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Abstract In this work, we study the resonance contribu-
tions to the decay B~ — K + K7 ~, which is dominated
by the scalar f,(980), K5(1430), vector p(1450), ¢ (1020),
K*(892) and tensor f,(1270) resonances. The three-body
decay is reduced to various quasi two-body decays, where
the B meson firstly decays into a resonance and a pion or a
kaon, subsequently the resonance decays into the other two
final-state mesons. The quasi two-body decays are calculated
within the light-cone sum rule approach utilizing the leading
twist B meson light-cone distribution amplitudes. Finally, the
decay branching fraction contributions from each resonance
is calculated. Some of them are compatible with experiment
or previous theoretical works. Including the effects of non-
resonant and final-state interactions, we also evaluate the total
branching fraction.

1 Introduction

The non-leptonic three-body decays of B mesons are an
ideal platform for the study of direct CP violation. Nowa-
days, using the Dalitz plot analysis, the LHCb collaboration
has measured direct CP violation in charmless three-body
decays of B mesons [1-3], where evidence for inclusively
integrated CP asymmetries has been found. Generally, the
decay amplitude is a crucial quantity to obtain the CP asym-
metries. The decay amplitude of B~ — K+TK "7~ con-
sists mainly of three components, which involve resonant
and non-resonant (NR) effects as well as final-state inter-
action (FSI) effects. Recently, LHCb and BaBar have stud-
ied the decays BY — ntn~nt, Bt — KYK 7™ and
B* — g*K*tK~ [4-6]. For B — 7*K*tK~, LHCb

4 e-mail: shiyuji92@126.com (corresponding author)

b e-mail: meissner@hiskp.uni-bonn.de

measured the contribution of the resonance K*(892) in the
7T KT final state, and the contribution of the resonances
p(1450), ¢(1020), f>(1270) in the K=K F channel. In this
work, we will focus on the resonant contribution in the
B~ — KVYK~m~ decay.

Using the narrow-width approximation, the resonant con-
tribution of the three-body B decay can be reduced to various
quasi two-body decays, where the B meson firstly decays
into a resonance R and a pion or a kaon M|, B — R + M|,
and subsequently the resonance R decays into the other two
final-state mesons, R — M»> + M3. The latter process sim-
ply depends on the strong couplings of the resonances to
the two mesons, while in the first process one has to deal
with nontrivial matrix elements like (R, M|O|B), with O
being some four-quark operator. In the literature, there are
some phenomenological studies of the three-body B decays
[7-9], where these matrix elements are handled by naive fac-
torization. On the other hand, a more theoretical and widely
used method for the quasi two-body decays of heavy mesons
is perturbative QCD (PQCD), for which we refer e.g. to
Refs. [10—-17]. In the PQCD approach, the two mesons pro-
duced by the resonance are usually described by the two-
meson light-cone distribution amplitudes (LCDAs). How-
ever, in a decay process involving a number of resonances,
one has to search for all the LCDAs corresponding to them.
Therefore, an obvious question is whether these LCDAs are
all available or reliable, especially for the excited states like
0(1450) or K §(1430). To avoid this problem, one can search
for a method which only depends on the familiar LCDAs like
those of B meson or the ground state pseudoscalar mesons.

In this work, we will use light-cone sum rules (LCSR)
to calculate the matrix elements for the B — R + M;
decays. Generally, LCSR are used for the calculation of the
form factors of the semi-leptonic B or D decays. However,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10062-0&domain=pdf
https://orcid.org/0000-0003-1254-442X
mailto:shiyuji92@126.com
mailto:meissner@hiskp.uni-bonn.de

113 Page2 of 18

Eur. Phys. J. C (2022) 82:113

recently the use of LCSR for two-body non-leptonic decays
B/D — mm has been developed in Refs. [18-20]. For the
case of B — R + M, one can follow a similar idea to per-
form the LCSR calculation, where all the non-perturbative
inputs are the LCDAs. The only difference is that here we
use the LCDAs of the B meson instead of the final pseudo-
scalar meson. The advantage of LCSR is that in its framework
the final states can be created by two interpolating currents,
which have a definite form no matter the state it creates is the
ground state or an excited state. The way to extract the pole
contribution of the excited states is to apply a two-step sum
rules, which will be illustrated in the following sections.

This article is organized as follows: In Sect. 2, we present
the form of all the relevant decay amplitudes in the narrow-
width approximation. In Sect. 3, we introduce the LCSR
calculation at the hadron level, which includes the case of
scalar, vector and tensor resonances. In Sect. 4 we introduce
the LCSR calculation at the quark-gluon level, where we take
the case of vector resonance as an example to present the cal-
culational details. In Sect. 5, we present the numerical results
including the decay amplitudes and the branching fractions.
Section 6 gives the conclusions of this work.

2 B~ - K*K~n~ decay amplitude

In this section, we firstly present the form of the decay ampli-
tude together with the relevant effective Hamiltonian. From

Ref. [8], the decay amplitude of B~ — K™K "7~ reads
(K+K77T7 |Hett| B™)
Z (K"K ~n~ |H,|B7), (1

p =u,c
where A, =V, V. The expression of the Hamiltonian H,,
is
Hp = a18u(ib)y—a @ (du)y—a

+ ax8pu(db)y—p ® (i) y_a

+az@db)v-a® ) (Gq)v-a
q

+al Y (Gbyy-a ® ([dq)v-a
q

+as(db)y-a® Y (Gq)v+a
q

—2a Y (Gh)s—p ® (dq)sip
q

_ 3 _
+ardb)v-a ® Y Seq(d9)via
q

_ 30
—2a{ ) (Gb)s—p ® Seq(dq)sir
q
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. 3
+ag(db)y-a® Y 5€4(q9)v-a
q

3 -
+af0 Z(éb)va Q Eeq(dq)V,A, )
q

The notations used here are: (3¢'),, ., = Gy (1 £5) 4,
(@9")g.p = @ (1 £y5)q’, and the summation on ¢ runs
over u, d, s. The pertinent Wilson coefficients are taken from
Ref. [9]:

a) ~ 0.988 +0.102i,

a3 ~ —0.0023 + 0.0174i,

af ~—0.025 — 0.021i, a ~ —0.030 — 0.012i,

al ~ —0.042 — 0.014i, af ~ —0.045 — 0.005i

a7 ~ (—0.5+2.7i) x 1074, alf ~ (5.2 - 1.0i) x 1074,

a§~ (5.0 —0.5)) x 1074, ag ~ (~8.9—0.9i) x 1072,

ally ~ (—1.45+3.12i) x 1073, a§y ~ (~1.51 +3.17i) x 1073
(3)

ap ~ 0.183 — 0.348i,
as ~ 0.00644 — 0.02311,

at the renormalization scale © = 4.18 GeV. The matrix ele-
mentof 7, in Eq. (1) can be arranged as a sum of the following
matrix elements [8]:

e KK || 87)
=(KTK 7" |01| B7)

x (@18 +af +afy — (f +af)r7 ]

+ (KK~ |02 B~ ) (a28pu + a3 + as + a7 + ag)

+(K*K~ 77|03 B7)

1
X | a3 +af+a5 — §(a7+a9+afo)]
+(KTK~ 7" |O4] B~ )[a3 +as— = (a7 +a9)]
+(K*K ™77 |Os| B™)(—2a +af)
1
+ <K+K_71_ |Og| B‘) (af — 2af0>
+(KTK" 7" |07] B~) (24l +al), “4)

where 17 (1) = 2m2 /[mp (1) (ma (1) = my, (W), with pu =
2.1 GeV, mp() = 4.94 GeV, mg(u) = 5 MeV and

my () = 2.2 MeV. The four-quark operators O; are

O1 = (ab)y—_a(du)yy—a, Op = (db)y_aliiu)y_a,
= (db)y_a(dd)y—a, O4=(db)y_a(s)y—a,
= (db)(dd), O = (5b)y_a(ds)y_a,
O7 = (5b)(ds). )
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It should be mentioned that in principle Eq. (4) also contain
two three-particle terms:

(KTK ™7™ [(du)y—a| O){0[@b)v—a| B)
X (a18p,, +af —G—afo) + (K+K_7T_ }c? (1 + ys5) u| O)
x (0 [itysb| B™) (2af +2af) . (6)

However, since these three-particle matrix elements are sup-
pressed in the chiral limit [7], we will not consider them in
this work.

