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Abstract We analyse the motion of test particles in the
spacetime of the plane-fronted (pp) waves with torsion in
four-dimensions. We conclude that there is a velocity mem-
ory effect in the direction of advanced time and along radial
direction, while we have rotation of particles in angular direc-
tion. The velocity memory effect in the aforementioned direc-
tions is severely affected by the value of the tordion mass
and probably it is not observable. A very interesting, prob-
ably observable effect, steams from the rotation, which is
insensitive to the tordion mass.

1 Introduction

When a gravitational wave passes through a system of test
particles it induces an observable disturbance of the system
[1–4]. In other words a system remembers that a wave passed,
and for this reason it is known as the memory effect.

There are two possible outcomes when a wave passes, dis-
regarding the trivial possibility that everything is translated
or boosted in the same way which is unobservable. The first
scenario is that relative velocity of test particles is zero while
they suffer a permanent displacement depending on their ini-
tial conditions. This is known as the displacement memory
effect [1–4], for the results on nonlinear contribution to the
memory effect see [5,6]. The appearance of displacement
memory effect is questioned in [7–9], where authors con-
cluded that test particles will have non-zero relative velocity.
This variation of the memory effect is known as the velocity
memory effect, for recent development see [10–12].

All of the previously mentioned results are obtained in
the framework of general relativity and memory effect is not
much investigated beyond it. Some of the results, known to
the authors, are memory effect for massive graviton investi-
gated in Ref. [13] and memory effect for pp waves in General
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relativity [14], while, the memory effect of the gravitational
waves with torsion in the Poincaré gauge theory (PGT) has
been investigated only in three-dimensions in Ref. [15].

The aim of this paper is to fill the gap in the literature,
namely to extend results about the memory effect to the grav-
itational waves with torsion in four-dimensions.

Basic dynamical variables in PGT [16–19] are the tetrad
field bi and the Lorentz connection ωi j = −ω j i (1-forms),
and the associated field strengths are the torsion T i = dbi +
ωi

k ∧ bk and the curvature Ri j = dωi j + ωi
k ∧ ωk j (2-

forms). By construction, PGT is characterized by a Riemann-
Cartan geometry of spacetime, and its physical content is
directly related to the existence of mass and spin as basic
characteristics of matter at the microscopic level. General
PGT Lagrangian LG is at most quadratic in the field strengths.
The number of independent (parity invariant) terms in LG is
nine, which makes the corresponding dynamical structure
rather complicated.

The paper is organized as follows. First, we review
the gravitational pp wave solutions with torsion in four-
dimensions. After that, we derive the geodesic equations in
this pp wave spacetime. We finally numerically solve the
geodesic equations.

Our conventions are as follows. The Latin indices (i, j, ...)
refer to the local Lorentz (co)frame and run over (0, 1, 2, 3),
bi is the tetrad (1-form), hi is the dual basis (frame), such
that hi bk = δik ; the volume 4-form is ε̂ = b0 ∧ b1 ∧ b2 ∧
b3, the Hodge dual of a form α is �α, with �1 = ε̂, totally
antisymmetric tensor is defined by �(bib j bkbl) = εi jkl and
normalized to ε0123 = +1; the exterior product of forms is
implicit in all expressions.

2 Review of the pp waves

In this section, we give an overview of 4D pp waves in PGT.
For details see [20].
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2.1 pp waves without torsion

2.1.1 Geometry

In local coordinates xμ = (u, v, y, z), the metric of the pp
waves is of the form

ds2 = du(Hdu + 2dv) − (dy2 + dz2), (2.1)

where the unknown metric function H = H(u, y, z) is to
be obtained from the field equations. The advanced time v

is an affine parameter along the null geodesics xμ = xμ(v),
and u is retarded time such that u = const. are the spacelike
surfaces parameterized by xα = (y, z). Since the null vector
ξ = ξ(u)∂v is orthogonal to these surfaces, they are regarded
as wave surfaces, and ξ is the null direction (ray) of the wave
propagation.

