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Abstract We consider the radiation of two or more soft
partons in QCD hard-scattering at one-loop order. The cor-
responding scattering amplitude is singular, and the singular
behaviour is controlled by a process-independent soft cur-
rent. Using regularization in d = 4 − 2ε space-time dimen-
sions, we explicitly evaluate the ultraviolet and infrared diver-
gent (ε-pole) terms of the one-loop soft current for emission
of an arbitrary number of soft partons in a generic hard-
scattering process. Then we consider the specific case of
soft quark–antiquark (qq̄) emission and we compute the one-
loop current by including the finite terms. We find that the
one-loop soft-qq̄ current exhibits a new type of transverse-
momentum singularity, which has a quantum (absorptive)
origin and a purely non-abelian character. At the squared
amplitude (cross section) level, this transverse-momentum
singularity produces contributions to multijet production pro-
cesses in hadron collisions. The one-loop squared current
also leads to charge asymmetry terms, which are a distinc-
tive features of soft-qq̄ radiation. We also extend these results
to the cases of QED and mixed QCD×QED radiative correc-
tions for soft fermion–antifermion emission.

1 Introduction

The physics program carried out at the large hadron collider
(LHC) has already produced an impressive amount of high-
precision data, and similar data will be obtained in the next
runs of the LHC. Theoretical predictions are thus demanded
to achieve a corresponding high precision.

In the context of the perturbative evaluation of QCD
radiative corrections, the present high-precision frontier is
represented by computations at the next-to-next-to-next-to-
leading order (N3LO) in the QCD coupling αS. Some N3LO
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results for LHC processes are already available (see, e.g.,
related references in Ref. [1]). In the case of observables
that are highly sensitive to multiple radiation of soft and
collinear partons, the fixed-order QCD predictions have to
be supplemented with the all-order resummed calculations
of classes of large logarithmic contributions. In few specific
cases (see, e.g., Refs. [2–19]) resummed QCD calculations
have reached the next-to-next-to-next-to-leading logarithmic
(N3LL) accuracy.

An important feature of QCD scattering amplitudes is the
presence of singularities in soft and collinear regions of the
phase space, and the corresponding presence of infrared (IR)
divergences in virtual contributions at the loop level. The
soft and collinear singularities have a process-independent
structure, and they are controlled by universal factorization
formulae and corresponding soft/collinear factors. As briefly
recalled below, these factorization properties are relevant for
both fixed-order and resummed QCD calculations.

In the computation of physical observables for hard-
scattering processes, phase space soft/collinear singularities
and virtual IR divergences cancel between themselves. How-
ever, much technical effort is required to achieve and imple-
ment the cancellation, and the effort highly increases by
increasing the perturbative order. Soft/collinear factorization
formulae can be used to organize and greatly simplify the
cancellation mechanism of the IR divergences in fixed-oder
calculations.

In the evaluation of observables close to the exclusive
boundary of the phase space, real and virtual radiative correc-
tions in the scattering amplitudes are kinematically strongly
unbalanced. As a consequence, the cancellation mechanism
of the IR divergences leaves residual effects in the form of
large logarithmic contributions. Soft/collinear factorization
formulae and the corresponding singular factors are the basic
ingredients for the explicit computation and resummation of
these large logarithmic contributions.
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The singular factors at O(αS) and O(α2
S) for soft and

collinear factorization of scattering amplitudes are known
since long time. The explicit knowledge of soft/collinear
factorization at O(αS) has been essential to devise fully
general (process-independent and observable-independent)
methods to carry out next-to-leading order (NLO) QCD cal-
culations (see, e.g., Refs. [20–22]). Similarly, the knowledge
of soft/collinear factorization formulae at O(α2

S) [23–34] is
exploited to develop methods (see, e.g., the review in Ref. [1])
at the next-to-next-to-leading order (NNLO). Soft/collinear
factorization up to O(α2

S) contributes to resummed calcu-
lations up to next-to-next-to-leading logarithmic (NNLL)
accuracy (see, e.g., Refs. [35,36]).

Soft and collinear factorization atO(α3
S) can be used in the

context of N3LO calculations and of resummed calculations
at N3LL accuracy. The process-independent singular factors
for the various collinear limits at O(α3

S) are presented in
Refs. [33,37–48]. Soft factorization of scattering amplitudes
at O(α3

S) requires the study of various tree-level and loop
contributions. Triple soft-gluon radiation at the tree level is
studied in Ref. [49]. Double soft emission at one loop level
has been considered recently in Ref. [50]. Single soft-gluon
radiation at two loop order is examined in detail in Refs.
[47,51–53].

This paper is devoted to a study of soft-parton emission
at O(α3

S) and beyond this order. More precisely, we consider
the singular behaviour of scattering amplitudes in the limit
in which two or more external partons are soft. The singu-
larity is controlled in factorized form by a current for soft
multiparton radiation from hard partons. At one-loop order
the soft current contains IR and ultraviolet (UV) divergent
contributions that we explicitly evaluate for the emission of
an arbitrary number of soft partons. In the particular case of
emission of a soft quark-antiquark (qq̄) pair, we explicitly
compute also the finite contributions to the one-loop current.
We comment on the related results of Ref. [50] in the paper.

The outline of the paper is as follows. In Sect. 2 we intro-
duce our notation, and we recall the soft factorization for-
mula for scattering amplitudes and the known results on the
tree-level currents for emission of a single soft gluon and of
soft-qq̄ pair. We use analytic continuation in d = 4 − 2ε

space-time dimensions to regularize IR and UV divergences
in loop contributions. In Sect. 3 we discuss general features
of the current for multiple soft radiation at the loop level.
In particular, we present in explicit form the result of the IR
and UV divergent (ε-pole) terms of the one-loop soft current.
In Sect. 4 we consider the emission of a soft-qq̄ pair and we
compute the corresponding one-loop current by including the
finite (i.e., O(ε0)) terms. We comment on general features
of our result that is valid for generic multiparton scattering
processes in arbitrary kinematical configurations. Section 5
is devoted to consider soft-qq̄ radiation at the squared ampli-
tude level. We first recall the results for the squared current

at the tree level, and then we explicitly compute the one-
loop squared current. We discuss the structure of the charge
asymmetry contributions, which are a distinctive feature of
soft-qq̄ radiation at the loop level. In Sect. 5.3 we present
simplified expressions for processes with two and three hard
partons. In Sect. 6 we generalize our QCD results for soft
qq̄ emission to the cases of QED and mixed QCD×QED
radiative corrections for soft fermion-antifermion emission.
A brief summary of our results is presented in Sect. 7.

2 Soft factorization

We consider the amplitude (the S-matrix element) M of a
generic scattering process whose external particles (the exter-
nal legs of M) are QCD partons (quarks, antiquarks and
gluons) and, possibly, additional non-QCD particles (i.e.,
partons with no colour charge such as leptons, Higgs and
electroweak vector bosons and so forth). We use the notation
M(p1, p2, . . . , pn), where pi (i = 1, . . . , n) is the momen-
tum of the QCD parton Ai (Ai = g, q or q̄ ). Unless other-
wise specified, the dependence of M on the momenta (and
quantum numbers) of additional colourless particles is not
explicitly denoted.

The external QCD partons are on-shell with physical spin
polarizations (thus,M includes the corresponding spin wave
functions), and we always define the external momenta pi ’s
as outgoing momenta. Note, however, that we do no restrict
our treatment to processes with physical partons in the final
state. In particular, the time-component (i.e. the ‘energy’)
p0
i of the momentum vector pν

i (ν = 0, 1, . . . , d − 1) in
d space-time dimensions is not positive definite. Different
types of physical processes are described by considering dif-
ferent kinematical regions of the parton momenta and by sim-
ply applying crossing symmetry to the wave functions and
quantum numbers of the external partons of the same matrix
element M(p1, p2, . . . , pn). According to our definition
of the momenta, if pi has positive energy, M(. . . , pi , . . .)
describes a physical process that produces the parton Ai in
the final state; if pi has negative energy, M(. . . , pi , . . .)
describes a physical process produced by the collision of
the antiparton Ai in the initial state.