In general, most of the resonant contribution to the matrix
element in Eq. (4) can be described by the quasi-two-body
decay process with the use of the Breit—-Wigner (BW) for-
malism. However, for the scalar meson f(980) with its mass
near the K K threshold, using the BW formalism is inappro-
priate. Instead one has to use the Flatté approach [21,22]
for such resonances. For the use of Flatté approach in the
resonance dominated heavy meson decays, and related dis-
cussions, see e.g. Refs. [23-26]. Particularly, for the f,(980)
contribution, one has to replace the I" 7 (9g0) term in the stan-
dard BW formalism by gz prx +8Kk k Fig g PK K [23,24,271,
where

2 4m? 1 4m?>
Prr = 74/1— 2ni+— 1 - 27107
3 m 3 m

T T
1 4m%(i 1 4m§(O
PKK = 74/ 1 — + 41— (N
2 m2 2 m2_

with gz = 167 MeV and gx k /gxn = 3.05 [28], and m2 .
is the invariant mass squared of the two-pion system. Fxx =
exp (—ak?) isan correction introduced by the LHCD fit above
the K K threshold with o = 2 GeV 2, and k is the magnitude
of the kaon three-momentum in the KK rest frame [28].
Here, we will simply choose m g+ = mgo = mg andm,+ =
myo0 = my. For further discussion, see e.g. Ref. [29].

The B meson firstly decays into aresonance R and ameson
M, and then the resonance R decays into the rest two mesons
M, M3. The first process is described by the matrix elements
(R, M1 |O;| B™), while the second process depends on the
strong coupling of R to M, M3. It should be mentioned
that in Ref. [8], naive factorization is used to factorize each
matrix element in Eq. (4) into two current induced terms. For
example:

(KTK~7~ 1011 B7)
= (KK~ |(@b)y-al B™){m~ |(du)y—4]0). ®)

This means that if the KK~ are produced by a reso-
nance R, what one actually calculates is a factorized form

of (R, 7~ |01 B7)

(R,m~ |O1| B™) = (R|(itb)y-a| B~)(m~ |(du)y_4|0).
©)

The first matrix element on the right-hand side is parame-
terized by transition form factors, while the second one is
described by the decay constant of the resonance. In this
work, with the use of LCSR, we do not have to assume this
factorization, instead we are able to calculate the matrix ele-
ment (R, 7~ |O;| B) as a whole.

We follow Ref. [9] to introduce the resonances appearing
in the B~ — KTK 7~ decay. In terms of the resonant
contribution to the () matrix element, we include a scalar
resonance f((980), a vector resonance p (1450) and a tensor
resonance f>(1270):

(T (PDKT (P K~ (p3)IO1IB™ (PR
g_f0(980)a1<+1<—

8§23 — m?‘O(QSO) + i m £,980) (grmpnn +8KK FIZ(KPKK)

x (fo(980)(p — p)m ™ (pIO1IB™ (p))
gp(1450)—>1<+1<*

n x Y €()-(p2—p3)

2 .
523 = My 1450y T 1 Mp1450)Up(1450)

(p(1450)(p — p1. M7~ (p1)| x O11B (p))

g_f’2(1270)»K+K_
+

2 A r 6/w()t)
823 =My (1970) T f (12701 pr(1270)

x ph p3(f2(1270)(p = p1,2) x 7~ (pDIO11B™ (p)). (10)

The strong coupling constants are defined as in Ref. [9].
Further, 503 = (p2 + p3)2, €,.(A) denotes the polarization
vector of the p(1450) and €,,,(X) denotes the polarization
tensor of the f>(1270). In terms of the resonant contribution
to the O 3 matrix element, we include the vector resonance
0(1450):

(T (pDK T (p2) K™ (p3)|O231B~ ())&
gp(1450)—>K+K_

_ x Ze(,\)

523 = M3 450) + 1 Mpaso)Tpiasn) 5

- (p2 — p3)(p(1450)(p — p1, M)t~ (p1) x |O2|B~ (p)).
(11)

For the O4 matrix element, we include the vector resonance
¢(1020):

(T (PDK T (p2) K™ (p3)|Os| B~ (p))r
g¢(1020)~>K+K7
$23 = Mg 1090y + i M(1020) T (1020)

x Y () - (p2—p3)
A

@ Springer
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(@(1020)(p — p1, M7~ (p1) x |O4| B~ (p)). 12)

For the Os matrix element, we include the scalar resonance
f0(980):

(= (pDK T (p2)K ™ (p3)|Os5|B~ (p)) R
gf0(980)aK+K*

523 — m2f0(980) + 1 m £(980) (gmpm + gKKF,%KpKK)
x (fo(980)(p — p)7~ (pDIOsIB™ (p)). (13)

For the Og matrix element, we include a scalar resonance
K5 (1430) and a vector resonance K*(892):

(= (pK T (p2) K~ (p3)|O6| B~ (p)) &

gK*(892)~>K+777

S12 — m%{*(892) +1i I’HK*(892)FK*(892)

x Y e (p1 - p2)
A

(K*(892)(p — p3, MK~ (p3)|Os| B~ (p))
KF(1430)—>K*tm~

N g
S12 — M%{g(mm) +imgza430)l Kz (1430)
x (K((1430)(p — p3)K ™ (p3)|O6| B~ (p)), (14)

where s;2 = (p1 + p2)2. For the (7 matrix element, we
include the scalar resonance K(’)‘(1430):

(= (POK T (p2) K~ (p3)|O71B™ (P))R

gKo(1430) > K ¥~
s — mio(1430) + i mg,1430) I ko (1430)
X (Ko(1430)(p — p3) K~ (p3)|O71B™ (p)). (15)

The matrix elements (R, M |O;| B™) appearing in Egs. (10)-
(15) can be parameterized as

(p(1450)(p — p1, M)~ (pDIO1IB™ (p))

1450
=150 (p = p1, 1) - i,

(f0(980)(p — p)m ™ (p)IO1IB™ (p))
_ 7/o(980)
Oy

)

(f201270)(p — p1. M7~ (pDIO11B™ (p))

1270
=15t (p = p1. 2l Py,

(p(1450)(p — p1, M~ (p1)|O231B™ (p))
=150 (p = p1,2) - p1,
(@ (1020)(p — p1, M7~ (p)|O4|B~ (p))

1020
=18V (p— p1,2) - pi,

@ Springer

(f0(980)(p — p)m ™ (p1)|Os|B~ (p))
_ 7/o980)
=1

’

(K*(892)(p — p3, MK~ (p3)|O6| B~ (p))
=Tg, *Ve*(p = p3,2) - ps,
(K5(1430)(p — p3) K™ (p3)|06,71B~ (p))
L K((1430)
=Ty, . (16)
The main task of this work is to obtain these T(gi using the
LCSR approach.

3 Hadron level calculation in LCSR

In this and the next section, we will give an introduction to
the calculation of the B~ — R, M decays within the LCSR
approach. In the spirit of LCSR, one should define an appro-
priate correlation function corresponding to the process to be
studied. Due to the quark-hadron duality, one has to calculate
the correlation function both at the hadron and quark-gluon
level. In this section, we will take the decays induced by O
as an example to introduce the calculation at the hadron level,
while the decays induced by O>,...7 can be derived similarly.