We choose the tetrad field (coframe) to be of the form

b0 := du, b1 := H

2
du + dv,

b2 := dy, b3 := dz, (2.2a)

so thatds2 = ηi j bi⊗b j , whereηi j is the half-null Minkowski
metric:

ηi j =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

The corresponding dual frame hi is given by

h0 = ∂u − H

2
∂v, h1 = ∂v, h2 = ∂y , h3 = ∂z .

(2.2b)

For the coordinates xα = (y, z) on the wave surface, we
have:

xc = bcαx
α = (y, z), ∂c = hc

α∂α = (∂y, ∂z),

where c = 2, 3. After introducing the notation i = (A, a),
where A = 0, 1 and a = (2, 3), one can find the compact
form of the Riemannian connection ωi j :

ωAc = 1

2
kAb0∂cH, (2.3)

where ki = (0, 1, 0, 0) is a null propagation vector, k2 = 0.
The above connection defines the Riemannian curvature

Ri j = dωi j + ωi
mωmj ; for i < j , it is given by

Ri j = 2b0k[i Q j] (2.4a)

where Qc is a 1-form introduced by Obukhov [21],

Q2 = 1

2
∂yy Hb2 + 1

2
∂yz Hb3,

Q3 = 1

2
∂zz Hb3 + 1

2
∂yz Hb2. (2.4b)

The Ricci 1-form Rici := hm Ricmi is given by

Rici = b0ki Q,

Q = hc Qc = 1

2

[
∂yy H + ∂zz H

]
, (2.5)

and the scalar curvature R := hi Rici vanishes.

2.1.2 pp waves in GR

Starting with the action I0 = − ∫
d4xa0R, one can derive

the GR field equations in vacuum:

2a0G
n
i = 0, (2.6)

where Gn
i is the Einstein tensor. As a consequence, the met-

ric function H must obey

∂yy H + ∂zz H = 0. (2.7)

There is a simple solution of these equations,

Hc = A(u) + Bα(u)xα, (2.8)

for which Qa vanishes. This solution is trivial (or pure
gauge), since the associated curvature takes the background
form, Ri j = 0.

2.2 pp waves with torsion

2.2.1 Geometry of the ansatz

We assume that the form of the triad field (2.2) remains
unchanged, while looking at the Riemannian connection
(2.3), one can notice that its radiation piece appears only
in the ω1c components:

(ω1c)R = 1

2
(hcα∂αH)b0.

This motivates us to construct a new connection by applying
the rule

1

2
∂αH → 1

2
∂αH + Kα, Kα = Kα(u, y, z) , (2.9a)

where Kα is the component of the 1-form K = Kαdxα on
the wave surface. Thus, the new form of (ωi j )R reads

(ωic)R := ki hcα(
1

2
∂αH + Kα) b0, . (2.9b)

The geometric content of the new connection is found by
calculating the torsion:

T i = ∇bi + ωi
mb

m = ki b0(b2Ky + b3Kz) = ki b0bcKc. (2.10)

The only nonvanishing irreducible piece of T i is (1)T i .
The new connection modifies also the curvature, so that

its radiation piece becomes

(R1c)R = k1b0�c, �c := Qc + �c, (2.11a)
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where the term �c that represents the contribution of torsion
is given by

�2 = ∂yKyb
2 − ∂z Kyb

3, �3 = ∂z Kzb
3 − ∂yKzb

2.

The covariant form of the curvature reads

Ri j = 2b0k[i� j], (2.11b)

and the Ricci curvature takes the form

Rici = b0ki�, � := hc �c = Q + �. (2.11c)

The torsion has no influence on the scalar curvature and it
again vanishes. Thus, our ansatz defines a RC geometry of
spacetime.

