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Abstract In this paper, we use large scale structure obser-
vations to test the redshift dependence of cosmic distance
duality relation (CDDR), DL(1+ z)−2/DA = η(z), with DL

and DA, being the luminosity and angular diameter distances,
respectively. In order to perform the test, the following data
set are considered: strong lensing systems and galaxy cluster
measurements (gas mass fractions). No specific cosmolog-
ical model is adopted, only a flat universe is assumed. By
considering two η(z) parametrizations, It is observed that the
CDDR remain redshift independent within 1.5σ which is in
full agreement with other recent tests involving cosmological
data. It is worth to comment that our results are independent
of the baryon budget of galaxy clusters.

1 Introduction

Two types of distance are mostly used in cosmology : the
luminosity distance, DL, and the angular diameter distance,
DA. It is known that DL is a distance measurement associ-
ated with an object based on the decrease of its brightness,
and DA is associated with the measurement of the angular
size of the object projected on the celestial sphere. Mea-
suring distances in cosmology is of crucial importance as it
relates observational data with the theoretical assumptions.
These cosmological distances are connected by a relation
known as the cosmic distance duality relation (CDDR), it
is the astronomical version of the Etherington’s reciprocity
law and it is written as: DL(z)

DA(z)(1+z)2 = η = 1 [1,2]. Actu-
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ally, the CDDR is obtained in the context of Friedmann–
Lemaître–Robertson–Walker metric which holds for general
metric theories of gravity in any background [3,4]. A little
deviation from η = 1 may indicate the possibility of a new
physics [3,5–7]. Besides, the presence of systematic errors in
observations also can violate the validity of CDDR [3,5,8].

In the last decade, different methods have been proposed
to test the validity of the CDDR due to the improvement
in the quantity and the quality of astronomical data. These
methods can be divided in two classes: cosmological model-
dependent tests based on the � cold dark matter (�CDM)
framework (see the Refs. [5,9–12]) and cosmological model-
independent. Several astronomical data sets have been used
to probe the CDDR, for instance: angular diameter distance
of galaxy clusters, galaxy cluster gas mass fraction, type
Ia supernovae (SNe Ia), strong gravitational lensing (SGL),
cosmic microwave background, gamma ray bursts, radio
compact sources, cosmic microwave background radiation,
baryon acoustic oscillations, gravitational waves, etc. [13–
39]. In particular, the Ref. [18] used only massive galaxy
clusters observations (Sunyaev–Zeldovich effect and X-ray
surface brightness observations) to test the CDDR.

In order to test the redshift dependence of CDDR, the
basic approach has been to consider a modified expression,
given by DL(z)

DA(z)(1+z)2 = η(z), and to obtain constraints on
η(z) functions. In the Ref. [40] a Bayesian model compar-
ison of various η(z) functions are used, such as: η = η0,
η(z) = 1 + η0z, η(z) = 1 + η0z/(1 + z), η(z) = η0 + η1z
and η(z) = η0 + η1z/(1 + z). The idea was to estimate the
Bayesian evidence and compute the Bayes factor for each
η(z) function with respect to η = η0. The results favor
the η(z) = constant as the standard model. On the other
hand, the Ref. [23] applied a non-parametric method, namely,
Gaussian process, to test the CDDR based on galaxy clus-
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ters observations and H(z) measurements (see also the Ref.
[25]). The CDDR validity has been verified, at least, within
2σ c.l. in the last decade . However, it is worth to stress that
the current analysis cannot distinguish which η(z) function
better describes the data (see [40]) for details.

In this paper, we show that strong lensing systems and
galaxy cluster observations (gas mass fraction) can be used
to study the redshift dependence of the CDDR and such con-
straints are competitive with those ones obtained from other
cosmological observations. The data sets used are: SGL sub-
sample from the original data set compiled by the Ref. [41].
The galaxy clusters observations correspond to 40 gas mass
fraction from the Ref. [42]. The η(z) functions used in this
paper are: ηI (z) = 1 + η0z, ηI I (z) = 1 + η0z/(1 + z).

This paper is organised as follows: In Sect. 2, we describe
the data used in this work, SGL systems and galaxy clusters
observations. The methodology is discussed in the Sect. 3. In
the Sect. 4, the η(z) functions are presented. The main results
of the statistical analysis are highlighted in the Sect. 5 and in
the Sect. 5, we describe the main conclusions of this work.