3.1 B~ — fp(980)7 ~ induced by O

In the framework of LCSR and with respect to the decay
process B~ — fo(980)7 ~, we firstly define a three-point
correlation function as

l'[go1 (p,q. k)= i2/d4xd4yei(p_q)‘yei(q+k)‘x
x (0|T {j;a(y)(’)l(O)ij(x)} |B(p)), ("

where the final pion as well as the S-wave resonance f(980)
are created by the interpolating currents 3, and jz,, respec-
tively:

sino
N/

Here, « is the mixing angle between the f,(980) and o (500),
which is chosen as o = 20° [9]. In terms of the flavor wave
function, such mixing is given by [30]

JZ, =iyeysd, jp, =S5s cosa + (iu +dd) (18)

cosa -
o= (u + dd) — sina s,
V2
sino -
0= — (itu + dd) + cosa §s. (19)
I V2

In Eq. (17), k is an auxiliary momentum which flows
into O1(0). This auxiliary momentum was introduced in
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Ref. [18], where the non-leptonic B — mm decay was
studied using LCSR. In general, the correlation function in
Eq. (17) can be parameterized as

(P = DaFS" + quGS + ke HS!
+ €appo PP KIS, (20)

3% (p,q, k) =

Where the F ~ I ! are functions of the Lorentz invariants
p* =my, (p q)2 (¢ +k)? k%, g*and P> = (p —q —
k)2 Since the correlation function will be calculated via the
Operator-Product-Expansion (OPE), we must require that the
spacetime intervals are small enough: x2 ~ y2 ~ (x —y)? ~
0. This means that the external momenta must be extensively
spacelike: (p — q)> ~ (¢ + k)> ~ P? « 0. On the other
hand, as proposed in Ref. [18], to simplify the calculation,
we can set the remaining squared momenta k% and ¢ to zero.

Atthe hadronic level, one can firstly insert a complete state
with the same quantum number as jz into the correlation
function, which then becomes

SO
HO[ ! (P7 q, k)Hadron
m fo ffo

2 _ 2
(g +k) mf()

x / d*yel POV fo(q + R)ITGE, ()O10)}B(p)) +
1)

where f, is the decay constant of the f,(980) defined via
Oljr O folps)) = my fr,- We have explicitly kept the
contribution from the lowest f,(980) state, and attributed
the higher multi-particle states and continuous spectrum into
the ellipsis. On the other hand, the same correlation function
can be calculated by OPE at the quark-gluon level which is
denoted as T1$" (p, ¢, k)gcp- It should match with that in
Eq. (21), which leads to

B m o ffo
2 _ 2
(g +k) me

x / d*ye!P=DY( fo(g + k)T (GZ,(»)O1(0)}| B(p))
1 [%h ImIT,
= —/ dsy
0

where s, is the threshold parameter of the sum rule, which
is chosen as the mass squared of the first excited state above
the £5(980) with JP€ = 07+, namely the fy(1370). On the
right-hand side, the quark-gluon level correlation function is
expressed by a dispersion integral. According to the quark-
hadron duality, its integration from s 7, to infinity is canceled
by the contribution of higher excited states on the left-hand
side.

(p—q)2 51, P
—(q +k)?

@
2! [ 2]QCD

. (2Y

The matrix element on the left-hand side of Eq. (22) can
be understood as the emission of a hard momentum P from
the B meson which then leaves a f;(980) as the final state.
According to Eq. (22) and the fact that the right-hand side
is an analytic function of P2, one can perform an analytic
continuation to transform the extensively spacelike P2 to the
timelike region. Note that k as an auxiliary momentum will be
setto zero sothat P — p—g atlast. Since p —g corresponds
to the momentum flow out off the pion vertex, it is natural to
choose P? = m72, At this physical region, the outgoing fj
can be moved to the initial state with an inverse momentum

m fo ffo
2 _ .2
(g +k) mi

x f d*yel POV OIT(Z,(»)O1(0}B(p) fo(—g — k)
SO
e
7 Jo

Then, by inserting a complete state with the same quantum
number as j&, on the left-hand side, using the quark-hadron
duality to cancel out its higher excited contributions, and
using crossing symmetry to move the fp to the final-state
again, one arrives at

ImII, (p—q)z,s],f_’2 =m%

]QCD
s . (23)

mfoffofﬂ
((q + k)2 — m (P —@)? —m3)

x(p— (J)a(fo(q +lm(p — )01 (0)|B(p))

[Sz, sy, P? = mz]QCD

@+ — (-9
(24)

Im2H

7/ ds1/ dso o1 =

where we have used the definition of the pion decay constant,
(0 |j§’a (0)| w(p)) = ifr pa, and sy is chosen as the squared
mass of the 77(1300). The symbol Im? means extracting the
double imaginary part corresponding to the discontinuities
across s1 and s3. Using the Borel transformation formula:

1 )
B e = >

for the external momenta squared (g + k)? and (p — ¢)% in
Eq. (24), and denoting the corresponding Borel parameters
as M and M>, one arrives at

(folg + k) (p — q)|01(0)| B(p)

72m g, [y [
/ ds1/ dsre” 52/ M3 o=s1/M} 2 F

[sz,sl, P =m (26)

]
QCD

@ Springer
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Note that on the left-hand side of Eq. (24), onl(% the Lorentz
structure of (p — q)o appears. Thus only the F¢' in Eq. (20)
contributes.

3.2 B~ — p(1450)7~ induced by O,

In this subsection we consider the process B~ — p(1450)
7~ , where the resonance is a vector particle. The definition of
the correlation function is similar except that the interpolating
current for the resonance is changed to a vector current, which
is given by

l—[x}gol (p’ q,k) — i2/d4xd4yei(p—q)-yei(q+k)-x

x (OIT | 12,0010 0} 1B(p), )
with
N
Jp =75 (Eygu = dypd). (28)

The procedure of inserting the states with the same quan-
tum numbers of w~ and p(1450) is similar to that of
B~ — fp(980)7 ~. However, it should be noted that the
p(1450) is the second excited state with J¥¢ = 17—,
while the lowest one is in fact the p(770). The strategy to
extract the contribution from the p(1450) is to construct
a two-step sum rule. First, we just keep the lowest state
p(770) at the hadron level and attribute the p(1450) to the
higher excited spectrum. Then we can calculate the matrix
element (p(770)7~ |O1| B~) with the threshold parame-
ter chosen as s,(770) = m%(l 450)- At the second step, both
p(770) and p(1450) are kept and the higher excited spec-
trum begins from the squared mass of the p(1570), in other
words Sp(1450) = m,%(1570)‘

In the first step, we obtain the sum rule equation for the
p(770) as

m 5770y fp170) f2 (P — Qe
((q +k)? — m%(770)> ((P - Q)z - m%)

(p(770)(q + k, M) (p — ¢)|O1(0)| X B(p))
1 Sp(770) S

== ds| x/ ds;
7= Jo 0

111121'1(:(/}3(’)1 [sz, 51, P2 = mjo]QCD

1= @+~ (-9’

X Zeﬂ(q +k, 1)
A

(29)
where f,(770) is defined via

(0 | @] pTT0)(p. 1) = mp(10) for0r€p(p. ). (30)

and similarly for the fj,(1450). On the left-hand side of
Eq. (29), the matrix element not only depends on p, g, but

@ Springer

also on the auxiliary momentum k. Thus defining p, =
P —q, pv = q + k and using the constraint € - p, = 0, it
should be parameterized by two terms:

(p(T70)(pv, M7 (p)|O1(0) [ B(p))
=157 (pv, ) pa + T4 (v, 2) k. (B

Although the second term vanishes when we set k — 0
at the end of the calculation, both of them should be kept
in the intermediate steps. Now we need two equations to
T(‘Q)EWO) T&WO)/. To do this, we can contract

solve for and

with two independent vectors, Ff = {mpvP, qPy (i =1,2),
respectively on the both sides of Eq. (29). This leaves only
one Lorentz index for the correlation function on the right-
hand side, which again has the same structures as Eq. (20):
VO @ @] @
PPNy (9. g, 0 = (p = QuFygy + 4a Gy + ko Hyh
+ €appo PPA"KT I (32)

As a result, the sum rule equation becomes

m (770 fp(770) [

pypY }

Lip |:_glw +
) M (770)

2 2 2 2
(Pv - mp(770)) (pz —m2
770 770
< (157 pry + 57k
1 Sp(770) S
= — dS] X f dsz
7= Jo 0
20 p2 __ 2
Im FV(]i) [sz, s1, P* = mn]QCD