The scattering amplitude M also depends on the colour
indices {c1, c2, . . .} and on the spin (e.g. helicity) indices
{s1, s2, . . .} of the external QCD partons, and we write

Mc1,c2,...,cn
s1,s2,...,sn (p1, p2, . . . , pn). (1)

It is convenient to directly work in colour (and spin) space,
and to use the notation of Ref. [22] (see also Ref. [54]). We
treat the colour and spin structures by formally introducing
an orthonormal basis {|c1, c2, . . . , cn〉 ⊗ |s1, s2, . . . , sn〉} in
colour + spin space. The scattering amplitude can be written
as
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Mc1,c2,...
s1,s2,... (p1, p2, . . .) ≡

(
〈c1, c2, . . .| ⊗ 〈s1, s2, . . .|

)

|M(p1, p2, . . .)〉. (2)

Thus |M(p1, p2, . . . , pn)〉 is a vector in colour + spin (helic-
ity) space.

As previously stated, we define the external momenta pi ’s
as outgoing momenta. The colour indices {c1, c2, . . . cn} are
consistently defined as outgoing colour indices: ci is the
colour index of the parton Ai with outgoing momentum pi
(if pi has negative energy, ci is the colour index of the phys-
ical parton Ai that collides in the initial state). An analogous
comment applies to spin indices.

The amplitude M can be evaluated in QCD perturbation
theory as a power series expansion (i.e., loop expansion) in
the QCD coupling gS (or, equivalently, in the strong coupling
αS = g2

S/(4π)). We write

M = M(0) + M(1) + M(2) + · · · , (3)

where M(0) is the tree-level scattering amplitude, M(1) is
the one-loop contribution, M(2) is the two-loop contribu-
tion, and so forth. More generally, M(0) is not necessarily a
tree amplitude, but rather the lowest-order amplitude for that
given process. Thus, M(L) (L = 1, 2 . . .) is the correspond-
ing L-loop correction. For instance, in the cases of the dipho-
ton production process gg → γ γ or the Higgs boson (H )
production process gg → H , the corresponding amplitude
M(0) involves a quark loop (a massive-quark loop in the case
of gg → H ). Note that in Eq. (3) we have not made explicit
the dependence on powers of gS. Thus, M(0) includes an
integer power of gS as overall factor, and M(1) includes an
extra factor of g2

S (i.e., M(1)/M(0) ∝ g2
S).

Physical processes take place in four-dimensional space-
time. The four-dimensional evaluation of the L-loop ampli-
tude M(L) leads to UV and IR divergences that have to
be properly regularized. We regularize both kind of diver-
gences by performing the analytic continuation of the loop
momenta and phase-space in d = 4 − 2ε space-time dimen-
sions. We postpone comments on different variants of dimen-
sional regularization. The dimensional-regularization scale
is denoted by μ. After regularization, the UV and IR diver-
gences appears as ε-poles of the Laurent series expansion
in powers of ε around ε = 0. Throughout the paper we for-
mally consider expressions for arbitrary values of d = 4−2ε

(equivalently, in terms of ε expansions, the expressions are
valid to all orders in ε before they are eventually truncated at
some order in ε). We always consider unrenormalized ampli-
tudes, and gS denotes the bare (unrenormalized) coupling
constant.

We are interested in studying the behaviour of M in the
kinematical configuration where one ormore of the momenta
of the external massless partons (gluons or massless quark
and antiquarks) become soft. In this kinematical configu-

ration, M becomes singular. To make the notation more
explicit, the soft momenta are denoted by qν

k , while the other
parton momenta are still denoted by pν

i . The behaviour of
M(. . . , qk, . . . , pi , . . .) in thismultiparton soft region is for-
mally specified by performing an overall rescaling of all soft
momenta as qk → λqk (the rescaling parameter λ is the
same for each soft momentum qk) and by considering the
limit λ → 0. In this limit, if the set of soft partons has m
(m ≥ 1) momenta qk’s (k = 1, . . . ,m), the amplitude M is
singular and it behaves as

M(λq1, . . . , λqm, p1 . . . , pn) ∼ 1

(λ)m
mod (lnr λ)

+ · · · , (λ → 0). (4)

The power-like behaviour (λ)−m that we have specified in
the right-hand side of Eq. (4) determines the dominant singu-
lar terms of M in the multiple soft region. The logarithmic
corrections lnr λ (r = 0, 1, 2, . . .) arise from scaling viola-
tion, since the naïve (power-like) scaling behaviour is vio-
lated by the effects of the UV and IR divergences of the scat-
tering amplitude at the loop level (see Sect. 3). The dots on
the right-hand side of Eq. (4) denote the subdominant singu-
lar behaviour of M. The relative suppression factor between
subdominant and dominant terms is (at least) of O(

√
λ).

The computation of physical observables eventually requ
ires the phase-space integration of the squared amplitude
|M|2. We note that, after phase-space integration over the
soft momenta, the dominant singular behaviour of |M|2
produces logarithmic soft (IR) divergences (i.e., ε poles),
whereas the subdominant singular behaviour does not lead
to soft divergences. In this paper we are interested in the
dominant singular behaviour of Eq. (4).

In the soft multiparton limit, the dominant singular
behaviour of M can be expressed by the following process-
independent (universal) factorization formula [27–29,55,56]

|M(q1, . . . , qm, p1, . . . , pn)〉
= J(q1, . . . , qm) |M(p1, . . . , pn)〉 + · · · , (5)

where, analogously to Eq. (4), the dots on the right-hand
side denote subdominant singular terms. The amplitude
M(p1, . . . , pn) on the right-hand side of Eq. (5) is simply
obtained by removing the m external legs with soft parton
momenta q1, . . . , qm from the amplitude on the left-hand
side. The factor J(q1, . . . , qm) is the soft multiparton cur-
rent that embodies the dominant singular behaviour denoted
in the right-hand side of Eq. (4).

In the case of tree-level scattering amplitudes [28,57,58],
the factorization formula (5) can be simply derived by consid-
ering soft-parton radiation from the hard-parton (the partons
with momenta p1, . . . , pn) external legs of the amplitude and
by directly applying the eikonal approximation for emission
vertices and propagators. At the one-loop level, the factoriza-
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tion structure of Eq. (5) was worked out in Refs. [27,29,55].
In particular, as discussed in detail in Ref. [29], the one-
loop soft current can still be computed by using the eikonal
approximation for soft-parton radiation from the external
hard partons, and this discussion generalizes to two-loop and
higher-loop orders. Owing to its origin by eikonal radiation
from the hard partons, the soft current can also straightfor-
wardly be expressed in equivalent form as matrix element of
Wilson line operators [56].

The soft current J(q1, . . . , qm) depends on the soft par-
tons, specifically on their momenta and their quantum num-
bers (flavour, spin, colour), and it also depends on the hard
partons (on their momenta and their quantum numbers),
though we use a customary notation in which the depen-
dence of J on p1, . . . , pn is not explicitly denoted in its argu-
ment. The current J is an operator (a ‘rectangular’ matrix)
that acts from the (lower-dimensional) colour + spin space
of the hard partons to the (higher-dimensional) colour +
spin space of the soft and hard partons. We remark on the
fact that the soft current J is simply proportional to the
unit operator in the spin subspace of the hard partons, since
soft radiation is insensitive to the spin of the hard radiating
partons.

In spite of its dependence on hard partons, the soft cur-
rent J is completely universal, namely, it does not depend
on the specific scattering amplitude M and on its corre-
sponding specific physical process. The universality of J
also implies that it is directly applicable in contexts that
do not directly refer to the soft behaviour of scattering
amplitudes. For instance, J (or, more specifically, J† J) is
precisely the integrand of any specific soft function (see,
e.g., Ref. [35] and references therein) that can be intro-
duced through soft-collinear effective theory (SCET) [59–
64]
methods.

