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Abstract In this work we study the properties of compact
spheres made of a charged perfect fluid with a MIT bag model
EoS for quark matter. Considering static spherically symmet-
ric spacetime we derive the hydrostatic equilibrium equations
in the recently formulated four dimensional Einstein–Gauss–
Bonnet (4D EGB) gravity theory. In this setting, the modified
TOV equations are solved numerically with the aim to inves-
tigate the impact of electric charge on the stellar structure.
A nice feature of 4D EGB theory is that the Gauss–Bonnet
term has a non-vanishing contribution to the gravitational
dynamics in 4D spacetime. We therefore analyse the effects
of Gauss–Bonnet coupling constant α and the charge fraction
β on the mass–radius (M−R) diagram and also the mass–
central density (M−ρc) relation of quark stars. Finally, we
conclude that depending on the choice of coupling constant
one could have larger mass and radius compared with GR
and can also be relevant for more massive compact objects
due to the effect of the repulsive Coulomb force.

1 Introduction

General relativity (GR) is the most successful gravity the-
ory for more than 100 years, almost universally accepted
and well confirmed by scrutiny and testing [1]. Nevertheless,
there are a number of unsolved problems of GR both from
a theoretical and observational point of view (see Ref. [2])
and thereby a number of alternative models have been pro-
posed. Moreover, the current versions of string theory require
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10 dimensions total or 11 if you take an extended version
known as M-Theory. However, the existence of extra space-
time dimensions beyond the four was initiated by Kaluza [3]
and Klein [4], and now it is known as Kaluza–Klein theory. In
this context, Lovelock (or referred to as Lanczos–Lovelock)
[5,6] higher-curvature gravity theory is rather special. In par-
ticular, Lovelock theory is the most natural extension of GR
in higher dimensional spacetimes while keeping the order of
the field equations down to second order in derivatives with-
out torsion. A notable fact is that such theory is known to be
free of ghosts [7,8] when considering perturbations around
flat spacetime.

Among all the classes of Lovelock theory of gravity,
the simplest non-trivial Lovelock gravity is the so-called
Einstein–Gauss–Bonnet (EGB) gravity, whose Lagrangian is
the sum of the curvature scalar with a cosmological constant,
while the third term contains the quadratic Gauss–Bonnet
(GB) term. The EGB gravity has been widely studied because
it is realized in the low-energy limit for strings propagating in
curved spacetime [9,10]. In this theory, the static and spheri-
cally symmetric black hole solution was found by Boulware
and Deser [11]. However, in 4D spacetime, the GB term is
a topological invariant and thus does not contribute to the
gravitational dynamics, except it is coupled to a matter field
[12,13].

But, recently an interesting observation has been put for-
ward in reformulating the EGB gravity in 4D spacetime such
that a non-vanishing effect of the GB Lagrangian can emerge.
The basic idea was to rescale the GB coupling constant
α → α/(D − 4) because the presence of an overall factor
(D−4) will cancel out, and then taking the limit D → 4 [14].
This idea is known to be 4D EGB theory and the GB term
produces non-trivial contributions to gravitational dynam-
ics. Such a theory would bypass the conclusions of Love-
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lock’s theorem and avoid the Ostrogradsky instability [15].
Research on 4D EGB gravity broadened rapidly among the
scientific community, such as black hole solutions [16–23],
a Vaidya-like radiating black hole in Ref. [24], black holes
coupled to magnetic charge and nonlinear electrodynamics
[25,26] and charged black hole [27,28]. Furthermore, deflec-
tion of light by black holes [29–31], weak cosmic censorship
conjecture [32], quasi-normal modes [33–35] and shadow
cast by black holes [36–39] have been fully investigated. A
comprehensive analysis about stellar structure models within
this framework have been exhaustively studied, see for exam-
ple [40–43]. Wormhole and thin-shell wormholes have been
studied as well [44,45].