(s1 — p3)(s2 — p2)

, (33)

where have used the polarization summation formula for
€u(pv, )

"oy
1)2"&. (34)

D e (v, VeV (py, ) = =g +
Y " p(770)

All the momentum contractions on the left-hand side of
Eq. (33) should be expressed by the squared momenta,
namely p%,, p72,, q2 =0,k = 0and P2 = m]2r Note that
the Borel transformation for any polynomial of p%, and p%

is zero. Thus we have to use the trick p%, = _(m%(770) —
p%,) + m%(770) and p2 = —(m2 — p%,) + m2 to express the
left-hand side of Eq. (33) as
Cy + G
(m% - p%) (”’%(770) - P%/) (m% - p721)
C3

+ Cy, (35)

2 2
(mp(770) - py)

where the C; are independent of p72, and p%,. After the double
Borel transformation in terms of p%, and p%, the C2 3 4 terms
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vanish. Then we obtain

Sp(770) S
— / ds / dsy
0 0

2i my ey —SIM gm3 —s2)/ M3

p(770) _
75" =

72 fr fy (m‘g — Zm%m% — 2m23m%, + mf, + m“‘,)
Im? F [s , S ,mz]
{ V(l) 2,51, My QCD

2 2
my m 5
+<—2——’2’ 1>Im F (2) [sz,sl,mn]QCD},

my - my
(36)

Sp(770) S
— / ds| / dsy
0 0

2 2
(mp(770) —51 )/Ml e(m% —SQ)/]V[Z2

p(T70) _
T =

2i mye

72 fr fy (m% — 2m2Bm% — Zm%m%, + mf, + m“‘,)

mz m2 2
x __+—+2 Im? FV(I) I:SZaslvmr[]
mV mV QCD

4 2.2 2 4 2
+(mB mBm mB m, mﬂ>

-2 _ — _+_ i 2
4 ! 4 2
mv mv mv mv mv

x Im?F&! [s,s,mz] )
v(2) |92 51 7 locp

We have denoted the mass and decay constant of the p(770)
by my and fy, in order.

In the second step, we keep both the p(770) and the
p(1450), then similarly to Eq. (29), the sum rule equation
becomes

(37)

m 770y f0(770) J2 (P — Qe

l
((q +h? — m;zn(770)) ((p—q)* —m%)
X Z €g(q +k, 1) {p(770)(q + k, M) (p — q)|O1(0)| B(p))
)
4 M 1450) S p(1450) S (P — Qe
((q + k)2 - m§(1450)) ((17 - q)2 - m%)

x Y €lq +k M (p(1450)(q + k, W7 (p — )| O1(0)| B(p))
A

1 /Sp(1450)
= — ds
72 Jo

. Imzﬂgf' [sz,sl, P2 =
x/ ds)
0

Note that now the upper limit of the s; integration is
Sp(1450) = mi(1570)' The parameterization for the second
matrix element above is similar to Eq. (31). Using the results

from Egs. (36) and (37), we can obtain the expression for
TP (1450).
o :

2
m”]QCD
51—+ —(p—q)?

(38)

70(1450)

2_m?)/M? 5p(770)
fvg(”’v mi, )/ M; TO1

_Zf{,mvm’v (my — 2m% (m2 +m\2) + m% +mi,*)

x [m‘}e (my +m'y?) = 2miy (7 +my) (miy +m'y?)

+my (my +m),?)

+2m, ( my, —miym',* )+ 2mvml\/2]
el (1

2fymty (my = 2m (m3

5p(1450) Sq
— / ds / dsy
0 0

2 m/ e(mﬁ—sl)/M,Ze(mz —52)/ M3

2fﬂf\,(mB—Zm m2
2 2
my m
{Im FV(I) [sz s1,m ]QCD+ (/2 - m—g — 1)
v

x ITm? FV(Z) [sz St,m ]QCD} (39

_mz)(mv_mv) 7770
+ m 2)—I—m + m, 4) O‘

2mBm/ 2+ md +ml, )

where m, and f{, denote the mass and decay constant of
the p(1450), respectively. We do not give the expression for

T(,SEMSO)/ since it is irrelevant when k — O at the end.

3.3 B~ — f2(1270)7~ induced by O

In this subsection we consider the process of B~ —
f2(1270)7 ~, where the resonance is a tensor particle. Note
that after introducing the auxiliary momentum k, the B~ —
f2(1270)7~ matrix element should be parameterized by
three terms:

(f20270)(pr, M7 (p=)|O1(0)|B(p)) =
: 1
5 {Tézluzm) p 4 Ly ooy

€, (PT, 1)

2

X (P 4 pik) + 75T k| (40)

where pr = ¢ + k and p, = p — ¢, and the constraints
€1y = €vps ewp¥ = O are used. Accordingly, when defining
the correlation function, we have to introduce three projection
tensors:

1
v = {m%v“v”, Fmeq" +v"g"), q“q”}
(i=123) (41)

to contract with the tensor current. The projected correlation
function then reads

TO
rPonlet (p.g. k)

=,-2/d4xd4yei(p—q)<yei(q+k>-x

x T2 OIT {72, (0)010)f, (0} 1B()), “2)

@ Springer
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where

A <ﬂy S u+iiye 5 u)—(u(—)d) 43)
Bo 4«/2 B Oc o 0B

with 3:3 — <a_ [31]. Its parameterization is the same as
that of Eq. (20) and Eq. (32) :
reenlo (p.q.k)

aﬁa

O
=P — @ T(ll') + qotGT(t) + ko H T(z)
+ €appo PPA"KO I (44)

Then we follow the similar procedure to insert a state
with the same quantum numbers of the f>(1270). Using the
definition of the f>(1270) decay constant:

<0

Ji©)| £A270)(p, W) = M 1270, F o270/ €0 (P 2,
(45)

as well as the summation formula of the polarization tensor:

> e (pr. Ve, (pr. 1)

A
Yprpr yLpr pr _Lpr pr 46
2MPV0+2MUUP 3!1-1)/00 ()
with PMTU =guv — pTMpTV/mifz(lzm)’ we obtain
f2(1270)
T(91
: K St
_ 4716’"%//1”123’”%/1"122/ 12(1270) d51/ dsy
72 fr frm$ 0 0
3 1
L /MY s /M3
— §iGr, A1)
O 2
x Tm? FT(:) I:sg, Sl’m”]QCD a7

where A, = mjzr/m%, AT = m%/m%. The expression for

& (Az, A7) can be found in Appendix A. The threshold is
2 f (1270)/ F(1270)

chosenas s 1,(1270) = My ;59 The Ty, and Ty,

are irrelevant when taking k — 0 so that they are not shown

here.

4 Quark-gluon level calculation in LCSR

In this section we will present the calculation of the cor-
relation functions given in Eqs. (17), (27) and (42) on the
quark-gluon level. Since the calculation procedure of these
three cases is similar, we only take Eq. (27) as an example to
give a detailed derivation.