The colour-space factorization formula (5) does not
require any specifications about the detailed colour struc-
ture of the scattering amplitudes in its left-hand and right-
hand sides. Scattering amplitudes can be decomposed in a
form that factorizes the QCD colour from colourless kine-
matical coefficients, which are colour-ordered subamplitudes
(see, e.g., Ref. [65]). Colour-ordered subamplitudes fulfil soft
factorization formulae that are analogous to Eq. (5) in terms
of colour-stripped (though colour-ordered) soft factors (see,
e.g., Refs. [27,58]). The factorization properties of colour-
order subamplitudes and the corresponding soft factors can
be directly and explicitly derived from Eq. (5). To this pur-
pose it is sufficient to insert the colour decomposition of M
and the explicit colour structure of J in Eq. (5). Therefore,
the colour-space factorization of Eq. (5) and soft factoriza-
tion of colour-ordered subamplitudes are equivalent formu-
lations. The advantage of Eq. (5) is that it leads to a more
compact formulation, without the necessity of introducing

the explicit colour decomposition of M, whose actual form
depends on the specific partonic content of the amplitude
(e.g., on the number of gluons and quark-antiquark pairs1)
and on the loop order. Moreover, the colour space formula-
tion can simplify the direct computation of the soft limit of
squared amplitudes (see, e.g., Sect. 5 ).

The soft current J in Eq. (5) can be evaluated in QCD
perturbation theory, and it can be expressed in terms of a loop
expansion that is completely analogous to that in Eq. (3). We
write

J = J (0) + J (1) + J (2) + · · · , (6)

where J (0) is the tree-level current, J (1) is the one-loop cur-
rent, and so forth. Analogously to Eq. (3), the loop label L
in J (L) refers to the unrenormalized current. Inserting the
expansions (3) and (6) in Eq. (5) we obtain factorization for-
mulae that are valid order-by-order in the number of loops.
The soft factorization formula for tree-level (lowest-order)
amplitudes is

|M(0)(q1, . . . , qm, p1, . . . , pn)〉
� J (0)(q1, . . . , qm) |M(0)(p1, . . . , pn)〉, (7)

where the symbol ‘�’ means2 that we are neglecting sub-
dominant terms in the soft limit (i.e., the terms denoted by
dots in the right-hand side of Eqs. (4) and (5)). The soft fac-
torization formula for one-loop amplitudes is

|M(1)(q1, . . . , qm, p1, . . . , pn)〉
� J (1)(q1, . . . , qm) |M(0)(p1, . . . , pn)〉

+J (0)(q1, . . . , qm) |M(1)(p1, . . . , pn)〉. (8)

The tree-level current for the emission of a single soft
gluon of momentum qν is well known [57]:

J (0)(q) = gS με
∑
i∈H

T i
pi · ε(q)

pi · q ≡ J (0)
ν (q)εν(q) , (9)

where the notation i ∈ H means that the sum extends over
all hard partons (with momenta pi ) in M, εν(q) is the spin
polarization vector of the soft gluon, and T i is the colour
charge of the hard parton i .

The spin index s and the colour index a (a = 1, . . . , N 2
c −

1, for SU (Nc) QCD with Nc colours) of the soft gluon can
be specified by acting onto Eq. (9) in colour+spin space as
in Eq. (2). Considering (〈a| ⊗ 〈s| ) J (0)(q) ≡ J (0) a

s (q), we
have (〈a| ⊗ 〈s| ) εν(q) T i = εν

(s)(q) T a
i , where T a

i denotes
the generators of SU (Nc) of the representation of the parton

1 In particular, if the set of soft partons includes one or more quark-
antiquark pairs, the scattering amplitudes in the left-hand and right-hand
sides of Eq. (5) have different numbers of quark-antiquark pairs and,
therefore, they have different colour decompositions.
2 The symbol ‘�’ is used throughout the paper with the same meaning
as in Eq. (7).
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i . We have 〈ci | T a
i |c′

i 〉 = (T a
i )ci c′

i
, where (T a)cb ≡ i fcab

(colour-charge matrix in the adjoint representation) if the
parton i is a gluon and (T a)αβ ≡ taαβ (colour-charge matrix
in the fundamental representation, with α, β = 1, . . . , Nc) if
the parton i is a quark ((T a)αβ ≡ t̄ aαβ = −taβα if the parton
i is an antiquark). We normalize the colour matrices such
as [ta, tb] = i fabc and Tr(tatb) = TR δab with TR = 1/2.
The colour-charge algebra gives [T a

i , T b
j ] = i fabcT a

i δi j and∑
a T

a
i T

a
j ≡ T i · T j with T2

i = Ci , where Ci is the Casimir
operator of the representation of the parton i , i.e.Ci = CA =
Nc if i is a gluon and Ci = CF = (N 2

c − 1)/(2Nc) if i is a
quark or antiquark.

We note that the colour charge operators T i fulfil some rel-
evant properties related to colour conservation. For instance,
we have [22]
∑
i∈M

T i |M〉 = 0, (10)

which follows from the fact that the scattering ampli-
tude M is a colour-singlet state (the notation i ∈ M
means that the sum in Eq. (10) extends over all exter-
nal partons of M). In particular, Eq. (10) implies that
the tree-level soft current in Eq. (9) leads to a gauge
invariant soft factor since qν J (0)

ν (q) |M(p1, . . . , pn)〉 ∝∑
i∈H T i |M(p1, . . . , pn)〉 = 0.
A property analogous to that in Eq. (10) is fulfilled by the

soft multiparton current J . We have
(∑
k∈S

T k +
∑
i∈H

T i

)
J(q1, . . . , qm)

= J(q1, . . . , qm)
∑
i∈H

T i , (11)

or, equivalently,

∑
k∈S

T k J(q1, . . . , qm) =
[
J(q1, . . . , qm),

∑
i∈H

T i

]
, (12)

where the notation k ∈ S (i ∈ H ) means that the sum extends
over all the soft (hard) partons in J . The relations in Eqs. (11)
and (12) express the property of colour flow conservation and
follow from the fact that the total colour charge is conserved
in the radiation process of soft partons by hard partons. Note
from Eq. (12) that the total charge of the soft partons acts on
J as a rotation of its hard-parton charges. We remark that
Eqs. (10)–(12) are valid to all orders in the loop expansion
or, equivalently, order-by-order in QCD perturbation theory.
It is straightforward to explicitly check that the soft single-
gluon current in Eq. (9) fulfils the colour flow conservation
property in Eq. (11).

Since scattering amplitudes are colour-singlet states, the
structure of soft factorization in Eq. (5) implies that the
explicit expression of the universal soft current J necessarily
involves some degrees of arbitrariness. Different expressions

for J are indeed permitted, provided the difference is propor-
tional to an operator that is proportional to the total colour
charge of the hard partons. Owing to Eq. (10), this degree
of arbitrariness is physically harmless (it does not affect the
soft behaviour of the scattering amplitude) and the ensuing
different expressions of J are fully equivalent (although they
are not exactly equal at the formal level, before acting onto
colour-singlet states). The property of colour-flow conserva-
tion in Eq. (11) does not remove this degree of arbitrariness.

For subsequent use (and similarly to Ref. [49]) we intro-
duce the notation

O
cs
= O′, (13)

where the subscript CS in the symbol
cs
= means that the equal-

ity between the colour operators O and O′ (e.g., soft currents
or their corresponding squared currents) is valid if these oper-
ators act (either on the left or on the right) onto colour-singlet
states. The notation in Eq. (13) permits to directly relate (and
equate) expressions that simply differ by contributions that
are due to the physically harmless arbitrariness of the soft
current J .

The soft factor for radiation of two soft gluons from
tree-level colour-ordered subamplitudes with external gluons
and with external gluons and an additional quark-antiquark
pair was computed in Ref. [58]. The tree-level current
J (0)(q1, q2) for emission of two soft gluons in a generic scat-
tering amplitude was given in Ref. [28]. The tree-level current
for emission of three soft gluons was computed in Ref. [49].