2 Cosmological data

• We use the most recent x-ray mass fraction measurements
of 40 galaxy clusters in redshift range 0.078 ≤ z ≤ 1.063
[42]. These authors measured the gas mass fraction in
spherical shells at radii near r2500, rather than integrated
at all radii (less than r2500). Hence the theoretical uncer-
tainty in the gas depletion obtained from hydrodynamic
simulations is reduced [42,43]. Moreover, the bias in the
mass measurements from X-ray data arising by assum-
ing hydrostatic equilibrium was calibrated by robust mass
estimates for the target clusters (see also [44]).

• We also consider a subsample (101 points) from a spe-
cific catalog containing 158 confirmed sources of strong
gravitational lensing [41]. This complete compilation
includes 118 SGL systems identical to the compilation of
[45] which are obtained from SLOAN Lens ACS, BOSS
Emission-line Lens Survey (BELLS) and Strong Legacy
Survey SL2S along with 40 new systems recently dis-
covered by SLACS and pre-selected by [47] (see Table I
in [41]). The 101 points used here are from the original
sample (158) whose redshifts are lower than z = 1.063
and with the quantity D, distance ratio (see next section),
compatible with D = 1 within 1σ c.l. (D > 1 is a no
physical region).

3 Methodology

3.1 Strong gravitational lensing systems

As it is largely known, strong gravitational lensing systems,
one of the predictions of GR [46], is a purely gravitational
phenomenon occurring when the source (s), lens (l), and
observer (o) are at the same signal line forming a struc-
tured ring called the Einstein radius (θE ) [46]. Usually, a
lens can be a foreground galaxy or cluster of galaxies posi-
tioned between a source–Quasar, where the multiple-image
separation from the source only depends on the lens and
source angular diameter distance. It is important to note that
such systems have recently become a powerful astrophysical
tool. For instance, the Hubble constant has been estimated by
time-delay measurements [48–53], the CDDR was tested by
using these systems in the Refs. [28,34,54,55]. Moreover,
properties of SGL also can restrict the deceleration param-
eter of the universe [56], space-time curvature [55,57], the
cosmological constant [58], the speed of light [59], and many
more.

However, it is important to stress that the constraint
obtained from SGL depends on a model of mass distribution
of lens. In the most simple assumption, the singular isother-
mal sphere (SIS) model, the Einstein radius θE is given by
[46]

θE = 4π
DAls

DAs

σ 2
SI S

c2 , (1)

where DAls is the angular diameter distance of the lens to the
source, DAs the angular diameter distance of the observer to
the source, c the speed of light, and σSI S the velocity disper-
sion caused by the lens mass distribution. It is important to
note here that σSI S is not exactly equal to the observed stellar
velocity dispersion (σ0) due to a strong indication, via X-ray
observations, that dark matter halos are dynamically hotter
than luminous stars.

A method developed by the Ref. [28] provided a power-
ful test for the CDDR using SGL systems and SNe Ia. The
method is based on equation (3) for lenses and an observa-
tional quantity defined by

D ≡ DAls

DAs

= θEc2

4πσ 2
SI S

. (2)

By assuming a flat universe with the comoving distance
between the lens and the observer is given as rls = rs−rl [60],
and using the relations rs = (1 + zs)DAs , rl = (1 + zl)DAl ,
rls = (1 + zs)DAls , one can obtain

D = 1 − (1 + zl)

(1 + zs)

DAl (z)

DAs (z)
. (3)
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By using a deformed CDDR, the above equation may be
written as:

(1 − D)
DLs (z)

DLl (z)
= (1 + zs)ηs(z)

(1 + zl)ηl(z)
. (4)

3.2 Gas mass fraction

Briefly, the cosmic gas mass fraction is defined as fgas =
�b/�M . The assumed constancy of this quantity within mas-
sive, relaxed clusters can be used to constrain cosmological
parameters by using the following expression [16,61]

fgas(z) = N

[
D∗

L(z)D∗1/2
A (z)

DL(z)D1/2
A (z)

]
, (5)

where the observations are taken in X-ray band, the nor-
malization factor N carries all the information about the
matter content in the cluster, such as stellar mass fraction,
non-thermal pressure and the depletion parameter γ , which
indicates the amount of cosmic baryons that are thermalized
within the cluster potential (this term will be detailed in next
section). The asterisk denotes the corresponding quantities
in the fiducial model used in the observations to obtain the
fgas (a flat �CDM model with Hubble constant H0 = 70
km s−1 Mpc−1 and the present-day matter density param-
eter �M = 0.3). It is important to comment that the ratio
in the brackets of Eq. (5) computes the expected variation
in f ref

gas (z) when the underlying cosmology is varied. This
term also accounts for deviations in the geometry of the Uni-
verse from the reference model, which makes the analysis
model-independent (see [61] for more details when η = 1 is
assumed in the reference model).