@ Springer

There are two diagrams contributing to the correlation
function. As shown in Fig. 1, (a) is the W-exchange dia-
gram, and (b) is the W-emission diagram. Note that the fac-
torization given in Eq. (9) only involves the contribution from
W-emission, while it misses the W-exchange effect. We will
give a detailed calculation for the diagram (a) within the light-
cone expansion, the calculation for the diagram (b) is similar
and will more be given in any detail here. The definition of
the leading twist light-cone distribution amplitude (LCDA)
is [32-35]:

<0 it () x, 015 (0)| éf})

i )
— _lmeB dwe—iwv»x
4 Jo

B, N _ B
x {(1 ) (asf(w) + M%) Vs} .
Ba

VX

(48)

According to the experience from Ref. [36], the contribution
from the next-to-leading order twist LCDASs is expected to
be one order smaller than that of the leading twist LCDAs, so
we do not consider them in this work. Note that the first term
above has no terms ~ ¥ and ~ v - x, thus its contribution to
the correlation function can be derived directly as

O
ringi(p.q. k><a>xo

meB B 1
= da) (w)
42 P+ (pr — @) — m?
d*k; 1 1
Q) kf —m? (ki + py)? — m?

x tr [vays(p, — wp + m)y* (1 — ys)(k; + m)
x Ti-y(py + B +myu(L—ys)(L+pP)ys],  (49)

where m denotes the light (1, d) quark mass which will be
approximated as zero in this work. The double imaginary part
Im? = Im p2 Im 2 of the correlation function is proportional

to the discontinuity in terms of the invariants p%, and p72T, and
the discontinuity only comes from the denominators of the
integrand in Eq. (49). Itis found that p%, and p% do not appear
in the same denominator, so we can extract the two imaginary
parts independently. The imaginary part in terms of p%, can
be obtained by using the cutting-rule for the bubble in the
lower right corner of diagram (a). Thus the loop integration
of d*k; in this bubble is replaced by a two-body phase space
integration after using the cutting-rule. The tensor basis used
for the two-body phase space integration can be found in
Appendix B. On the other hand, the imaginary part in terms
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Fig. 1 Feynman diagrams of the correlation function given in Eq. (27).
a is the W-exchange diagram, and b is the W-emission diagram. The
gray bubble denotes the B meson, the pairs of crossed circles represent

of p2 only comes from the first denominator:

1

2
Px (pr — wv)? —m

= (—7)8 [(1 - i) P2 — wmp + w* — m2] . (50)
mpg

Im

2

After calculating the double imaginary part of Eq. (49), and
extracting the coefficient of p,,, we obtain the corresponding
contribution to the imaginary part of F ‘(,9(}):

2 O 2 2
Im Fv(i)(pnv pV)(a)xO

= —iﬁnSmeB /Ooo dow qﬁf(a))S

X |:<1 - i) p72T — wmp +w2—m2]
mp

x [ @020 ok MU (i o ), (51)

where we have used the requirements k> = ¢> = 0 and
P2 = m72, as argued in the last section. Further, k», k3 are the
momenta of the two light quarks in the bubble. The expres-
sion of ME;) 0(pr, ka, k3) can be found in Appendix C. The

)
two-body phase space integration is defined as

Py 1 Py 1
[dq>2<,,2v, k. k3) = / 2 i
2mr) 2Ek2 2m) 2Ek3

8D x (py —ka —k3)8 (k3 —m>)s (k3 —m?).
(52)

The result of the two-body phase space integration in
Eq. (58) is given in Appendix B.

For the term proportional to ¥ /v - x in Eq. (48), we use
the following trick to remove the troublesome denominator

\k 4y

b
0
.
—_ > ()
p
q+k
R

(b)

the four-quark operators Oy, the black dots denote the interpolating
currents for final particles and the wiggly lines denote the incoming or
outgoing momentum flows

v - x. We define:

- @ d -

P2 () = f dr ¢8(v) — ¢£(w>=d—¢£<w) (53)
0 w

so that the integration on the spacetime coordinate can be
simplified as

00 ) B 00 ) ~
/0 dw ef"””% =1 /0 dw e ¢l (w)- - .

(54)

Then, the only x dependence comes from the term ~
expli (g +k)-x] in the definition of the correlation function in
Eq. (27). Thus in the momentum space the term ~ ¥ can be
replaced by —iy”9/0k,. However, a direct result from such
an operation is the appearance of a higher power denomina-
tor, 1/ [(pv + ki)? — mz]z, when the extra derivative oper-
ates on the momentum k. Thus we have to use the following
trick

1
Disc f ()
v [ [(pv + k)2 —m2]? }

= anngl [ sy R —@] | L 69)

to extract the discontinuity. Note that the auxiliary parameter
Q2 should be set to m at the end of all the integrations. The
imaginary part of the F' ‘59(1!) from the ¥ term of Eq. (48) then
is

(@]
IszV(l,-)(P?T, PV @y
—in’ fpmp [ ~ ~
=— do (2 (0) — ¢5(w)
=), (@ (@)

@ Springer
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8 X [<l—i)pi—wm3+w2—m2i|
mp

< [ 4@k k) N k)

9 .
+ 55 [ 0 ke £ (ko ko) ||
(56)
where
/quZ(P%/kaka)Q
3 / Phy 1 ks 1
) (2n)3 2Ek, (27)3 2Ey,
x 8 (py — ka — k3)8 (k3 — m?)8(k3 — Q). (57)

The calculation for the contribution from diagram (b) in Fig. 1
is similar except that the loop bubble is at the corner of pion
the vertex. Therefore, now the imaginary part in terms of p%
comes from the loop integration, while the imaginary part
in terms of p%, comes from the rest of the propagator. The
imaginary part from the diagram (b) follows as

2 -0 2 2
Im FV(li)(pnv p\/)(b)
o0
=3iﬁn5f3m3/ do ¢8 ()
0
o[- ) om0
mp mp

x [ a2} kake) MY ()

3i7‘[5meB o0

V2 0
e [(-2) e k-]
mp mp
o
x / A0y (pY, ko, k3) Nt (. ko, k).

3i715f3m3 o0

V2 0
9 '\ w 5 2
xa—Q{é[<l—m—B>pv—a)mB+@mn+w -Q

o
x / Aoy (pY. ko, k3)e ﬁ(bgl)(Pn,szG)I o2 (8

do (2@) - ¢f (@)

do (2 (@) - 32 (@)

For the cases of scalar and tensor resonances, the imag-
inary part of the corresponding correlation function can be
derived similarly. For simplicity, we only present the results
of the corresponding calculations. For the scalar resonance,
only the diagram (b) contributes in the approximationm = 0,
and the expression of Im? F §9 ! reads

@
Im*Fg ' (p7. P§)

o0
= 3+/2i sina ﬂSmeB/O dw ¢)£(a))

@ Springer

N -

mp mp

x /dcbz(p%,kz,lq)be)@n,kz,kg)

3i sina 2 fgmp /‘X’ ~B -

+ " do(¢E@ - ef @)
V2 0 (d) &4 )

(- 2) e 2 o]
mp mp

x /d¢2(P§,k2,k3)Ng,)(pn,kz,@)-

- 5 S
# 2T [ 4o (32100 - 10)

V2
d w\ 9 © 5 9
—Isll1—-— - — -Q
XBQ{ [( mB>pS a)m3—|—mBmﬂ—|—w ]
x / Ao (pF. k2. k3)a c;*b)wn,kz,ks)} o (59

For the tensor resonance, like the case of vector resonance,

both the diagram (a) and (b) contribute to the correlation

function. The expression of Im? F;Q(l‘.) is given by

2 O 2 2
Im FT(;)(pn’ PT)

@ @
= IszT(i')(p;zv p%‘)(a) + IszT(;)(p%’ P%)(b), (60)
2 O 2 2
Im FT(;)(pn'v pT)(a)

—imd fpmp

B V2 0

X |:<1—i>p72Z —womp —|—a)2—m2:|
mp

x [ a2} ko k) ME (k)

o0
do ¢B ()8

iJTSmeB

272 Jo

8 x [(l—i)pi—wmg—{—wz—mz]
mp

o
x /dcbz(p%,kz,ka)N(a§”<pn,k2,k3>.

" do (2@ - df @)

ind fpmp [

=50 do (2 @) - ¢E ()

8 X [(l—i)p%—wmlg—i—wz—mz]
mp

9 2 T(i)
x o {fdd>z(pT,k2,k3>Q 08 ok k |

(61)
20 2 2
Im FT(})(pJT’ pT)(b)

3i7‘[5meB e B

= — dow ¢ ()6
V2 o *
[ ) i o ]
mp mp

-,
x / A0 (pF, ko, k) My (pr k2, k)
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3ind fpmp
232
(2o ]
mp mp

x / A0 (p}. ko, k3) Ny (pr o, k).

" do (P @) - $E @)

3i715meB

22
9 '\ 2 w 2, 2

< [ avah bk £ or ek || 62)

" dw (2@ - dE@)

The explicit expressions for the M, N and £ functions
are given in Appendix C. The LCSR calculation for the O;...7
matrix elements can be done similarly, so we will not explic-
itly present them here.