2.2.2 Massive torsion waves

The irreducible decomposition of the curvature implies (see
[20])

(3)Ri j = 0, (5)Ri j = 0, (6)Ri j = 0 (2.1)

whereas the remaining pieces (n)Ri j are defined by their non-
vanishing components as

(2)R1c = 1

2
�(1bc), (4)R1c = 1

2
(�1bc),

(1)R1c = b0
(

�(ce) − 1

2
ηce�

)
be, (2.2a)

where the 1-forms �i and  i are given by

�i = kib0(Q + �), � = ∂y Ky + ∂z Kz,

 i = Xi = −kib0�, � = ∂z Ky − ∂yKz . (2.2b)

Having found (1)Ti and (n)Ri j , we obtain the following form
of the two PGT field equations [20]:

(1ST)� = 0, a1� − a0(Q + �) = 0, (2.3a)

(2ND) − (b2 + b1)(∇1)b2 − (b4 + b1)(∇�1)b3

− 2
(
a0 − A1

)
T 1b3 = 0,

− (b2 + b1)(∇1)b3 + (b4 + b1)(∇�1)b2

+2
(
a0 − A1

)
T 1b2 = 0. (2.3b)

Leaving (1ST) as it is, (2ND) can be given a more clear
structure as follows:

(∂yy + ∂zz)� − m2
2+� = 0, m2

2+ := 2a0(a0 − a1)

a1(b1 + b4)
,(2.4a)

(∂yy + ∂zz)� − m2
2−� = 0, m2

2− := 2(a0 − a1)

b1 + b2
. (2.4b)

The parameters m2
2± have a simple physical interpretation.

They represent masses of the spin-2± torsion modes with
respect to the M4 background [22,23],

m̄2
2+ = 2a0(a0 − a1)

a1(b1 + b4)
, m̄2

2− = 2(a0 − a1)

b1 + b2
.

In M4, the physical torsion modes are required to satisfy
the conditions of no ghosts (positive energy) and no tachyons
(positive m2) [22–24]. However, for spin-2+ and spin-2−
modes, the requirements for the absence of ghosts, given by
the conditions b1 + b2 < 0 and b1 + b4 > 0, do not allow
for both m2 to be positive. Hence, only one of the two modes
can exist as a propagating mode (with finite mass), whereas
the other one must be “frozen” (infinite mass).

Important point to be noted is that the two spin-2 sectors
have very different dynamical structures.

• In the spin-2− sector, the infinite mass of the spin-2+
mode implies � = 0, while (1ST) gives Q = 0, which
is nothing other than the GR field equation for metric.
Consequently, the presence of torsion has no influence
on the metric.

• In the spin-2+ sector, the infinite mass of the spin-2−
mode leads to � = 0, whereas (1ST) gives that Q is
proportional to �, with � �= 0. Leading to the conclu-
sion that the torsion function � has a decisive dynamical
influence on the metric.

We shall focus our attention on the spin-2+ sector, where
the metric appears to be a genuine dynamical effect of PGT.

2.2.3 Solutions in the spin-2+ sector

After introducing polar coordinates y = ρ cos ϕ, z =
ρ sin ϕ, Eq. (2.4a) takes the form

(
∂2

∂ρ2 + 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2

)
� − m2� = 0. (2.5a)

Looking for a solution of � in the form of a Fourier expan-
sion,

� =
∞∑
n=0

�n(ρ)(cne
inϕ + c̄ne

−inϕ),

we obtain:

�′′
n + 1

ρ
�′

n −
(
n2

ρ2 + m2
)

�n = 0, (2.5b)

where prime denotes d/dρ.
The general solution of Eq. (2.5b) has the form

�n = c1n Jn(−imρ) + c2nYn(−imρ), n = 0, 1, 2, . . . (2.6)

where Jn and Yn are Bessel functions of the 1st and 2nd kind,
respectively.
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2.2.4 Solutions for the metric function H

For a given �, the first PGT field equationa0Q = (a1−a0)�,
with Q defined in (2.5), represents a differential equation for
the metric function H :

(∂yy + ∂zz)H = 2(a1 − a0)

a0
�. (2.7)

This is a second order, linear nonhomogeneous differential
equation, and its general solution can be written as

H = Hh + H p,

where Hh is the general solution of the homogeneous equa-
tion, and H p a particular solution of (2.7). One finds that
there is a simple particular solution for H :

H p = σV, σ = 2(a1 − a0)

m2a0
. (2.8a)

On the other hand, Hh coincides with the general vacuum
solution o GR�, see (2.7). Since our idea is to focus on the
genuine torsion effect on the metric, we choose Hh = 0 and
adopt H p as the most interesting PGT solution for the metric
function H . Thus, we have

Hn = σ�n . (2.8b)

The solutions for torsion functions are given in Appendix A.