Our method is completely based on the recent results from
the Refs. [16,18]. In Ref. [16], the authors showed that the
gas mass fraction measurements extracted from X-ray data
are affected by a possible departure of η = 1 and the Eq. (5)
must be rewritten as

fgas(z) = N

[
η(z)1/2D∗3/2

L (z)

D3/2
L (z)

]
. (6)

The η parameter appears after using the deformed CDDR
relation in the denominator. So, the luminosity distance in
galaxy cluster redshift can be calculated by:

DL(z) = N 2/3

[
η(z)1/3D∗

L

f 2/3
gas (z)

]
. (7)

Finally, by using equations (7) and (4), one may obtain the
key equation for our test :

(1 − D) = (1 + zs)

(1 + zl)

η
2/3
s (z)

η
2/3
l (z)

D∗
Ll

(z) f 2/3
gas (zs)

D∗
Ls

(z) f 2/3
gas (zl)

. (8)

or

η
2/3
s (z)

η
2/3
l (z)

= (1 − D)
(1 + zl)

(1 + zs)

D∗
Ls

(z) f 2/3
gas (zl)

D∗
Ll

(z) f 2/3
gas (zs)

. (9)

Our method is independent on N if it is a constant (see next
section for details). The asterisk denotes the corresponding
quantities calculated in the fiducial model used in the obser-
vations to obtain the fgas (a flat �CDM model with Hubble
constant H0 = 70 km s−1 Mpc−1 and the present-day matter
density parameter �M = 0.3).

As one may see, in order to put limits on η0 it is necessary
to have gas mass fraction measurements on lens and source
redshifts for each SGL system. This is obtained by applying
a model independent non-parametric smoothing technique,
Gaussian Process, (see [62–64]) on the 40 gas mass fraction
obtained by the Ref. [42] (see Fig. 1-left). Gaussian Process
is a widely used smoothing method in which the compli-
cated parametric relationship is replaced by parametrizing a
probability model over the data. In mathematical terms, it is a
distribution over functions, characterized by a mean function
and covariance function. In order to avoid model dependence
appearing through the choice of prior mean function, we have
chosen it to be zero. It is quite common choice of mean func-
tion as one can always normalize the data so it has zero mean.
This method comes with a few inherent underlying assump-
tions as: each observation is an outcome of an independent
Gaussian distribution belonging to the same population and
the outcome of observations at any two redshifts are cor-
related due to their nearness to each other. The correlation
function between two redshifts (say z and z′) used in this
analysis is square exponential kernel, given by,

k(z, z′) = σ 2
f exp − (|z − z′|)2

2l2
(10)

Here, σ f and l are two hyperparameters which are calculated
by maximizing the corresponding marginal log-likelihood
probability function of the distribution.

4 Parametrizations

The η(z) parametrizations considered here are [11,13,15,
20]:

ηI (z) = 1 + η0z, (11)

ηI I (z) = 1 + η0
z

1 + z
, (12)

These are the main η(z) functions widely used in the liter-
ature as it effectively parametrize our ignorance of the under-
lying process responsible for a possible CDDR violation.
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Fig. 1 Left: Smooth plot of fgas versus redshift obtained after apply-
ing Gaussian process.The red line shows the best fit line while dark and
light regions are the 1σ and 2σ confidence bands respectively. Right:

The posteriors distributions for the η(z) functions. The solid and black
lines correspond to Eqs. (9) and (10)

Table 1 A summary of the current constraints on the η0 and ε parameters from different observables