The tree-level current for emission of a single soft quark
(or antiquark) vanishes. This result is equivalent to say that
the dominant singular behaviour in Eq. (4) is absent in the
soft single-quark limit (the radiation of a single soft quark
only produces a subdominant behaviour of O(1/

√
λ) in the

right-hand side of Eq. (4)).
The tree-level current for emission of a soft qq̄ pair

was computed in Ref. [28], where the result was explicitly
reported at the level of squared amplitudes (i.e., the result
refers to J† J). The corresponding result for the qq̄ current
is

J (0)(q1, q2) = − (gSμε
)2 ∑

i∈H
tc T c

i
pi · j (1, 2)

pi · q12
, (14)

where we have introduced the fermionic current jν(1, 2),

jν(1, 2) ≡ u(q1) γ ν v(q2)

q2
12

, q12 = q1 + q2. (15)

The soft quark and antiquark have momenta qν
1 and qν

2 ,
respectively, and u(q) and v(q) are the customary Dirac
spinors. The spin indices (s1 and s2) and the colour indices
(α1 and α2) of the quark and antiquark are embodied in
the colour+spin space notation of Eq. (14). Analogously to
Eq. (9), we can consider (〈α1, α2| ⊗ 〈s1, s2| ) J(q1, q2) ≡
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Jα1,α2
s1,s2 (q1, q2) and we have (〈α1, α2|⊗ 〈s1, s2| ) tc u(q1) γ ν

v(q2) = tcα1α2
u(s1)(q1) γ ν v(s2)(q2).

3 One-loop current for multiple soft emission: UV and
IR divergences

The soft singular behaviour of one-loop amplitudes (see
Eq. (8)) is controlled by J (0) and by an additional new ingre-
dient, the one-loop soft current J (1).

The one-loop soft limit for emission of a single soft gluon
was worked out independently by two groups [27,29], find-
ing results that are in agreement. The analysis of Ref. [27] is
based on the study of colour-ordered subamplitudes, while
Ref. [29] considers generic scattering amplitudes. The results
of Refs. [27,29] are valid for the case of massless hard par-
tons. The generalization of the results of Ref. [29] to include
massive hard partons (such as heavy quarks) was carried out
in Ref. [31,32]. In the remaining part of this paper we limit
ourselves to consider scattering amplitudes with massless
hard partons.

The result of the one-loop current for single gluon emis-
sion is [29] (we explicitly write J (1) a ≡ 〈a| J (1), where a is
the colour index of the soft gluon):

J (1) a = − (gS με
)3

c�

1

ε2 �(1 − ε)�(1 + ε) i fabc

×
∑

i, j ∈H
i �= j

T b
i T c

j

(
pν
i

pi · q − pν
j

p j · q

)
εν(q)

× (−2pi · q − i0)−ε
(−2p j · q − i0

)−ε

(−2pi · p j − i0
)−ε

, (16)

where ‘x − i0’ denotes the customary Feynman prescrip-
tion for analytic continuation in different kinematical regions
(x > 0 and x < 0) and c� is the typical volume factor of
d-dimensional one-loop integrals:

c� ≡ �(1 + ε)�2(1 − ε)

(4π)2−ε �(1 − 2ε)
. (17)

We remark that Eq. (16) gives the complete result to all orders
in the ε expansion around ε = 0 (equivalently, the result in
arbitrary d = 4 − 2ε space-time dimensions).

We comment on some features of Eq. (16). The one-loop
current is proportional to the structure constants fabc of the
gauge group and, therefore, it is purely non-abelian. This is
in agreement with the absence of one-loop corrections to the
soft current for single soft-photon emission in massless QED
[66,67]. The current in Eq. (16) involves non-abelian colour
correlations, i fabc T b

i T c
j , with two hard partons. Its kinemat-

ical structure has a rational dependence on pi · ε(q)/pi · q
(which is analogous to that in the tree-level current of Eq. (9))
that is only modified through logarithmic corrections by the

one-loop interactions. The logarithmic corrections are due
to the ε expansion of the last factor in the right-hand side
of Eq. (16), and they are proportional to powers of ln q2⊥ i j
(modulo branch-cut effects), where q⊥ i j ,

q2⊥ i j = 2(pi · q)(p j · q)

pi · p j
, (18)

has a simple kinematical interpretation since it is the trans-
verse component of the gluon momentum q with respect to
the longitudinal direction singled out by the momenta pi and
p j (in a reference frame in which pi and p j are back-to-
back) of the colour-correlated partons. The overall scaling
behaviour of J (1)(λq) (with λ > 0) in the limit λ → 0 is
proportional to (λ2)−ε/λ = (1/λ)mod(εr lnr λ), and it is in
agreement with Eq. (4). In particular, we explicitly see that
the ln λ-enhancement is produced by the use of dimensional
regularization to avoid the IR and UV divergences in the
one-loop contribution to J . Performing the ε expansion of
Eq. (16), this IR and UV behaviour produces double (1/ε2)
and single (1/ε) poles near ε = 0.

The two-loop current for single soft-gluon emission was
computed in Ref. [47] up to including contributions ofO(ε0)

for the simplest case of scattering amplitudes with only two
hard partons. Subsequently this result was extended up to
O(ε2) [51,52] and to all orders in ε [52]. The two-loop result
of Refs. [47,51,52] has a structure that is very similar to
the one-loop current in Eq. (16). More involved structures,
in terms of both colour correlations and kinematical depen-
dence, do appear in the general case of scattering amplitudes
with three or more hard partons, and the corresponding two-
loop current for single soft-gluon emission was considered
and explicitly computed in Ref. [53], by including the finite
contributions up to O(ε0).

We now discuss multiple soft radiation at one-loop order.
The structure of the loop-level current J for multiple soft
radiation is expected to be definitely more complex (in terms
of both colour and kinematical dependence) than the single
soft-gluon current in Eq. (16). The presence of two or more
soft partons and the ensuing dependence on their momenta
increases the number of relevant kinematical invariants,
which drive an increased complexity of colour and kinemati-
cal correlations (especially at high orders in the ε expansion).
In the remaining part of this Section we deal with general
properties of the soft current J with m ≥ 2 soft partons. In
particular, we consider the UV and IR divergences of J and
we discuss their regularization scheme dependence.

The one-loop current for multiple soft emission has (anal-
ogously to Eq. (16)) double (1/ε2) and single (1/ε) pole con-
tributions due to the presence of IR and UV divergences in
the four-dimensional case (ε = 0). At L-loop order, the cur-
rent J (L) has poles of the type 1/εk with 2L ≥ k ≥ 1.
These ε-pole contributions are directly related to the corre-
sponding contributions to the multiparton scattering ampli-
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tudes [54,68–72]. The ε-pole contributions to the one-loop
current J (1) have a general structure, whose explicit form
can be directly derived from the known universal struc-
ture of the IR and UV divergences of one-loop scattering
amplitudes [22,54,73,74]. Starting from the results in Refs.
[22,54,73,74], the procedure to derive the ε-pole contribu-
tions to J (1) is completely analogous to that used in Refs.
[33,42] for the study of the multiparton collinear limit of
scattering amplitudes (see, in particular, Eqs. (104)–(109) in
the arXiv version of Ref. [33] and replace the collinear split-
ting matrix Sp(1) with the soft current J (1)). Moreover that
procedure can be extended to higher-loop orders and it leads
to a compact representation of the ε-pole contributions to J
at arbitrary perturbative orders (see the analogous procedure
in Sect. 6.1 and, in particular, Eq. (137) in the arXiv version
of Ref. [33] and replace Sp with J). Owing to the com-
plete analogy with the collinear limit studied in Ref. [33],
we limit ourselves to present the final results for the soft
limit.