Associated with the success of this theory there are sev-
eral criticisms against this model. The most important issue is
that despite the fact that the Lagrangian has an overall factor
D − 4, this is not the case for the equation of motion. There-
fore, the whole limiting procedure was cast in doubt [46–
49]. As a result, some proposals have been raised to circum-
vent the aforementioned shortcomings, but possessing some
of the flavor of the original idea. With an additional scalar
degree of freedom the regularized theories help us to obtain
the field equations in a 4D version, for example Kaluza–
Klein-reduction procedure of the higher-dimensional EGB
theory [50,51], conformally invariant scalar field equation
of motion [52–54], and ADM decomposition analysis [55].
Thus, it reflects that regularized procedures are not unique. It
is however worthwhile to remark that spherically-symmetric
4D solutions still remain valid in these regularized theories
[41] as of original prescription presented in [14].

In considering alternative theories of gravity it is neces-
sary to pass constraints obtained from the classical tests of
GR at an observational and theoretical level. The best way to
check the viability of this theory one may start from strong-
field regime [56]. With this point of view compact astrophys-
ical objects, such as neutron stars (NSs), can be considered
suitable test-beds in the strong-field regime. NSs are con-
sidered to be the most ideal astrophysical laboratories for
dense nuclear matter that end their life cycles of massive
stars 8M� � M � 25M� via supernova explosions. The
observations made over the electromagnetic spectrum sug-
gest that NSs can have mass between 1–2 M� with radius
between 10–15 km [57,58]. As a result, in a narrow range the
central densities are several times higher than nuclear satura-
tion density i.e., ρ � ρnuc where ρnuc = 2.8 × 1014 g/cm3.
Such extreme conditions make it impossible to deal with this
type of matter in a laboratory conducted on Earth, and thus we
are far away from the comprehensive picture of their internal
structure.

On the other hand, measurements of the masses or radii
have put a strong constraint on the equation of state (EoS)
governing these compact objects, and consequently the inte-
rior composition also. For this reason, physicists predict dif-

ferent types of effective models (exotic matter with large
strangeness fraction) in order to extract their bulk properties
and reveal how matter behaves in their interior. For instance,
“exotic matter” such as a Bose–Einstein condensate of neg-
ative pions (π−) or negative kaons (K−), hot quark-gluon
plasma and even cold quark matter are now so widely dis-
cussed that they are familiar concepts. Among them quark
matter in the core of compact objects might be absolutely sta-
ble and thus the true ground state of hadronic matter [59,60].
This possibility was first realized by Witten [60] and Bod-
mer [61] that compact stars are partially or totally made of
quarks. Even more intriguing the existence of a quark core
in a NS is constituted of almost equal numbers of up, down
and strange quarks, and a small number of electrons to attain
the charge neutrality. Such compact stars have been called
strange quark stars (SQS) (shortened as strange stars) and
the MIT-bag model is one of the most successful ones for
quark confinement. We will discuss below more about MIT-
bag model.

So far most of the studies have performed under the
assumption of charge neutrality inside a spherical surface.
But, the breakthrough came from several researchers [62,63].
Moreover, the existence of SQS ought to be made of chem-
ically equilibrated strange matter, and it requires the pres-
ence of electrons inside strange stars [64]. In such a system,
electrons play an important role in producing repulsive force
which will add up to the internal pressure allowing more
repulsive force of the system. In 1924, Rosseland [65] first
pointed out the possibility of existing of a self-gravitating
star with non-vanishing net charge where the star is modeled
by a ball of hot ionized gas. Currently, there are couple of
articles showing the existence of charged stars [66,67]; how-
ever, the charge can be as high as 1020 Coulomb to bring
any significant effect on the mass–radius relation [68]. This
situation has been verified by Ray et al. [69] (see Ref. [70]
for a more detailed discussion).