Reference Data sample 1 + η0z 1 + η0z/(1 + z) (1 + z)ε

[5]*,a SNe Ia + �CDM + H(z) – – − 0.04+0.08
−0.07

[79] BAO + SNe Ia − 0.098 ± 0.084 − 0.151 ± 0.155 –

[16]* Gas mass fractions + SNe Ia − 0.03+1.03
−0.65 − 0.08+2.28

−1.22 –

[18]* Only Gas mass fractions − 0.06 ± 0.16 − 0.07 ± 0.24 –

[19] ADD + SNe Ia 0.16+0.56
−0.39 – –

[8] SNe Ia + H(z) – – 0.017 ± 0.055

[24] Radio galaxies + SNe Ia − 0.180 ± 0.244 − 0.415 ± 0.632 –

[23]* ADD + H(z) − 0.100+0.117
−0.126 − 0.157+0.179

−0.192 –

[23]* Gas mass fraction + H(z) 0.062+0.168
−0.146 − 0.166+0.337

−0.278 –

[25] ADD + SNe Ia + H(z) 0.07 ± 0.08 0.15 ± 0.18 –

[80] SNe Ia + BAO − 0.027 ± 0.064 − 0.039 ± 0.099 –

[28] SGL + SNe Ia − 0.005+0.351
−0.215 − –

[29]b SGL (SIS) + SNe Ia + �CDM 0.05 ± 0.15 0.09 ± 0.3 –

[29]b SGL (PLaw) + SNe Ia + �CDM 0.08 ± 0.22 0.06 ± 0.33

[29]c SGL (SIS) + SNe Ia + ω(z)CDM 0.01 ± 0.22 0.017 ± 0.28 –

[29]c SGL (PLaw) + SNe Ia + ω(z)CDM 0.054 ± 0.29 0.0035 ± 0.3 –

[81]d SGL (SIS) + SNe Ia + GRB − 0.072 ± 0.023 − 0.173 ± 0.037 –

[81]d SGL (PLaw) + SNe Ia + GRB 0.025+0.025
−0.024 0.065+0.075

−0.066 –

[54] SGL (PLaw) + SNe Ia + GRB 0.00 ± 0.10 − 0.036+0.37
−0.32 − 0.16+0.24

−0.52

[54] SGL (SIS) + SNe Ia + GRB 0.15 ± 0.13 − 0.18+0.45
−0.65 0.27+0.22

−0.38

[34] SGL (SIS) + HII-GP 0.0147+0.056
−0.066 – –

[82]e SNe Ia + RS − 0.06 ± 0.05 − 0.18 ± 0.16 –

This paperf SGL + galaxy clusters − 0.13 ± 0.13 − 0.36 ± 0.34 –

This paperg SGL + galaxy clusters − 0.01 ± 0.18 − 0.13 ± 0.24 –

aThe symbol “*” means 2σ error bars
bPlanck results
cWMAP9 results
dCrossing Statistic with Smoothing method
eMarkov chain Monte Carlo methods
f Considering 101 SGL systems with D ± σD < 1
gConsidering 87 SGL systems with D < 1
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5 Analysis and results

Since recent several studies have shown that slope of density
profiles of individual galaxies show a non-negligible scatter
from the SIS model (see the Ref. [65] and references there
in), hence a more general approach to describe the lensing
systems is considered: one with spherically symmetric mass
distribution in lensing galaxies in favor of power-law index
ϒ , ρ ∝ r−ϒ (PLaw). Under this assumption, the equation
(2) is written as [46]:

D = θEc2

4πσ 2
ap

f (θE , θap, ϒ), (13)

where f (θE , θap, ϒ) is a function which depends on the Ein-
stein’s radius θE , the angular aperture θap, used by certain
gravitational lensing surveys, and the power-law index ϒ . If
ϒ = 2, it gives the SIS model. In this paper, we use a flat
prior on the factor ϒ (1.75 ≤ ϒ ≤ 2.2). Thus, the uncertainty
related to Eq. (11) is given by:

σD = D

√√√√4

(
σσap

σap

)2

+ (1 − ϒ)2

(
σθE

θE

)2

. (14)

Following the approach used by [66], Einstein’s radius uncer-
tainty follows σθE = 0.05θE (5% for all systems). As men-
tioned in ref. [41], it is necessary to add 12.22% of intrinsic
error associated to D measurement. As the random variation
in galaxy morphology is almost Gaussian, the authors of Ref.
[41] found that an additional error term of about 12.22% is
necessary to have 68.3% of the observations to lie within
1σ of the best-fit ωCDM model (see also the Ref. [46]). As
commented earlier, we have considered in our analyses only
the SGL systems whose the quantity D (by fixing ϒ = 2 )
is compatible with unity within 1σ c.l.