5 Phenomenological results
5.1 Numerical results for (R, M |O;| B™)

First, we list the values of all the parameters used in this
work. All the mass parameters are: m, = myg = m = 0,
mg = 93 MeV(u = 2 GeV), my = 0.139 GeV, mg+ =
0.496 GeV, mp = 5.28 GeV, mypo930) = 0.99 GeV,
mp(770) = 0.775 GCV, mp(1450) = 1.465 GeV, mf2(127()) =
1.275 GeV, mg1020) = 1.02 GeV, M E(1430) = 1.43 GeV,
mK*(ggz) = 0.892 GeV, mfo(1370) = 1.37 GCV, mp(1570) =
1.57 GCV, mf£(1525) = 1.52 GCV, Mg (1680) = 1.68 GCV,
MEKx*(1410) = 1.41 GCV, MmKy(1950) = 1.95 GeV [37].

The value of all the decay constants used here are: fp =
0.207 GeV [38], fr = 0.13 GeV [39], f,770) = 0.21 GeV
[40], foaas0) = 0.186 GeV [11], fp 12700 = 0.102 GeV
[41], fpao20) = 0.241 GeV [42], fx = 0.11 GeV [43],
Sfr*892) = 0.204 GeV [40], fK0(1430) = 0.427 GeV [44].

For the leading twist LCDASs of the B meson, their expres-
sions as well as the associated coefficients are taken from [35]

b5 (@) = —5 eI,
0
1, AL — 23
— _ —w/wy E H
w)=—e -
¢B( ) (,()() 9(1)8

|: w 1 w 2 —w)
1-2( >+5(—) el (63)

where wg = (2/3)A, 22, = 232 and Ay = A, with
A = mp — mp = 0.45 GeV in the heavy quark limit [45].
The numerical result for the TO are listed in Table 1, where
sg is the threshold parameter for the resonance, while s,; and
sk are the threshold parameters for the non-resonant parti-
cle, namely the final pion or kaon. The Borel parameters are

chosen in the region where the numerical values of T(f;, are
i

stable. The errors of the T(g come from this uncertainties of
the Borel parameters.

5.2 Branching fractions for the B~ — KTK 7~ decay
In a first step, we give a general formula for the calculation

of three-body decays. We define three dimensionless Lorentz
invariant variables:

= 2PBPnm o 2PB PR _ 2PB - Pk~
m% ’ m% T m% .
(64)

Thus, the three Mandelstam variables can be expressed by
the x; as

s = (p+ + px-)* = mp(L+dr —x1),
1= (pr- + p)? = mp(L+ Ak — x3),

= (pg- + px-)> = my(l + rg —x2), (65)
where Ax = m%(/m% and the x; satisfy x; + xo + x3 = 2.
Each Lorentz invariant quantity in the decay amplitude can

be expressed by the x;. In the rest-frame of the B meson, the
formula for the three-body decay width is

FB~— Ktk n]=

/ dxydx; .A(X] , X2, X3),
S
(66)

mp
25673

where A(x1, x3, x3) is the total decay amplitude. The inte-
gration region S is:

—2x7 — 2 2 drg — 21
_1<(X2X3 X2 — 2x3 +2) +4Aik T 167

\/xg — 4)»](\/)63% —4rk

as well as 2/ Ax < x2 < 2(1 — /Ax —/Ar) and 2/Ag <
x3 < 2(1 — 4/Az) — x2. The boundary values %1 in Eq. (67)
are reached when the direction of the K+ three-momentum
is parallel or anti-parallel with that of the K —,

All the strong coupling constants are taken from the
Eq. (2.40) of Ref. [9]. The decays widths of the resonances
are [37]:

FK0(1430) =0.27 GCV, FK*(892) = 0.051 GGV,

I'p450) = 0.4 GeV,

I p1270) = 0.187 GeV, T £ 980) = 0.05 GeV,

F¢,(1020) =0.0042 GeV. (68)

The decay branching fraction stemming from the vari-
ous resonances are listed in Table 2. We also compare our
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Table 1 Numerical results of the parameters for the matrix element (R, M |O;| B~ ), where the threshold parameter for the final pion or kaon are

— 2 — 2 :
Sx = M7 (1300) OF SK = M (1460 respectively

TCI;i Value SR Sy OF Sk M (GeV) M; (GeV)
TH* ~0.23 £ 0.05 GeV? m% (370, S 10£1 0.4£0.05
7477 0.043 £ 0.013 GeV? m2 1450, Su 5+1 0.15 £ 0.05
7477 0.015 £ 0.003 GeV? m2 4s0) S 6+1 0.15£0.05
7477 (B 1) x 1074 GeV?2 m2 1450, S 6+ 1 0.15 4+ 0.05
440 0.014 % 0.008 GeV? m2 1570, S 10£1 0.2£0.05
£ 0.0021 = 0.0006 GeV m 1 1525) Sz 10+1 0.15+0.05
T4 0.0055 = 0.002 GeV? m? 1570, S 8+ 1 0.240.05
T4 (1.3 £1.0) x 107* GeV? m2 1570, Sn 10+1 0.1+0.05
7! %0 0.003 % 0.0016 GeV> m3 1650, S 8+ 1 03+0.05
TR (1.5+ 1.0) x 1074 GeV? m% 1370, S 5+1 0.140.05
S &7 0.176 % 0.009 GeV2 M- 1410 sk 8+ 1 341
507 ~0.093 % 0.004 GeV? M 1430) sk 8+ 1 0.36 = 0.05
500 0.222 £ 0.02 GeV? Ms (1430) sk 6+1 0.4 40.05
S04 ~0.018 + 0.004 GeV? M 050, sk 841 0.4 +0.05
TS0 0.14 +0.017 GeV? m% (1050, sk 6+1 0.45 +0.05

Table2 Decay branching fraction from the various resonances (in units
of 107%). We also compare our results with those from experiments
Bexpt and those from Ref. [9]. The Bexp are inferred from the measured

branching fraction of each resonance [4] and the world averaged branch-
ing fraction of the entire decay process Bayeraged (B — n¥KTK ™) =
(5.24 £+ 0.42) x 1076 [46]

Contribution Bexpt Ref.[9] This work

K*(890) 0.39 +0.05 0.23%004 0.014 40,0015
K§(1430) 0.23 +0.08 0714013 0.1140.025
p(1450) 1.61£0.15 - 0.035 +0.04
£(1270) 0.39 £ 0.06 0051001 0.44£0.24
¢(1020) 0.016 £ 0.008 0.007970:0012 (0.97 £0.76) x 107
f0(980) - 0.197903 0.12 £ 0.04

results with those from experiments Bexpe and those from
Ref. [9]. The Bexpt are inferred from the measured branch-
ing fraction of each resonance [4] as well as the branching
fraction of the entire decay process B (B* — 7K TK~) =
(5.24 £ 0.42) x 107° [46]. We note that the f>(1270) and
K ;(1430) contributions obtained in this work is consistent
with those from experiment. Our result for the f;(980) is
consistent with that from Ref. [9], which is still waiting for
future experimental tests. The ¢ (1020) contribution is much
smaller than the other determinations, which is due to the tiny
value of the Wilson coefficients a3, as, a7 and ag as shown
in Eq. (3). The other fractions are about one order smaller
than the experimental values. A possible reason for this dif-
ference is due to the uncertainty of the strong couplings,

@ Springer

which require further precise measurements in the future.
The contribution of all the resonances considered above to
the branching fraction is

Bresonant [B~ — KTK 7] = (0.54£0.23) x 107°. (69)

Thus, the resonant contribution obtained above is only a
small part of the total branching fraction B (B* — n*K+K ™)
= (5.24 £+ 0.42) x 1079 [46]. Besides the resonances, the
non-resonant (NR) contributions also contribute to the decay
process. In our case, it comes from the matrix element of O
and O7. The O; matrix element can be generally parameter-
ized by

(= (pDK T (p)K ™ (p3)|O1IB™ (P))NR
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= _Jx [Zm,z,r + (sz — 8523 — m%) w4 + (512 — 813)60—] .