The general all-order representation of the ε-pole contri-
butions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn)

J [no ε−poles](q1, . . . , qm) V−1(p1, . . . , pn), (19)

where J [no ε−poles] is obtained from J by properly subtract-
ing its ε-pole part order by order in the loop expansion.
Therefore at each perturbative order J [no ε−poles] is finite in
the limit ε → 0 order by order in the ε expansion around
ε = 0. Note that this statement refers to the loop expansion
of J [no ε−poles] with respect to renormalized QCD coupling
(the use of the renormalized QCD coupling removes ε poles
of UV origin, which cannot be absorbed in the V factors
of Eq. (19)). Obviously, at the tree level J and J [no ε−poles]
coincides (J (0) = J (0) [no ε−poles]). The colour space oper-
ator V(q1, . . . , qm, p1, . . . , pn) is the process-independent
factor [54,68–72] that controls the IR ε-pole contributions
to the scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in
the left-hand side of the factorization formula (5) (at the
tree level, V(0) = 1). The operator V(p1, . . . , pn) to the
right of J [no ε−poles] in Eq. (19) is the restriction of V to
the scattering amplitude |M(p1, . . . , pn)〉 in the left-hand
side of Eq. (5) (i.e., the amplitude with the external soft legs
removed). Since the V factors in Eq. (19) only depends on
the colour, flavour and momentum of the soft and hard par-
tons, their perturbative knowledge determines in a recursive
manner (i.e., order by order in the loop expansion) the ε-pole
part of J at a given order in terms of J at lower perturbative
orders.

At the one-loop level, using Eq. (19) and the known
expression [22,54,73,74] of the one-loop term V(1) of the
operator V, we obtain the following expression for the ε-
pole contributions to the soft multiparton current J (1):

J (1)(q1, . . . , qm) = −g2
S c�

{∑
k∈S

[
1

ε2 Ck + 1

ε
(γk − b0)

]

× J (0)(q1, . . . , qm) + 1

ε

⎡
⎢⎢⎣
∑
k,l ∈S
k �= l

ln

(−2qk · ql − i0

μ2

)
T k · T l

+
∑
i∈H
k∈S

ln

(−2pi · qk − i0

μ2

)
2 T i · T k

⎤
⎥⎦ J (0)(q1, . . . , qm)

− 1

ε

∑
i, j ∈H
i �= j

ln

(−2pi · p j − i0

μ2

)

×
[
J (0)(q1, . . . , qm), T i · T j

] }
+ O(ε0) , (20)

where Ck (T2
k = Ck) is the Casimir coefficient of the parton

k and, analogously, the coefficient γk depends on the flavour
of the parton k and, explicitly, we have

γq = γq̄ = 3

2
CF , γg = 1

6
(11CA − 4TR N f ), (21)

where N f is the number of flavours of massless quarks. The
coefficient b0 is the first perturbative coefficient of the QCD
β function,

b0 = 1

6
(11CA − 4TR N f ). (22)

Note that, in our normalization, we have b0 = γg .
The various ε-pole terms in Eq. (20) have different ori-

gins. The single-pole term that is proportional to b0 is of
UV origin; it can be removed by renormalizing the soft cur-
rent J (we recall that we are considering unrenormalized
scattering amplitudes and, correspondingly, unrenormalized
soft currents). The other ε-pole terms are of IR origin. The
double-pole terms, which are proportional to the Casimir
coefficients Ck (Ck = CF and CA for quarks and gluons,
respectively), originate from one-loop contributions in which
the loop momentum is nearly on-shell, very soft and parallel
to the momentum of one of the soft partons involved in the
current. The single-pole terms with γk coefficients are pro-
duced by contributions in which the loop momentum is not
soft, though it is nearly on-shell and parallel to the momentum
of one of the external soft partons of the current. The single-
pole terms with logarithmic dependence on soft-parton and
hard-partons subenergies (qk · ql , pi · qk, pi · p j ) originate
from configurations in which the loop momentum is very
soft and at wide angle with respect to the direction of the
external-leg (soft and hard) partons. Specifically, the radia-
tive part of these terms (i.e., the real part of the logarithms)
is due to a nearly on-shell virtual gluon in the loop, while the
absorptive part (i.e., the imaginary part of the logarithms) is
due to the exchange of an off-shell Coulomb-type gluon.
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The expression in the right-hand side of Eq. (20) is valid
for an arbitrary number m of soft partons in the current
(and for an arbitrary number of hard partons in the scattering
amplitude). This expression is given in terms of explicit coef-
ficients and of the tree-level current J (0) for the correspond-
ing parton configuration. Once J (0) (and, in particular, its
colour structure) is explicitly known, Eq. (20) can be directly
applied to determine the explicit ε-pole contributions to the
one-loop current J (1).

In particular, in the case of a single (m = 1) soft parton,
using Eq. (9) it is straightforward to check that Eq. (20) gives
the ε-pole terms of the one-loop result J (1) in Eq. (16). In this
respect, we note that the expression in the right-hand side of
Eq. (20) does not identically (in its precise algebraic form)
correspond to the ε-pole terms in Eq. (16): the difference is
due to terms of O(1/ε2) and O(1/ε) that are proportional
to the total colour charge (

∑
i∈H T i ) of the hard partons. As

previously discussed (see Eq. (13) and related comments) the
presence of such terms in J is physically harmless.

The tree-level currents J (0) for emission of two (m = 2)

soft partons (either two gluons or a qq̄ pair) are also explicitly
known [28]. Therefore Eq. (20) can also be straightforwardly
applied to explicitly obtain the ε-pole terms of the one-loop
current J (1) for double soft-parton emission. The case of
a soft quark and antiquark is discussed in detail in Sect. 4.
The case of two soft gluons is studied in Ref. [50]. We have
checked that the ε-pole terms of the one-loop double-gluon
current computed in Ref. [50] agree with the correspond-
ing result that is obtained by using Eq. (20) and the colour
conservation relation (10). To be precise about the absolute
normalization of the one-loop current, we think that the fac-
tor e−εγE has to be removed from the expansion parameter
in Eq. (3.2) of Ref. [50].

We comment on the behaviour of the one-loop current
J (1)(q1, . . . , qm) with respect to the overall rescaling qk →
λqk of all the momenta of the soft partons. To avoid the
effects of branch-cut contributions from crossing different
kinematical regions of soft and hard momenta, with limit
ourselves to considering the case with λ > 0. According
to Eq. (4) (see also the discussion below it) and Eq. (5), the
tree-level current J (0) behaves as

J (0)(λq1, . . . , λqm) = 1

(λ)m
J (0)(q1, . . . , qm), (23)

and the expected one-loop behaviour is

J (1)(λq1, . . . , λqm)= (λ)−2ε

(λ)m
J (1)(q1, . . . , qm), (λ > 0).

(24)

The behaviour as in Eqs. (23) and (24) is indeed observed
in the tree-level results of Eqs. (9) and (14) and in the one-
loop soft single-parton current of Eq. (16). Using Eq. (23)
and applying the λ rescaling to the explicit expression

in the right-hand side of Eq. (20), we obtain the result
J (1)(λq1, . . . , λqm)

cs
= 1

(λ)m
(1 − 2ε ln λ) J (1)(q1, . . . , qm) +

O(ε0) (note that we neglect harmless contributions propor-
tional to the total colour charge of the hard partons). This
result is perfectly consistent with Eq. (24), since Eq. (20)
only embodies the correct ε-pole contributions to J (1). In
particular, in Eq. (20) these contributions are embodied in a
‘minimal’ form by systematically neglecting terms of O(εn)

(n ≥ 0), with the sole exception of terms that arise from the ε-
expansion of the overall factor c� ((4π)2c� = 1+O(ε)). The
ε-pole contributions to J (1) can be expressed in alternative
forms with respect to Eq. (20). In particular, the right-hand
side of Eq. (20) can be supplemented with terms of O(εn)

(n ≥ 0) in a manner that restores the behaviour in Eq. (24)
to all orders in the ε expansion.