3 Geodesic motion

In this section we shall examine the geodesic motion of parti-
cles in the field of the massive gravitational wave with torsion.
We shall consider the motion of spinless particles in a grav-
itational field, which follow geodesic lines. It is known that
torsion affects the motion of the particles with spin by causing
its precession [19,25]. However, the gravitational waves with
torsion, which we are considering are intrinsically different
from the well-known spherically symmetric (static or sta-
tionary) solutions of PGT [26,27] (for review see [28]). The
metric of these spherically symmetric solutions is “indepen-
dent” of torsion in the sense that it represents Schwarzschild
(or Schwarzschild AdS, Kerr etc.) metric and the motion
of spinless particles is not affected by the presence torsion.
For the gravitational wave solution (2.5), metric crucially
depends on torsion, as we noted in the previous section.
Christoffel connection The non-vanishing components of
Christoffel connection in polar coordinates are given by

�̃v
uu = 1

2
∂u H, �̃v

uρ = 1

2
H ′, �̃v

uϕ = 1

2
∂ϕH,

�̃ρ
uu = 1

2
H ′, �̃ρ

ϕϕ = −ρ,

�̃ϕ
uu = 1

2ρ2 ∂ϕH, �̃ϕ
ρϕ = 1

ρ
, (3.1)

where H ′ := ∂ρH .
Let us mention that we shall consider the solution with

non-trivial contribution to metric function (and consequently
Christoffel connection) stemming from the presence of
torsion.
Geodesic equations. The geodesic equation for u takes the
expected form

d2u

dλ2 = ü = 0. (3.2)

Therefore without the loss of generality we can assume u ≡
λ.

The equation for v, ρ and ϕ are given by:

v̈ + 1

2
∂u H + H ′ρ̇ + ∂ϕH ϕ̇ = 0. (3.3)

ρ̈ + 1

2
H ′ − ρϕ̇2 = 0, (3.4)

ϕ̈ + 1

2ρ2 ∂ϕH + 2

ρ
ρ̇ϕ̇ = 0. (3.5)

We shall solve the geodesic equations numerically, but let
us first make some reasonable simplifications.

First, v appears only as a second derivative because H is
independent of it. Consequently, we have a shift symmetry

v → v + c0 + c1u, (3.6)

which means that initial conditions at time ui can be chosen
as

v[ui ] = v′[ui ] = 0. (3.7)

Second, in the metric function H there is a factor

σ = 2(a1 − a0)

m2a0
, (3.8)

where a0 = 1
16πG is coupling constant of general relativity

and a1 corresponds to correction in the action stemming from
torsion. Experimental results suggest that a1 is much smaller
than a0 so we can approximate

σ ≈ − 2

m2 . (3.9)

Also, we can introduce reduced variables

v = m2v, r = mρ, (3.10)

while ϕ remains the same. In these variables geodesic equa-
tions do not have explicit dependence on m and have more
suitable form for numerical calculations.