In recent progress, Ivanov [71] assumed a linear EoS
to study charged perfect fluid solutions. Motivated by this
results, several authors have studied electrically charged fluid
spheres for linear and non-linear EoS [72–76]. Motivated by
MIT bag models of strange stars, charged solutions were
studied by some authors [77,78]. Studies on the stability of
charged fluid spheres against radial perturbation have been
done in Ref. [77]. For in depth discussions about the stability
of charged spheres have been found in [79–82]. In Ref. [64],
authors showed that the electric charge distribution can have
a significant impact on the structure of QSs. A large number
of analytic solutions to the Einstein-Maxwell system were
also investigated in Refs. [83–85].

In light of these fantastic results, in this paper, we will
study the effect of electric charge on compact stars assum-
ing the MIT bag model EoS. We consider the internal struc-
ture and their physical properties for a specific classes of
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QSs in the recently proposed 4D EGB gravity theory. To do
so, in Sect. 2, we present the field equations for Einstein–
Maxwell–Gauss–Bonnet theory and we derive the modified
Tolman–Oppenheimer–Volkoff (TOV) equations describing
the star interior for a static and spherically symmetric system.
In Sect. 3, we define the appropriate boundary conditions for
interior and exterior spacetime in order to solve the stellar
structure equations. In Sect. 4 we discuss the EoS concern-
ing MIT-bag quark model. To simplify our calculation we
assume that charge density is proportional to the energy den-
sity. In this context, we continue our discussion for numerical
findings specially focusing on the mass–radius relation and
the stability of hydrostatic equilibrium in Sect. 5. Finally, our
conclusions are reported in Sect. 6. We adopt a geometric unit
system, however, we show our results in physical units for
comparison purposes.

2 Basic construction of charged stellar model in 4D
EGB gravity

We start from the action of the Einstein–Maxwell–Gauss–
Bonnet theory in 4D spacetime introduced in Ref. [14] after
the rescaling of Gauss–Bonnet constant α. Expressed in an
explicit manner, the action in D spacetime takes the following
form,

IA = 1

16πG

∫
dDx

√−g

[
R + α

D − 4
G
]

+
∫

dDx
√−gLm, (1)

where α is a coupling constant with dimensions of length
squared and the Gauss–Bonnet invariant is defined as

G = Rμνρσ Rμνρσ − 4RμνRμν + R2, (2)

where Rμνρσ is the Riemann curvature tensor, Rμν is the
Ricci curvature tensor and R2 is the squared of the scalar
curvature.

The field equations in D dimensional spacetime can be
obtained from variation of the action (1) with respect to met-
ric tensor gμν , namely

Rμν − 1

2
R gμν + α

D − 4
Hμν = 8πTμν, (3)

where Hμν is the Lanczos tensor with the following expres-
sions

Hμν = 2
(
RRμν −2Rμσ R

σ
ν −2RμσνρR

σρ −RμσρδR
σρδ

ν

)

−1

2
gμν LGB, (4)

and Tμν is the energy–momentum tensor of the matter field
and which can be calculated by

Tμν = − 2√−g

δ(
√−gLm)

δgμν
. (5)

The third term on the left-hand side of Eq. (3) is the quadratic
Gauss–Bonnet term with the property that it contains at most
second-order derivatives. As a result, the above theory has
a non-trivial contribution to the gravitational dynamics by
taking the limit D → 4.

In the present study we assume that the energy–momentum
tensor Tμν is a sum of two terms, i.e. Tμν = Eμν + Mμν in
Eq. (3). The first part Eμν associates with electromagnetic
energy–momentum tensor,

Eμν = 1

4π

(
Fμ

γ Fνγ − 1

4
gμνFγβF

γβ

)
. (6)

where Fμν is the electromagnetic tensor. The electromagnetic
field satisfies the Maxwell equations:
[√−gFμν

]
,ν

= 4π jμ
√−g. (7)

The electromagnetic D-current is given by jμ = ρchuμ,
where ρch is the electric charge density. Moreover, the tensor
term Mμν corresponds to an isotropic perfect fluid, whose
energy–momentum tensor has the following form

Mμν = (ρ + P)uμuν + Pgμν, (8)

where P is the pressure, ρ the energy density of matter, and
uν is the D-velocity of the fluid satisfying the normalization
condition uνuν = −1.