2
(70)

The form factors r, w4 are calculated within heavy meson
chiral perturbation theory (HMChPT) [47]. However, since
HMCHhPT is only reliable in the low-energy region, in the
case of B decays, the final-state energy is high enough so
that a direct use of HMChPT will make the amplitude blow
up. There is a practical method to solve this problem. As
proposed by Ref. [48], one can introduce an exponential term
to suppress the amplitude at high energy, and thus the O,
matrix element is modified as

(= (POK T (p2)K ™ (p3)|O11B~ (p))

= (7~ (pDK T (p) K~ (p3)|O11B~(p))r
+ e~ ONRPE (P2+D3)

x (r = (pK T (p2) K~ (p3)|O1B~ (p)) Nk, (71)

where ayg = 0.16 GeV~2 [9]. On the other hand, we will
not include the NR contribution of O7. The first reason is that
as shown by the Eqs. (2.22)—(2.24) of Ref. [48], such NR con-
tribution depends on the NR component of a scalar matrix
element (7~ (p1) K+ (p2) |cfs|O)NR. This scalar matrix ele-
ment itself has been obtained in Ref. [49]. However, its exact
NR component is still unknown. Although Refs. [8,50] pro-
posed a formula to characterize its NR component, there still
exists an unknown phase parameter. Another reason is that
the Wilson coefficients ag and ag corresponding to O7 are
suppressed compared with that of 0. Thus, in practice we
only consider the NR effect in the O; matrix element.

The final-state interaction (FSI) of 77w~ <+ K+ K~ also
contributes to the decay branching fraction. The rescattering
amplitude reads [9]

A(B™ = K K77 ) g
= ¢ [cos(¢/2)A (B~ — (fo(980) > KK )z~)
+isin(@/2A (B~ — (0(500) - 7 x| (72)

where the re-scattering mixes the S-wave components of
B~ — KYK~7~ and B~ — nt7~ 7. The mixture coef-
ficients 8, and ¢ are functions of the S-wave invariant mass
square s»3 which are given in Ref. [50]. The calculation of
(0 (500)(p — p1)7~(p1)|O1,5|B~ (p)) is similar to that of
f0(980), and the results are

15" = —0.033 £ 0.008 GeV?,
Tgfoo) = (1.2£0.08) x 107* GeV?>. (73)
The mass and decay constant used here is m 4 500y = 0.5 GeV

[37] and f5(500) = 0.89 GeV [51]. The decay width of the
0(500) is I's(500) = 0.3 GeV [37]. Finally, combining the

resonant, NR and FSI contributions, we obtain the total decay
branching fraction:

Biow [B~ — KTK 77| = (0.87£0.24) x 107°,  (74)

which is of the same order as the world averaged value, but is
still sizeably smaller than that. The possible reasons for this
discrepancy are:

e In this work, we do not consider the contributions from
the higher twist LCDAs of the B meson since they are
expected to be one order suppressed according to our
previous work [36]. However, to remedy this part, in the
future we will perform a more in-depth study on the con-
tribution of higher twist LCDAs.

e The NR contribution to the (O7 matrix element is not
introduced to the total branching fraction. We have argued
that it is suppressed by its Wilson coefficients aé’ , aé’ .
However, in principle its exact contribution should also
depend on the model parameters introduced in Ref. [48],
but they are not determined unambiguously.

e Generally, the matrix elements (R, M |O;| B™) contains
a strong phase which cannot be obtained by the approach
used in this work. The interference between these strong
phases will affect the amount of the total branching frac-
tion. In principle, such strong phase can be produced by
the charming or strange penguin loop which was studied
by Ref. [19] for the case of B — mm decay. Similarly,
for the B — M + R decay, the penguin loop can also
produce a strong phase, which is expected to be studied
in the future.

6 Conclusion

In this work, we have studied the resonant contribution to the
decay amplitude of B~ — K1TK ™7, which is dominated
by the scalar f;(980), Kf)"(1430), vector p(1450), ¢ (1020),
K*(892) and tensor f,(1270) resonances. The three-body
decay is reduced to various quasi two-body decays, where
the B meson first decays into a resonance and a pion or a
kaon, and subsequently the resonance decays into the other
two final-state mesons. The quasi two-body decays are cal-
culated within the LCSR approach using the leading twist
B meson LCDAs. Then, we calculated the decay branching
fraction for B~ — KT K~ m~ from each of the resonances
considered here. Some of them are consistent with experi-
ment while the others are smaller than the measured values.
One possible reason for this discrepancy are the uncertainties
of the strong couplings between the corresponding resonance
with pseudoscalar mesons. Including the effects of the non-
resonant and final state rescattering effects, we also evaluate
the total branching fraction and the result is smaller than the
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world-averaged value. We have listed three possible reasons
for this discrepancy, which requires further researches in the
future.
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Appendix A: Expression of & (A, A7)

The expressions of &; (A, A7) given in the end of Sect. 3 are

1
sl()‘*n’v)"T) = _E
x [xi + 23 —2) +22 (4sz —8ar + 6)

12 Or =2y — D2+ Gy — 1)4] ,
1
200r + A7 — 1)3
x [46 +223 r = 3+ 44 (533 — 1437 +15)

52()\7[, )\T) =

+413 (A} - 63 + 947 - 5)
22 — 1) (5,\% —l4ar + 15)
+20 O = D7 = D+ r = DF]

%‘3()“7[7 )\'T)
— [x?, + 23 G —3) + 24 (5,\% — g + 15)

+43 (A — 623 + 927 = 5)

@ Springer

+ 220 — 1)2 (sx% ~l4ar + 15)
+2h Gur = 37 = D* + 7 = 1] /
x 1+ 4300 — 1)+ 222 (523 — 63 +3)

+4nGr = P+ Gr = D] (A1)

Appendix B: Two-body phase space integration

In this appendix we give the tensor bases used in this work for
the two-body phase space integration. The rank-0 integration
is defined as

<I>§0)(S, my, my)
Pk 1 Pk 1
(27)3 2Er, (2m)3 2Ey,
x 8 (p — ki —ka)8(k} — m" )8 (k3 — m3)

B 75 = om +m2)2) (5 = Omy —m2)?)
B / a2 = (27)02s
(B1)

with s = p?. The higher rank integrations are defined as

f diy K = &0 (s, my, my)Ay ph, (B2)
0
/ dey kK5 = o s.mmo) [Aaph p + Bap?gh ], (B3)
0
/d@ KISKD = 5 (s, my, mo)

X [A3p“p”pp + B3p?phg" + C3p* (¢ pP +g“pp")],
(B4)

where A;, B; and C; are functions of s, m and my. Their
expressions are

2 2
miy —ms5+s
g =TT (BS)
K <—m% —m% +s> -2 (m% —m% +s> (—m% +m% +s>
Ay =— o2 ,
(B6)
(m%fm%+s)<fm%+m%+s>725<7m%7m%+s)
By=- 1252 ’
(B7)
L[l o (o2 o
A3:—§ Emls miy —m; +s>
3 2
—Z<m%—m%+s (—m%-‘rm%-ﬁ-s
1 2 2 2, 2
+§s<fmlfm2+s) (7ml+m2+s) s (B8)
m%—mz—i-v) <4m%v—(—m%+m%+v) )
By = : (B9)
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(B10)

Appendix C: Expression of the M, N and £ functions

In this appendix, we list all the M, N and £ functions
appearing in the imaginary part of the correlation function
for (m = (S, V, T) |O1]| B™). For the case of scalar resonance,
we have

/d<1>2<p§,kz,k3) M (pr. ko, k3)

1
i [8 <2A2 (—m% —}—m%w—}—mBm% + p%w)
B

+(4B, — 1)p3,w)], (1)
/dcpz(pg,kz,lq) N3(pr. k. k3)

_ mLB [32 <2A2 (m’j}3 + p,2,> + (4B, — 1)p,2,)] . (€2

/ d02(p2. ko, k3) LS (p. ko, k3)
1
= ——5 [16 (242 (m} + p3) + (4B = 1p2)

mp

X (m2Ba) —mp (st + a)2) +w (st - m%))] .
(C3)