An alternative explicit form of the ε-pole contributions to
J (1) for the soft multiparton (m ≥ 2) limit is as follows

J (1)(q1, . . . , qm)
cs
= − g2

S

(
−q2

1...m − i0

μ2

)−ε

c�

×

⎧
⎪⎪⎨
⎪⎪⎩
∑
k∈S

[
1

ε2Ck + 1

ε
(γk − b0)

]
J (0)(q1, . . . , qm)

+ 1

ε

⎡
⎢⎢⎣
∑
k,l ∈S
k �= l

ln

(
−2qk · ql − i0

−q2
1...m − i0

)
T k · T l

+
∑
i∈H
k∈S

�ik(q1...m) 2 T i · T k

⎤
⎥⎦ J (0)(q1, . . . , qm)

+1

ε

∑
i, j ∈H
i �= j

Li j (q1...m)
[
J (0)(q1, . . . , qm), T i · T j

]
⎫⎪⎪⎬
⎪⎪⎭

+O(ε0), (m ≥ 2), (25)

where the total soft momentum is denoted by q1...m ,

q1...m ≡
∑
k∈S

qk = q1 + · · · + qm, (26)

and we have introduced the logarithmic functions �ik and Li j

of hard and soft momenta:

�ik(q1...m) ≡ ln

( −pi · qk − i0

−pi · q1...m − i0

)
, (27)

Li j (q1...m) = L ji (q1...m) ≡ ln

(−pi · q1...m − i0

−pi · p j − i0

)

+ ln

(
−2p j · q1...m − i0

−q2
1...m − i0

)
. (28)
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It can be explicitly checked that the two expressions in
Eqs. (20) and (25) only differ by terms of O(ε0) and higher
orders in ε while acting onto colour singlet quantities. We
note that the logarithmic functions �ik and Li j in Eqs. (27)
and (28) are invariant under the overall rescaling qk → λqk
(λ > 0) of the soft momenta. Therefore, the explicit expres-
sion in the right-hand side of Eq. (25) exactly fulfils the scal-
ing behaviour in Eq. (24). We also note that both expressions
of Eqs. (20) and (25) fulfil the colour flow conservation prop-
erty in Eq. (11).

Throughout the paper we use the dimensional regular-
ization procedure to deal with UV and IR divergences and,
therefore, the momenta (and their associated phase space)
of the virtual particles inside loops are analytically contin-
ued to d = 4 − 2ε space-time dimensions [75–79]. Differ-
ent variants of dimensional regularization can be used, and
each variant defines a specific regularization scheme (RS).
The RSs that are mostly used are conventional dimensional
regularization (CDR) [76–79], the ’t Hooft–Veltman (HV)
[75] scheme, dimensional reduction (DR) [80] and the four-
dimensional helicity (4DH) scheme [81]. The momenta of the
external-leg particles in the scattering amplitude can be either
d-dimensional (CDR and DR schemes) or four-dimensional
(HV and 4DH schemes). The number of spin polarization
(helicity) states of the gluon also depends on the RS: external-
leg gluons can have either d − 2 = 2 − 2ε polarizations
(CDR) or 2 polarizations (HV, DR, 4DH), and virtual glu-
ons can have either d − 2 = 2 − 2ε polarizations (CDR,
HV) or 2 polarizations (DR, 4DH). Scattering amplitudes
and, consequently, soft currents (as defined by the soft limit)
depend on the RS. As for the RS dependence on external-
leg particles, throughout the paper we formally express soft
(tree-level and one-loop) currents in terms of external-leg
momenta (pi , qk) and corresponding polarization wave func-
tions (ε(qk), u(qk), v(qk)): these expressions are formally
RS invariant, although momenta and wave functions implic-
itly embody an RS dependence (which can be regarded as
a dependence of O(ε)). At the one-loop level, soft currents
(and scattering amplitudes) have a residual RS dependence
that can be explicitly parametrized by the number of polar-
ization states hg of virtual gluons. We write hg = 2 − 2εδR
and, therefore, we have (this is the same notation as used,
e.g., in Refs. [26,27])

δR = 1 (CDR, HV), δR = 0 (4DH, DR). (29)

To formally express the explicit δR dependence of the one-
loop soft current J (1) we then define

J (1)
RS ≡ J (1) − [J (1)

]
δR=1, (30)

where both terms in the right-hand side are expressed through
the same formal external-leg variables (momenta and wave
functions), which embody an implicit dependence on the
RS, and

[
J (1)

]
δR=1 is obtained by setting δR = 1 in the

explicit expression of J (1). Roughly speaking (e.g., modulo
the implicit RS dependence due to the number of polariza-
tions of the external partons), J (1)

RS in Eq. (30) represents the
difference of J (1) between a given RS and the CDR (or HV)
scheme.

One-loop scattering amplitudes have an explicit RS depen-
dence on δR . Considering the ε expansion up to including
terms of O(ε0), the dependence on δR can be written in fac-
torized form through the tree-level scattering amplitude and
universal (process independent) coefficients [82,83]. Using
these scattering amplitude results, we can obtain the explicit
δR dependence of the one-loop current up to the same order in
the ε expansion. In particular, the δR dependence of the one-
loop scattering amplitude can be controlled through an ensu-
ing δR dependence of the one-loop expression V(1) [54,82–
84] of the operatorV in Eq. (19) and, therefore, we can explic-
itly compute the right-hand side of Eq. (30) up to O(ε0). The
expression of J (1)

RS for m soft partons is

J (1)
RS(q1, . . . , qm) = − (gSμε)2 c� (δR − 1)

×
∑
k∈S

(
γ̃k − b̃0

)
J (0)(q1, . . . , qm) + O(ε),

(31)

where the coefficient γ̃k depends on the flavour of the soft
parton k and it has an IR origin, while the coefficient b̃0 has
an UV origin. The explicit IR coefficients [82,83] and the
UV coefficient [85] are

γ̃q = γ̃q̄ = 1

2
CF γ̃g = b̃0 = 1

6
CA. (32)

Note that, analogously to the structure of its ε-pole contri-
butions (see Eqs. (20) and (25)), the δR dependence depen-
dence of J (1) has a factorized structure in terms of its corre-
sponding tree-level current J (0). Since γ̃g = b̃0, in the case of
a single soft gluon (m = 1), Eq. (31) agrees with the explicit
result in Eq. (16). Incidentally, we recall [29] that the result
in Eq. (16) (to all orders in the ε expansion) is valid in any
RS, and thus the expression of the single soft gluon current
in Eq. (16) is basically RS invariant (it does not depend on
δR , and the RS dependence is formally encoded in the corre-
sponding RS dependence on ε(q) and the dimensionality of
the external momenta pi , p j , q). As shown in Eq. (31), in the

soft multiparton (m ≥ 2) case J (1)
RS is ofO(ε0). Conceptually,

however, the RS dependence of J (1) (and of one-loop scat-
tering amplitudes) starts and O(1/ε): the effect of O(1/ε) is
formally hidden in Eq. (20) (or Eq. (25)) through the product
J (0) · 1/ε2 (J (0) conceptually embodies an RS dependence
at O(ε) through its external-leg momenta and polarization
vectors).

Throughout the paper we explicitly consider unrenormal-
ized scattering amplitudes and currents. However, UV renor-
malization commutes with the soft limit and, therefore, the
renormalization procedure can be straightforwardly applied
to all the explicit expressions presented herein. In particu-
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lar, since we are considering amplitudes and currents with
(on-shell) massless hard partons, the renormalization pro-
cedure simply amounts to replace the bare coupling gS (or
αS = g2

S/(4π)) with its expression in terms of the renor-
malized running coupling gS(μR) (or αS(μR)) at the renor-
malization scale μR . In this respect, we recall that also the
coupling renormalization is affected by RS subtleties. For
instance, renormalizing the coupling by subtraction of the
sole UV ε-poles (e.g., the term proportional to b0 in Eq. (20))
in a given RS does not lead to an RS invariant definition of
the renormalized coupling gS(μR): an additional finite renor-
malization shift of gS(μR) (whose size depends on the RS
dependent coefficient δR b̃0 in Eq. (32)) [85] is necessary to
achieve an RS independent definition of gS(μR).