For our purpose, we consider a static and spherically sym-
metric metric describing the interior spacetime of a compact
star in D dimensions, namely

ds2
D = −e2
(r)dt2 + e2λ(r)dr2 + r2d�2

D−2, (9)

where d�2
D−2 represents the metric on the surface of the

(D − 2)-sphere, given by

d�2
D−2 = dθ2

1 + sin2 θ1dθ2
2 + sin2 θ1 sin2 θ2dθ2

3

+ · · · +
⎛
⎝D−3∏

j=1

sin2 θ j

⎞
⎠ dθ2

D−2, (10)

with the metric functions 
 and λ depending on r alone. For
this line element it also follows that the only non-vanishing
component of the Maxwell strength tensor is F01 = −F10,
and which is a function of r , only. The other components of
electromagnetic tensor are identically zero. Consequently,
Maxwell’s Eq. (7) leads to the following expression

E(r) = F01(r) = 4π

r2 e−(
+λ)

∫ r

0
r D−2eλρch dr, (11)
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and hence the electric charge within a sphere of radius r
can be written in a suggestive form by defining the charge
function q(r) as

dq(r)

dr
= 4πr D−2ρche

λ. (12)

In the limit D → 4, combining the line element (9)
together with the energy–momentum tensors (6) and (8), the
00 and 11 components of the field equations (3) can be explic-
itly written as

α(1 − e−2λ)

r3

[
4λ′e−2λ − (1 − e−2λ)

r

]

+e−2λ

(
2λ′

r
− 1

r2

)
+ 1

r2 = 8π
(
ρ + q2

8πr4

)
, (13)

α(1 − e−2λ)

r3

[
4
′e−2λ + (1 − e−2λ)

r

]

+e−2λ

(
2
′

r
+ 1

r2

)
− 1

r2 = 8π
(
P − q2

8πr4

)
. (14)

In addition, the covariant conservation of the energy–
momentum tensor, which can be derived from the contracted
Bianchi identities (i.e., ∇μTμν = 0), provides

dP

dr
= −(ρ + P)

d


dr
+ qq ′

4πr4 . (15)

In order to solve this set of differential equations, one
begins with a more familiar form of mass function m(r)
through the following relation

e−2λ = 1 + r2

2α

⎡
⎣1 −

√
1 + 4α

(
2m

r3 − q2

r4

)⎤
⎦ . (16)

Note that in the limit α → 0 or large r , the solution (16)
behaves asymptotically as

lim
α→0

e−2λ = 1 − 2m

r
+ q2

r2 + (q2 − 2mr)2

r6 α + · · · . (17)

We can now rewrite Eq. (13) in terms of the mass parameter
m(r), this is,

dm

dr
= 4πr2ρ + q

r

dq

dr
, (18)

which clearly exhibits the same as the corresponding equa-
tions in GR, and without influence of coupling constant α,
as measured in the star’s frame.

Finally, the substitution of Eq. (12) and the conservation
equation (15) into Eq. (14), it yields

dP

dr
= (P + ρ)

[
r3 (� + 8παP − 1) − 2αm

]
r2�

[
r2 (� − 1) − 2α

]

+ q

4πr4

dq

dr
, (19)

where

�2 ≡ 1 + 4α

(
2m

r3 − q2

r4

)
. (20)

Equation (19) is the modified TOV equation, describing the
hydrostatic equilibrium of relativistic stars in 4D EGB the-
ory. Note that when α → 0 the above equation reduce to the
TOV equation for electrically charged fluid spheres in GR.