For the case of vector resonance, we have

[ 0203 ko ko) MY k)

8
=—-— [A2 (m% —m% + p%,)
mp

X (2m% — Zm%w +mp (p%, - Zm%) + 2w (mi - p‘z/))
+(@By = m phmp —w) | (C4)

[ 0208 ko k) MY k)

=L Tupd (3 s+ 4B — 1
__72[”("13( 24+ 4B — 1)
mpg
—2myw(2A; + 4By — 1)
2 2 2 2
+m (A2 (203 —4m2) + @B = Do} — p2))
2w <2A2 (mfr - p‘z/) + (4B, — 1)p§>)], (C5)
[ 20} ko ke) A k)

__RMimg =) (= +p) (C6)

mp

3241 py (@ — mp)
/ d®2(p koo k) Ny (koo ks) = ===, (CT)

[ 4020} k2. ko) £ k)

= —mLB [16 (m%(P%/(Al —2B3+2C3— 1) — A1 + Q7)
+mpo (A — 1D — py (Al — 2B3 +2C3 — 1))
—mp (m2 (0} (A1 =283 +2C5 = 1) = 4122 + )
+A1p%,szz) o (m,% - p%,) (P2 (A1 —2B3 +2C3 — 1)
—A120 + Q))], (C8)

w
/dobz(p"‘v, ka. k3)a L0 (px. ko, ks) = 1641 p} 2 (1 - —) :

[ 020 o) MY
=8 (2A2 (m% — m%w — m/_zgm,zr — piw) + (- 4Bz)p,2ra)) w,
(C10)

[ 0203 ko k) MY k)

4 5 4 3 (02, 2 2 o
= m—% (2A2 (mB —2mpw —my <mn +pn>+2m3pvw

+mp (miwﬁ +pv) + v (pr — pzv)) + 21)2«))
+(4By — 1)p2 (—mega) +mppy + 2p,2,w>) , (C11)
/dCDz(P%/,kz,ka)/\f(‘;)(l)(pn,kzsk3)

= —32Aym% —32A;p> — 64B, p> + 16p2, (C12)

[ d020% ko ko) A k) = ~ 32420, (C13)

/d@z(p%/,kzvka)a ﬁz,gl)(Pn,kz,ks)
- _16 (2A2 (m‘}g —2myw + m’ <w2 _ 2m,2,)
+2mpmio+mi —mipl + pio* — Pzzrl’%/)
~@B — 12 (5} - o?)).

[ a2 e kra 247 (o k)

1
=— [16 <2A2 (mSBa) — m‘g (p%, + a)2>
my

(C14)

—myo (m2 + p2) +mlp} (m2 + p} +o?)

+mpo (m(p + pi) + Py (0% = p})) + phe’)
+@By — Dplo (mh (o) +mpp} + plo))]. (C15)

For the case of tensor resonance, we have

[ 02003 k2 ko) M k)
1 2 2 ( 3
= [4 (mhp3 (mh(—241 + 4B, — 128y - 20C3 + 1)
mp
+myw(2A; — 4By + 12B3 +20C; — 1)
+mp (m,%(zA. — 4By + 12B3 +20C; — 1)

+p2(—2A; + 4B, — 8B3 — 16C3 + 1))
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- <m§ - p%) (2A; — 4B; + 12B3 +20C3 — 1))

+ Ap (m% - m,zt + p%)2 (Zm% - Zm%a) +mp (p% - 2m72,>

+2w (m,zr —p%))

245 (mh —m2 4 p3)

X (Zm% — Zm%w +mp (p:Zr — 2m%> + 2w (mi - p%)))] ,
(C16)

[ @20} ko ko) MUY k)

1
- [p% (mSB(—ZAl 1845 — 1643
my

+ 8B, — 16B3 —32C3+ 1)

+2mhw(2A| —4As +8A3 — 8By 48B3 +24C;3 — 1)
+md, <m§(2A1 — 1643 +32A3 — 8B, + 16B3 +32C3 — 1)
—4p2(2A1 —3A2 + 6A3 — 4By + 6B3 + 14C3 — 1)
+p2(2A; — 8By + 16B3 4 32C3 — 1))

—2miw (mf,(zAl —8Ay+ 16A3 — 8By + 8B3 +24C3 — 1)
—2p2(2A; —4Ay +8A3 — 3By + 9B3 + 15C3 — 1)

+p2 (A1 — 8B2 + 883 +24C3 — 1)

+mp <—2A1m§,117,2r +2Aim} p7 — 2A1p}

+241p2 p} + 442 (2md — 3m2 p} + p} )

843 (2% = 3m2 p} + p}) + 8B p2

— 8Bym? p} + 8By p} — 8By p2 p

— 16B3mip,2, + 833])721]7%

— 32C3m2 p2 + 16C3m?2 pr — 16C3 p}

+24C5p2 p +m p2 = m2p} + ph — pp})

20 <m,2, - p%) (pg (2A, — 8Bs + 8B3 + 24C3 — 1)

44 (m2 = p}) + 843 (m2 = p})))].

[ @20} ko k0) M k)

(C17)

i
=—— [20} (mh@A1 - 442 + 845 = 2By + 6B, +10C; — 1)
My

—2myw(2A) —2A; +4A3 — 2B, + 6B3 + 10C3 — 1)
+mp (*21“11%21 + 241 p% 4 4Aoam% — 24, p%
—8A3m2 +4A3p2 + 2By p>

—6Byp7 — 6B3py +2B3p7 — 10C3p; + 14Cap7 + ps — p%)

+ 2w (pi (2A1 — 2B, + 6B3 + 10C3 — 1)
—24; (mi - p%) + 445 (mi - p%)))} ,

/d%(l?%/,kz,l@)N(Zgl)(pmkz,ks)

(C18)

_ 1 2 2 2?2
= 7@ [16(m3 —w) (A1 (mB —my +pT)
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-2 <A2 (m%3 — m,zr + p%)z + 4Bzmép%))] , (C19)

[ 020} ko ko) A
1
= — [16p%~(m3 —w) (A1 <m2B —m% + p%)
mp
sl o) 2 )

/d%(l’%/,kz,l@)N(Z?)(pmkz,ks)

(C20)

|
= —[mp‘}(Al 72A2)(m37w)], (C21)
mp

[ 020 daskra £33 e

_ 1 2 2 2 2

= [SpT (mB —m3 +p7)
X (—m% +m%w +m3mf, +w (p% - mi))
x (A1 +2As + 2By +4B3 +4C3 — ], (C22)

/ A2 (pY. ko, ks)e L (s ko, k)

- m—lB [4p‘} (m%(—(Al 4+ 2As — 4B, — 2B3 + 10Cs — 1))
+mp (m;i(Al +2Ay — 4By —2B3 +10C; — 1)
+4p}(By + Bs — C3)
+m%w(A; +242 4+2B3 +6C3 — 1)

—w (mi - p%) (A1 +2As +2B3 +6C5 — 1))] , (C23)

[ 4020} k2. k) £ b ko) =0, (C24)

[ 0203 ko ko) MG k)
:4<m% —2m3w—m,zr —|—p%>
X (2A2 (m% — m%w — mBm,zr — p%w) + (1 - 4Bz)p72,w> s
(C25)

[ 0203 ko ko) M k)

= o[22 (mh ooy (2n 4 93 30} —60?)
+ Zm%w (3m% + Zp% - p%—)
+miy (ms = 2m2 (0} = p2) = p} (P} +40?))
+2myo (<2m2 (P2 + p3) + v} +2pF — 202 p})
— mp (w3 (P2 + p}) = 2m2 pf 4+ 6pt? + pf — p2p})
+2piw (p% — mi))
— (4B, — l)pi <2m‘l§a) — m% (p% + 6a)2)
= 2mpo (m2 + p} - 3p})
+mp (mfr P +6prew’ — p‘}) +2piw (mﬁ - ﬁ%))] . (C26)

[ 0200% k2 ko) MG k)
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2 2 2 2 2 _ 2 4 2
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