3.1 Memory effect

We have one more unknown in geodesic equations and that is
the form of functions c1n and c2n . We expect that their exact
form is not specially important, as long as they sufficiently
fast tend to zero at infinity. But, we encountered numerical
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Fig. 1 The plot for the particle velocity ṙ for r [0] = 1 and r [0] = 2

Fig. 2 The plot for the particle velocity v̇ for r [0] = 1 and r [0] = 2

problems because for polynomial fall-off the software can-
not handle the computational complexity. Because, of this
problem we decided to focus to Gaussian form of functions,
more precisely to the form e−(u−5)2

. For the initial time we
chose u = 0. As we already noted the initial conditions for
ṽ are

v[0] = v̇[0] = 0, (3.11)

and we assume that particle is initially at rest

ρ̇[0] = ϕ̇[0] = 0. (3.12)

So, the only variable inputs are ρ[0] and ϕ[0] as well as
the modes c1n and c2n we are including.

Mode J0. In this case we set H = J0(−ir)e−(u−5)2
. Because

nothing explicitly depends of ϕ it remains the same as at
initial time. In Fig. 1, we plot radial velocity ṙ in function of
u. While the Fig. 2 shows the value of velocity v̇.

Mode J2. In this case we set H = J2(−ir)e−(u−5)2
sin(2ϕ).

In Fig. 3, we plot the radial velocity ṙ . In Fig. 4, we show the

value of angle ϕ. We see that in angular direction we have
displacement memory effect in contrary to the others where
we have velocity memory effect.

Mode J4. In this case we set H = J4(−ir)e−(u−5)2
sin(4ϕ).

In Fig. 5, we plot the radial velocity ṙ . In Fig. 6, we show the
value of angle ϕ.

4 Discussion

We studied the geodesic motion of test particle in the pres-
ence of the pp wave with torsion. Our analysis discovered
that particles, after the passage of the wave, show a combi-
nation of displacement and velocity memory effect. In the
angular direction we discovered that pp waves induce dis-
placement memory effect, for comparison velocity memory
effect takes place for axial gravitational waves [29]. After
the passage of axial wave burst particles rotate with constant
angular velocity around the symmetry axis.
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Fig. 3 The plot for the particle velocity ṙ for r [0] = 1 and r [0] = 2 in both plots ϕ[0] = 0

Fig. 4 The plot for the particles angular position ϕ for ϕ[0] = 0 and ϕ[0] = π
2 in both plots r [0] = 1

Fig. 5 The plot for the particle velocity ṙ for r [0] = 1 and r [0] = 2 in both plots ϕ[0] = 0
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Fig. 6 The plot for the particles angular position ϕ for ϕ[0] = 0 and ϕ[0] = 1 in both plots r [0] = 1

Because we defined new variables v = m2v and r = mρ

our results have to be interpreted with taking into account the
reasonable value of m. According to the CERN results we
expect that possible mass of tordion is no less that 10 TeV

m ≥ 10 TeV. (4.1)

This order of magnitude of the mass is equivalent to the length
scale �m

�m ≈ 10−20 m. (4.2)

Due to the very large mass of tordion or, equivalently, very
small length scale the physical values of v and ρ are very
small and probably not observable. Fortunately ϕ is insensi-
tive to the value of the mass and offers a possible observable
effect. We see from Figs. 4 and 6 that depending on the ini-
tial angular position the particle will be rotated by a different
angle. Consequently, the particles initially set at some posi-
tions on a circle will be rotated relatively to each other. This
is the possible experimental setup for the detection of torsion
waves.
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A Solutions for the torsion functions Kα

In the spin-2+ sector, the torsion functions Kα can be deter-
mined (by using the condition � = 0) from the equations:

∂y� + m2Ky = 0, ∂z� + m2Kz = 0. (A.1)

Going over to polar coordinates,

Ky = Kρ cos ϕ − Kϕ

ρ
sin ϕ, Kz = Kρ sin ϕ + Kϕ

ρ
cos ϕ,

the previous equations are transformed into

Kρ = − 1

m2 ∂ρV, Kϕ = − 1

m2 ∂ϕV, (A.2a)

or equivalently, in terms of the Fourier modes,

Kρn = − 1

m2

p

q
∂ρ�n, Kϕn = − 1

m2 n�n, (A.2b)

where Kϕ = ∑∞
n=1(dne

inϕ + d̄ne−inϕ) with dn = −icn , and
similarly for Kρ .
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