We arrive at six unknown functions, namely, 
(r), m(r),
q(r), ρ(r), P(r) and ρch(r), with four differential equa-
tions: (12), (15), (18) and (19). Therefore, we need a suit-
able assumption that reduces the number of unknown func-
tions, see for instance some prescriptions in Refs. [77,86]
for charged fluid spheres in GR. In the following discussion
we are free to specify two of the six unknowns; in this treat-
ment we assume an EoS relating the pressure with the energy
density of the fluid, and then a relation between the charge
distribution and the mass density. Using this assumption we
are able to solve the structure equations numerically with
some appropriate boundary conditions. We should remark
that the metric potential λ(r) is then determined by means of
Eq. (16).

3 Boundary conditions and the exterior vacuum region
to the star

To get a stellar structure, we perform a numerical integration
from the center at r = 0 toward the surface of the star where
the pressure vanishes (i.e., when P(r = R) = 0). In that
regard, we need to establish appropriate boundary conditions
for the sought solutions. As already mentioned, given an EoS
and a charge density profile, the unknown variables to be
determined are m, q and ρ through Eqs. (12), (18) and (19).
Accordingly, we must set the following boundary conditions
to maintain regularity at the origin,

m(r = 0) = 0, q(r = 0) = 0, ρ(r = 0) = ρc, (21)

where ρc is the central energy density. Thus, a set of specific
values of ρc allows us to obtain a family of compact stars in
4D EGB gravity.

Furthermore, to compute the metric function 
, one needs
an additional boundary condition in order to solve Eq. (15).
This means that, at the surface of the charged star, the inner
and outer potential functions are related through the equality:

e2
(R) = e−2λ(R)

= 1 + R2

2α

⎡
⎣1 −

√
1 + 4α

(
2M

R3 − Q2

R4

)⎤
⎦ , (22)
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with M = m(r = R) and Q = q(r = R) being the total
mass and the total charge of the star, respectively. The outer
solution corresponds to the Reissner–Nordström spacetime,
if we take the limit α → 0 [27].

4 Equation of state for quark matter and the charge
density profile

4.1 Equation of state

In this section, we discuss the quark matter model that we
are going to use in our analysis. The EoS of quark mat-
ter plays a crucial role for determining the star’s structure
at supranuclear density (above the nuclear density: ρnuc =
2.8 × 1014 g/cm3) and high temperature (T ∼ 10 MeV).
Its great success at very high energies has triggered many
theoretical investigations both on the modeling of the EoS
of quark matter which incorporate basic features of Quan-
tum Chromodynamics (QCD) and on the phenomenological
implications related to measurements of masses and radii of
compact stars. However, we are still far away from the exact
EoS of quark matter.

As a consequence, the MIT bag model is the simplest
phenomenological model for quark matter. Such model has
been developed to describe hadron properties in terms of
quarks. The range in which quarks are confined is called a
bag and the energy per unit volume to form it is called a bag
pressure, Bbag. Moreover, the quarks are free inside the bag
and are forbidden to reach out. In its simplest form, the EoS
of such matter is obtained from the relation

P = 1

3
(ρ − 4B) , (23)

where P and ρ represent the pressure and the energy density
of the fluid, respectively, and the parameter B is the bag
constant. Note that the external pressure acting on a bag filled
with quarks vanishes for ρ = 4B. It has been found that the
accepted values of Bag constant B lies within the range of
57 ≤ B ≤ 92 MeV/fm3 [87,88]. In the present work, we will
use B = 57 MeV/fm3. In GR, this value is commonly used
because it produces maximum-mass configurations of about
2M�. Since the aim is to study the degree of modification
with respect to Einstein’s theory, in this work we will assume
the same value for B.

4.2 The charge density relation

Since our purpose is to investigate the effects of the electric
charge on stellar structure, we need to specify the charge
density as well. Followed by the discussion in Refs. [68,76,
86], we assume that the charge density is proportional to the
energy density, i.e.

ρch = βρ, (24)

where β is a charge parameter and it measures the amount of
charge within the fluid sphere. This assumption is reasonable,
as more material is expected to bring along a higher amount
of electric charge. As in Ref. [76], in our work we will use
moderate values for β which generate appreciable changes in
the mass–radius diagrams. Furthermore, Arbañil and collab-
orators [86,89] have shown that the largest value for β is 0.99
in order to avoid numerical convergence troubles. Finally, it
is worth mentioning that there are other models in the lit-
erature to describe electrically charged quark stars, see for
instance Refs. [77,90] where it is assumed that the charge is
proportional to spatial volume.