As discussed and presented in this Section, the ε-pole con-
tributions (and also the RS dependent contributions atO(ε0))
to the one-loop current J (1) for the general case ofm (m ≥ 2)

soft partons and an arbitrary number of hard partons are com-
pletely determined by Eqs. (20) or (25) (and Eq. (31)), and
they are explicitly known as soon as the corresponding tree-
level current J (0) is known. The determination of J (1) at
O(ε0) and, possibly, at higher orders in ε requires detailed
one-loop computations and they have a high complexity. To
have a rough idea of the computational complexity, we can
simply observe that J (1) can (in principle) be determined by
performing the soft limit of one-loop amplitudes according to
Eq. (8). To apply Eq. (8) we have to consider amplitudes with
m+n external legs, and the numbern of non-soft external legs
cannot be ‘too small’, otherwise the amplitude on the right-
hand side of Eq. (8) vanishes. For example, the amplitude
should have at least two external hard QCD partons (because
of colour conservation) and one additional colourless exter-
nal leg (because of momentum conservation): the soft limit of
such an amplitude withm+3 external legs leads to the current
J (1) in the simplest case with two hard QCD partons. To get
information on the colour-correlation structure of J (1) in the
general case of several hard partons, the amplitude should
have at least n = 4 hard QCD partons in its external legs
(owing to colour-conservation relations, the cases with n = 2
and 3 hard partons lead to simplified colour structures; see,
e.g., Sect. 5.3). In summary, the amplitudes to be considered
should havem+n external legs withn ≥ 4: even in the case of
double soft-parton radiation (m = 2), this implies (at least)
six external legs. As is well known, one-loop computations of
these multileg scattering amplitudes are definitely complex to
be carried out in analytic form (which is necessary to perform
the soft limit). The computation of the one-loop current J (1)

can be highly simplified by using general methods (e.g., the
method of Ref. [29])) that do not require a full direct computa-
tion of scattering amplitudes. However, despite some relevant
simplification, even these methods have to deal with multileg
one-loop Feynman integrals, whose evaluation is definitely
complex, especially at high orders in the ε expansion.

4 Soft qq̄ emission: the one-loop current

In this section we present and discuss the results of our
explicit computation of the QCD one-loop current for soft
qq̄ radiation. In Sect. 6 we also generalize the results to the
cases of QED and mixed QCD×QED radiative corrections.

The tree-level current J (0) for emission of a soft-qq̄ pair
in a scattering amplitude with an arbitrary number of hard
partons is given in Eq. (14). To evaluate the one-loop contri-
bution J (1) we use the general (process-independent) method
of Ref. [29] (the same method is used in the computations of
Refs. [31,32] and [51]). The computational procedure is com-
pletely analogous to that in Ref. [29] (though it is extended
from the case of a single soft gluon to the case of a soft-
qq̄ pair) and we do not repeat all the details. We have to
evaluate a set of one-loop Feynman diagrams (as example,
in Fig. 1 we show two contributing Feynman diagrams) in
which the external-leg hard partons are coupled to virtual
gluons by using the eikonal approximation (for both vertices
and propagators), while the other vertices and propagators
are computed by using the customary QCD Feynman rules.
We perform the calculation by using both the Feynman gauge
and the axial gauge n · A = 0, with an auxiliary light-like
(n2 = 0) gauge vector nμ. Combining all the contributing
Feynman diagrams, the dependence on the gauge vector can-
cels at the integrand level (i.e., before performing the inte-
gration over the loop momentum) and the total axial-gauge
integrand coincides with the Feynman gauge integrand: this
provides us with an explicit check of the gauge invariance of
the procedure and of the calculation.

As usual in the context of dimensional regularization,
scaleless one-loop integrals vanish. Eventually we have to
compute several (non-vanishing) tensor, vector and scalar
one-loop Feynman integrals. Tensor and vector integrals are
expressed in terms of scalar integrals by using customary
techniques [86]. One-loop integrals with five external legs
(pentagon integrals; see, e.g. the Feynman diagram in Fig. 1a)
are expressed [87,88] in terms of one-loop integrals with four
external legs (box integrals) plus remaining pentagon inte-
grals in 6−2ε space-time dimensions, which only contribute
atO(ε) (and higher orders in ε). We do not explicitly evaluate
these contributions at O(ε). We eventually express the com-
plete result in terms of a minimal set of basic one-loop scalar
integrals. The set involves customary two-point and three-
point (with at least one on-shell leg) Feynman integrals and
some soft box integrals (box integrals with eikonal propaga-
tors). Part of these soft box integrals was already computed in
Ref. [29] and the additional integrals are analogous to those
encountered in Ref. [89]. We have performed an independent
calculation of these soft box integrals and we find agreement
with the results reported in Ref. [89] (see ‘soft box 2’ and
‘soft box 4’ in Sect. 4.2 of Ref. [89]). Our final result for the
one-loop current J (1) is reported below.
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pi

pj

q(q1)

q̄(q2)

(a)

pi

pj

q(q1)

q̄(q2)

(b)

Fig. 1 Example of two one-loop Feynman diagrams that contribute to
the one-loop current J (1) for soft qq̄ emission. The external-leg hard
partons with momenta pi and p j are coupled to virtual gluons by using
the eikonal approximation. The dashed line symbolically denotes the
colour indices and momenta of the additional external legs. The effect
of the tree-level scattering amplitude M(0)(p1, . . . , pn) (see Eq. (8))
is given by an effective pointlike vertex (little black circle) that only
depends on the colour structure of M(0) (on the colour indices of the
hard partons)

To present our results, we first define the tree-level and

one-loop rescaled currents Ĵ
(0)

and Ĵ
(1)

as follows

J (0)(q1, q2) = (
gS με

)2 Ĵ
(0)

(q1, q2), (33)

J (1)(q1, q2) = (
gS με

)4 (−q2
12 − i0

)−ε

c� Ĵ
(1)

(q1, q2),

(34)

Ĵ
(1)

(q1, q2) = Ĵ
(1, div)

(q1, q2) + Ĵ
(1, fin)

(q1, q2), (35)

where Ĵ
(1)

is written in terms of two components, Ĵ
(1, div)

and Ĵ
(1, fin)

. The rescaled current Ĵ
(0)

can be read from

comparing Eqs. (14) and (33). The component Ĵ
(1, div)

of
Eq. (35) embodies the ε-pole contributions to J (1), while

Ĵ
(1, fin)

includes all the remaining UV/IR finite contributions
at O(ε0) and higher orders in ε. The explicit expressions of

Ĵ
(1, div)

and Ĵ
(1, fin)

are

Ĵ
(1, div)

(q1, q2) = − 2

[
1

ε2 CF

+1

ε

(
3

2
CF − 1

6
(11CA − 4 TR N f )

)]

× Ĵ
(0)

(q1, q2) − 2

ε
jν(1, 2) ta tb

∑
i, j ∈H
i �= j

T a
i T b

j

×
(

pν
i

pi · q12
− pν

j

p j · q12

)
(
Li j + �i1 + � j2

)
, (36)

Ĵ
(1, fin)

(q1, q2) =
[(−8 − (δR − 1)

)
CF

+
(

76

9
− π2

3
+ 1

3
(δR − 1)

)
CA − 20

9
TRN f

]

× Ĵ
(0)

(q1, q2) + jν(1, 2) ta tb
∑

i, j ∈H
i �= j

T a
i T b

j

×
[(

pν
i

pi · q12
− pν

j

p j · q12

)(
L2
i j + (�i1 − � j2)

2
)

+ q2
12

q2
12⊥i j

(
pν
i

pi · q12
+ pν

j

p j · q12

)
2 Li j

(
�i1 − � j2

)
]

+O(ε), (37)

where we have used the logarithmic functions of Eqs. (27)
and (28) and we have introduced the shorthand notation
�ik(q12) ≡ �ik (with k = 1, 2) and Li j (q12) ≡ Li j (i.e.,
we omit the explicit dependence on the argument q12). The
kinematical variable q2

12⊥ i j that is used in Eq. (37) is

q2
12⊥ i j = 2(pi · q12)(p j · q12)

pi · p j
− q2

12. (38)

We remark that the results in Eqs. (36) and (37) are valid
in arbitrary kinematical regions, since the time component
(‘energy’) of the outgoing momenta {q1, q2, pi , p j } of the
soft and hard partons can have an arbitrary sign. According
to the notation in Eq. (14) the colour indices α1 and α2 of
the soft quark and antiquark are specified by considering
〈α1, α2| J (1)(q1, q2) ≡ J (1) α1,α2(q1, q2), and this leads to
〈α1, α2| ta tb = (tatb)

α1α2
in Eqs. (36) and (37).