On the other hand, the term N in Eq. (5) is N =
γ (z)K (z)(�b/�M ), where K (z) quantifies inaccuracies in
instrument calibration as well as any bias in the mass mea-
sured due to substructure, bulk motions and/or non-thermal
pressure in the cluster gas. The K (z) parameter for this sam-
ple was estimated to be K = 0.96 ± 0.12 and no significant
trend with mass, redshift or the morphological indicators
were verified [44]. The depletion factor, γ , was estimated
for this sample to be γ = 0.85±0.05 (see fig. (6) in the Ref.
[42]). No evolution for the γ parameter has been observed
(see also the Refs. [67,68]). As commented earlier, if N is
constant (it is assumed constant in this paper), our results are
independent of the baryon budget of galaxy clusters.

Finally, in order to obtain constraints on η0 for the two
functions, we use the Eq. (9) and evaluate the statistical
analysis by defining the likelihood distribution function,

L ∝ e−χ2/2, where

χ2 =
101∑
i=1

(
η

2/3
s (z)

η
2/3
l (z)

− (1 − D)
(1+zl )
(1+zs)

D∗
Ls

(z) f 2/3
gas (zl )

D∗
Ll

(z) f 2/3
gas (zs )

)2

σ 2
obs

,

where σ 2
obs correspond to error from the D measurements

and cluster gas mass fractions, being obtained from usual
method of error propagation. As commented earlier, the aster-
isk denotes the corresponding quantities in the fiducial model
used in the observations to obtain the fgas for each galaxy
cluster (a flat �CDM model with Hubble constant H0 = 70
km s−1 Mpc−1 and the present-day matter density parameter
�M = 0.3). In order to obtain the values of gas mass frac-
tion and its respective 1σ error at each zs and zl , we apply
Gaussian Process on gas mass fraction data as shown in the
Fig. 1 (left). It is important to highlight an in-build assump-
tion about the data i.e; all the direct measurements of fgas
mass fraction and strong gravitational lensing are indepen-
dent and a random outcome of the Gaussian distribution. We
observed the same in most of the published works working
with the similar dataset [69–73]. As to apply Bayesian analy-
sis, one need to know the parent probability distribution func-
tion associated with each observation. If that is not known
(which is the case with most of the astronomical observations
and measures) then Gaussian is found to be the best choice
as it is strongly supported by central limit theorem [74–76].

In Fig. 1-right the likelihoods for the two η(z) functions
are plotted. For both the η(z) functions , I and II , the results
are (at 1σ and 2σ ): η0 = −0.13 ± 0.13 ± 0.27 and η0 =
−0.36±0.34±0.61, respectively. As one may see, the CDDR
remain redshift independent within 2σ c.l. A summary of the
current constraints on the η0 and from different cosmological
observable are displayed in the Table I (some authors also
have used another deformed CDDR, such as the fifth column
in the table).

We also have performed the analyses by considering
another SGL subsample (and the corresponding fgas mea-
surements) containing SGL systems whose the D quantity
(fixing ϒ = 2) is lower than 1. This new subsample contains
87 SGL systems and the results for η(z) functions given by
equations (11) and (12) are, respectively: η0 = −0.01±0.18
and η0 = −0.13 ± 0.24 at 1σ c.l. (by marginalizing on ϒ).
As one may see, these results are also in full agreement with
the CDDR validity.

6 Conclusions

In this work, a new method was proposed to test the redshift
dependence of cosmic distance duality relation, DL/DA =
(1 + z)2η(z) . Galaxy clusters data (gas mass fraction) plus
strong gravitational lensing systems are used for that purpose.
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No specific cosmological model was used in analysis. Unlike
most tests involving galaxy cluster data, our results are inde-
pendent of the baryon budget of a clusters (if it is independent
on cluster redshift). For both the two η(z) parameterizations
considered, the CDDR remain redshift independent within
≈ 1.5σ c.l. (see Table 1).

On the other hand, it is worth to comment that by taking the
Planck best-fitted cosmology, the Ref. [77] considered SGL
observations and relaxed the assumption that stellar luminos-
ity and total mass distribution follows the same power-law.
Their results indicate that a model in which mass traces light
is rejected at > 95% c.l.. Moreover, the authors also find the
presence of dark matter in the form of a mass component dis-
tributed differently from the light (see also the Ref. [78]). One
may check the consequences of relaxing the rigid assumption
that the stellar luminosity and total mass distributions follow
the same power law on our approach.

In the near future, it is expected that several surveys
(Erosita, EUCLID mission, Pan-STARRS, LSST, JDEM)
will discover thousands of strong lensing systems and galaxy
clusters. So, the method proposed here, will put stringent lim-
its on the cosmological parameter η0. It is important to note
that our method considered a flat universe and the role of
curvature on our results will be an interesting extension of
this work when better data are available.
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