5 Numerical results and discussion

Given a specific value of the coupling constant α and charge
parameter β, the system of modified TOV equations (12),
(18) and (19) with boundary conditions (21) is numerically
integrated from the origin at r = 0 up to the stellar surface
where the pressure vanishes at r = R. In particular, for a cen-
tral density ρc = 1.5×1018 kg/m3 with EoS (23), Fig. 1 dis-
plays the mass density and pressure as functions of the radial
coordinate for α = 4km2 and different values of β. Further-
more, according to Fig. 2, the interior structure of a quark
star in 4D EGB gravity is modified due to the charge param-
eter β and, therefore, both radius and total mass increase as
β becomes more positive. Note that the mass function and
electric charge are increasing quantities as we approach the
surface, as expected.

The total gravitational mass and total electric charge of
a particular star are determined at the surface, that is, M =
m(R) and Q = q(R), respectively. For the central density
considered in the previous paragraph, Table 1 shows some
numerical values for the global properties of quark stars for
a fixed value of α, and increasing β. Meanwhile, in Table 2
we have fixed the value of β and varied the GB coupling
constant. These results indicate that the basic properties of a
compact star such as radius and mass undergo considerable
changes due to the inclusion of electric charge as well as the
Gauss–Bonnet term.

The mass–radius diagrams and mass–central density rela-
tions for charged quark stars in 4D EGB gravity are presented
in Fig. 3, where two values of α have been considered. The
results corresponding to Einstein gravity have been included
by a black solid line for comparison reasons. Such plots
reveal that both mass and radius vary slightly from GR in
the low-mass region. Nonetheless, the mass–radius curves
exhibit significant changes with respect to the general rel-
ativistic counterpart for higher central densities (i.e., close
to the maximum-mass point). In other words, the maximum
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Fig. 1 Numerical solution of
the system of differential
equations (12), (18) and (19)
with boundary conditions (21).
Radial behavior of the mass
density (left panel) and pressure
(right panel) for a central
density ρc = 1.5 × 1018 kg/m3

with EoS (23) within the
framework of 4D EGB gravity
for α = 4 km2. The color scale
on the right side of each plot
indicates different values for the
charge parameter β

Fig. 2 Mass parameter (left
panel) and electric charge (right
panel) as functions of the radial
coordinate. The results are for
the same solution as in Fig. 1. It
can be observed that the electric
charge increases both the radius
and the mass (on the surface) as
β becomes more positive

Table 1 Charged quark stars with central mass density ρc = 1.5 ×
1018 kg/m3 and EoS (23) in 4D EGB gravity for α = 4 km2 and
several values of the charge parameter β. The radial behavior of the
mass density, pressure, mass parameter and electric charge of these
stars is shown in Figs. 1 and 2

β R (km) M (M�) Q (1019 C)

0 11.552 2.167 0

0.1 11.555 2.174 1.328

0.2 11.562 2.197 2.662

0.3 11.575 2.234 4.010

0.4 11.593 2.287 5.379

0.5 11.617 2.358 6.777

Table 2 Properties of charged quark stars with central mass density
ρc = 1.5 × 1018 kg/m3 and EoS (23) in 4D EGB gravity for β = 0.2
and different values of the GB coupling constant

α (km2) R (km) M (M�) Q (1019 C)

1.0 11.360 2.063 2.478

2.0 11.428 2.108 2.539

3.0 11.496 2.152 2.601

4.0 11.562 2.197 2.662

5.0 11.628 2.241 2.724

mass of quark stars can be increased by means of the GB con-
stant (with positive values) as well as by the effect of electric
charge. This could help explain the existence of supermassive
compact stars observed in nature and that Einstein’s theory
fails to predict even using exotic equations of state.

