function which exact form is not rele-
vant for the present discussion (for details, see Ref. [42]).
This observation shares some similarity to the hydrogen atom
problem where distant orbits are described by large principal
quantum numbers.

From the formulas above, we first conclude that in order to
describe perpendicular propagation up to the radial distance
R (i.e., up to α = βR2/2) we need to consider at least nmin

expansion terms, where

nmin ≈ α/4 ≈ βR2/8. (68)

Second, the amplitude of oscillations of Φn(α) in the oscil-
latory region (taken, e.g., at αmax/2 = 2n) depends on n
according to the following relation:

Φn ∼ 1√
n
. (69)

This, together with (68), implies that the scale of the first
expansion term with a non-vanishing value of Φn for a given
perpendicular propagation distance R depends on the radial
distance as follows:

Φn ∼ 1√
βR

. (70)

It turns out that this is not the only way the radial distance
R affects the total propagation amplitude. The Landau level
n also enters the Mn parameter, which K0 and H (2)

0 depend
on. As we established in (68), large values of R imply large
values of nmin , which in turn results in large values of ζ =√
m2 + (2nmin + 1)β

√
|Z2‖|. Using the known asymptotic

Fig. 1 Oscillatory behaviour of the functions Φn for various values
of the Landau level (n = 25, 50, 75, 125). The oscillatory region is
bounded by α ≈ 4n
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relations for Bessel functions [6,7]

K0(ζ ) ≈
√

π

2ζ
e−ζ , (71)

H (2)
0 (ζ ) ≈

√
2

πζ
e−i(ζ−π/4), (72)

we observe that the perpendicular propagation distance R
additionally controls the overall scale of the total propagation
amplitude through parallel propagation factors according to
the following asymptotic relations:

K0 ∼ e−βR/
√

βR, (73)

H (2)
0 ∼ 1/

√
βR. (74)

The obtained expressions might serve as an analytical tool
for making decisions regarding the truncation of the series in
various physical scenarios.

6 Conclusion

We obtained the position-space Landau-levels representa-
tions for the propagators of charged particles (scalar, fermion,
and massive vector boson) in a constant magnetic field.
For the scalar case, three discussed methods, i.e., the orig-
inal Fock–Schwinger (FS) approach, the modified Fock–
Schwinger (MFS) approach, and the canonical quantization
approach, showed consistent results. Another popular strat-
egy, namely, performing a Fourier transform of a known
expression for a proper-time momentum-space representa-
tion, is also applicable to this problem. However, due to the
need for a simultaneous evaluation of both momentum-space
and proper-time integrals, it presents a challenging (however,
feasible) task, especially for the vector boson case. In this
paper, we demonstrated how one can omit such lengthy cal-
culations by either focusing on the proper-time integral or the
Fourier integrals. In particular, when applying the FS method
(Sect. 2.2), we started from a position-space representation
and only needed to perform the transition from the proper-
time integral to the Landau-levels series. At the same time,
in the MFS method (Sect. 2.4), the early (and simple) eval-
uation of the proper-time integral left us with three Fourier
transforms to be performed. In both cases, the overall com-
putational complexity was significantly reduced.

The obtained Landau-levels expansions of the propaga-
tors have a simple structure, with each summation term rep-
resented as a product of two factors. The first one depends
only on the coordinates of the plane perpendicular to the
direction of the magnetic field. It is also rotationally invariant,
thus, emphasizes the underlying symmetry of the problem.
Being a product of a Laguerre polynomial and a damping
exponential, this factor localizes the propagation in the x, y-
plane. The second factor corresponds to the propagation in a

1+1-dimensional space-time, and is invariant with respect to
Lorentz transformations in this subspace. Similar to the case
of a free field, it contains both a time-like oscillatory term
H (2)

0 and a space-like damping term K0.
These representations are unique in the sense that they

allow for the simultaneous study of the propagator from both
space-time and energetic perspectives. This is encoded in the
number of the Landau level, which is deeply connected with
the radial propagation distance in the perpendicular plane.

We expect further use of the obtained position-space
Landau-levels representations, e.g., in the study of loop pro-
cesses, in finite-spacetime calculations, and in various astro-
physical problems.
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