A traditional technique widely used in the literature to
indicate the onset of instability is the M(ρc) method, namely,
a turning point from stability to instability occurs when
dM/dρc = 0. Therefore, according to this criterion, the sta-
ble quark stars on the mass versus central density curves
in the right panel of Fig. 3 are found in the region where
dM/dρc > 0. Here we must point out that this condition
is necessary but not sufficient for stability analysis. A more
suitable approach would be to calculate the frequency of the
oscillation modes when the star is subjected to radial pertur-
bations. We will leave this study for future work.

Furthermore, we can investigate how the total charge
behaves in terms of radius and mass. According to Fig. 4, the
charge increases with increasing β, as expected. However,
the changes in electrical charge associated with the Gauss–
Bonnet term are more relevant for high values of mass and
radius. Finally, we briefly analyze how the maximum mass
changes as we vary the charge parameter β in the mass–
radius curves shown in Fig. 3. As illustrated in Fig. 5 for
three values of the coupling constant α, the maximum mass
has a quadratic behavior with β. Notice that in this plot the
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Fig. 3 Mass-radius diagram (left panel) and mass–central density rela-
tion (right panel) for charged quark stars in 4D EGB gravity. The blue
and red lines correspond to α = 2 km2 and α = 4 km2, respectively.
Moreover, different styles of the curves stand for different values of the
charge parameter β, and the non-charged GR case is shown in both plots
as a benchmark by the black solid line. We note that the gravitational

mass of quark stars undergoes slight changes at low central densities
and the most significant deviations occur at higher densities due to the
charge and GB coupling constant. The stable quark stars on the mass–
central density curves in the right panel are found in the region where
dM/dρc > 0

Fig. 4 The total charge as a
function of the radius (left
panel) and of the mass (right
panel). The results for the
several values of the parameter
β as in Fig. 3 are shown. It is
observed that the electric charge
undergoes relevant changes due
to the GB term only in the
high-mass region

Fig. 5 Maximum mass as a function of the charge parameter β for
three values of the GB coupling constant, where a quadratic behavior
can be observed

main effect of both parameters α and β on the maximum
mass of charged quark stars can be better observed.

6 Conclusions

Among the higher curvature gravitational theories, the
recently formulated 4D EGB gravity has been widely studied
because the GB term can yield a non-trivial contribution to
the gravitational dynamics even in 4D spacetime. In such a
context, there are several solutions ranging from cosmologi-
cal to astrophysical applications. Nevertheless, there are still
many aspects of this theory that require further study. Moti-
vated by the importance of compact stars, here we have inves-
tigated the impact of electric charge on quark stars with MIT
bag model EoS within the framework of 4D EGB gravity. In
other words, we obtained solutions for spherically symmetric
distributions of charged perfect fluid, where the distribution
of electric charge inside the sphere is proportional to the
energy density.

We have numerically solved the modified TOV equations
for charged spheres that describe the dense matter inside QSs
and obtained the physical quantities for some values of α and
β. Here, we restricted our study for positive values of α, since
only in this case more massive stellar configurations could
be possible than the general relativistic counterpart, see Ref.
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[41]. For a given central density, we have found that the basic
properties of a compact star such as mass and radius undergo
relevant changes due to the inclusion of electric charge as
well as the GB term.

Furthermore, our results reveal that the M −ρc curves are
almost indistinguishable from GR in the low-mass region,
whereas for higher central densities such curves exhibit sig-
nificant changes with respect to the GR counterpart. We have
determined the maximum-mass values of QSs and, as a con-
sequence, we obtained masses larger than 2M�. From this
perspective, one could expect the existence of supermassive
compact stars in EGB gravity compared to corresponding
stars in Einstein gravity. Finally, we have investigated the
stellar stability following the M(ρc) method [91], where
dM/dρc = 0 represents a turning point from stability to
instability. A stability analysis through adiabatic radial oscil-
lations will be left for a future work.
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