The result in Eq. (36), which follows from our direct com-
putation of J (1), agrees with the ε-pole contributions that can
straightforwardly be obtained by applying the general results
in Eqs. (20) or (25) to the specific case of a soft qq̄ pair (note
that this agreement is valid modulo harmless terms that are
proportional to the total colour charge

∑
i∈H T i of the hard

partons). The expression in Eq. (36) has a term that is directly
proportional to J (0) and additional terms that involve colour
(and kinematical) correlations of the soft qq̄ pair with two
hard partons. These colour correlations are produced by the
colour matrix factor ta tbT a

i T b
j . We remark that these cor-

relations are not purely non-abelian, but they also include a
component that is still present in the abelian limit of com-
muting colour matrices (this feature has to be contrasted
with the one-loop single soft-gluon case of Eq. (16), in which
correlations are purely non-abelian). In particular, this also
implies that the soft current for lepton-antilepton radiation
in massless QED has non-vanishing QED radiative correc-
tions at one-loop level (see Sect. 6). The kinematical coeffi-
cients of these colour-correlation terms are proportional to
the momentum function
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Li j + �i1 + � j2 = ln

(−pi · q1 − i0

−pi · p j − i0

)

+ ln

(−p j · q2 − i0

−q1 · q2 − i0

)
, (39)

whose real part is the logarithm of a conformally invariant
cross ratio, namely,

Re(Li j + �i1 + � j2) = ln

( |pi · q1| |p j · q2|
|pi · p j | |q1 · q2|

)
. (40)

We note that (analogously to the treatment in Sect. 3) in the

computation of Ĵ
(1)

(q1, q2) we have dressed gluon propaga-
tors with one-loop vacuum polarization effects that are due
only to massless partons. In particular, the terms proportional

to N f Ĵ
(0)

in the right-hand side of Eqs. (36) and (37) are due
to the vacuum polarization of N f massless quarks. Vacuum
polarization effects of massive quarks can straightforwardly

be included in Ĵ
(1)

(q1, q2), and they produce correspond-
ing (mass-dependent) contributions that are proportional to

Ĵ
(0)

(q1, q2).

We comment on the structure of Ĵ
(1, fin)

. We have explic-
itly computed it up to O(ε0) and the result is presented in

Eq. (37). The expression of Ĵ
(1, fin)

atO(ε0) is quite compact
and remarkably much simpler than expected. In particular,
although it involves momentum functions of trascendentality
equal to two, they are only powers of logarithmic functions
with no additional dependence on dilogarithms Li2. Diloga-
rithms do appear in the computation of individual Feynman
diagrams and loop integrals at O(ε0), but they cancel in the

complete result for Ĵ
(1, fin)

. The finite component Ĵ
(1, fin)

includes a term that is proportional to J (0) and additional
correlation terms with two hard partons whose colour struc-
ture is exactly analogous to that in Eq. (36) (and it embodies
both abelian and non-abelian components). We have explic-
itly checked that no different colour-correlation structures
occur at any higher orders in the ε expansion. The term that
is proportional to J (0) explicitly depends on the RS parame-
ter δR : this dependence exactly agrees with that of the general
result in Eq. (31).

We also comment on the kinematical dependence of the
colour correlation terms. At the tree level the soft-qq̄ current
J (0) has a kinematical structure with a rational dependence
on j (1, 2) · pi/pi ·q12 (see Eqs. (14) and (15)). In particular,
this dependence leads to a collinear singularity if q2

12 → 0
(i.e., if the momenta of the soft quark and antiquark are paral-
lel). Exactly the same rational dependence (though possibly
modified by logarithmic factors) occurs in the one-loop con-

tributions Ĵ
(1, div)

and Ĵ
(1, fin)

. However, by inspection of
Eq. (37) we see that the one-loop interaction at O(ε0) also
produces a different type of kinematical dependence as given
by the factor j (1, 2) · pi q2

12/(pi · q12 q2
12⊥i j ). This rational

factor has no collinear singularity at q2
12 → 0, but it poten-

tially leads to a singularity in the limit q2
12⊥i j → 0. This is

a ‘transverse-momentum singularity’, since the kinematical

variable
√
q2

12⊥i j in Eq. (38) is the transverse component of

the momentum q12 of the soft qq̄ pair with respect to the
momenta pi and p j of the colour-correlated hard partons in
a reference frame in which pi and p j are back-to-back.

The transverse-momentum singularity in the current is
partly screened by the logarithmic function Li j , and we have

1

q2
12⊥i j

Li j �
q12⊥i j→0

1

q2
12⊥i j

[
2π i sign(q2

12) 

(−pi · q12

pi · p j

)



(−p j · q12

pi · p j

)
+ O

(
q2

12⊥i j

q2
12

)]
, (41)

which shows that the current has a one-loop singularity of
absorptive origin. Considering the physically most relevant
kinematical region in which the soft quark and antiquark
are produced in the final state (q0

1 > 0, q0
2 > 0), Eq. (41)

becomes

1

q2
12⊥i j

Li j �
q12⊥i j→0

1

q2
12⊥i j

2π i (−p0
i ) (−p0

j ),

(q0
1 > 0, q0

2 > 0), (42)

which shows that the transverse-momentum singularity is
present in the scattering amplitude of a physical process in
which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that
this singularity has a pure quantum mechanics (loop) origin,
and it occurs in the limit q2

12⊥i j → 0 even if the transverse

momenta q1⊥i j and q2⊥i j (q2
k⊥i j = 2pi · qk p j · qk/pi ·

p j , k = 1, 2) of the soft quark and antiquark are separately
large (i.e., they are separately non-vanishing) and q2

12 is large.
We also note that, setting q12⊥i j = 0 at fixed non-vanishing
values of q2

12 and q1⊥i j (or q2⊥i j ), we have
(
�i1 − � j2

) =
−(� j1 − �i2

)
. Therefore, in the limit q2

12⊥i j → 0 the factor
�i1 − � j2 is (approximately) antisymmetric with respect to
the exchange pi ↔ p j and this implies that we can perform
the following replacement in Eq. (37):

ta tb T a
i T b

j
Li j

q2
12⊥i j

(
�i1 − � j2

) −→
q12⊥i j→0

− f abc tc T a
i T b

j

π (−p0
i )(−p0

j )

q2
12⊥i j

(
�i1 − � j2

)
,

(q0
1 , q0

2 > 0), (43)

and it follows that, in the kinematical region with q0
1 > 0 and

q0
2 > 0, the transverse-momentum singularity has a purely

non-abelian character (see the factor f abc in the right-hand
side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄
current in the limit q12⊥i j → 0 originates from one-loop
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interactions of the two soft partons. Therefore, we expect the
presence of the transverse-momentum singularity also in the
case of double soft-gluon emission at one-loop level. The
one-loop double-gluon current computed in Ref. [50] indeed
shows singular terms at q12⊥i j → 0.

We have also computed the soft-qq̄ one-loop current J (1)

by explicitly evaluating its dependence on the RS parameter
δR to all orders in ε. Using the notation of Eq. (30) and con-
sidering the rescaled currents in Eqs. (33) and (35), we find
the result

Ĵ
(1, fin)

RS (q1, q2) = − (δR − 1)
1

1 − ε

[
CF − CA

× 1 − 4ε + 2ε2

(1 − 2ε)(3 − 2ε)

]
Ĵ

(0)
(q1, q2).

(44)

Note that the δR dependence at one-loop order is com-
pletely factorized with respect to J (0). We also note that
this factorized structure and the explicit expression of the
ε-dependent factor in Eq. (44) are exactly equal to the corre-
sponding RS dependence of the splitting function, Split(g →
q(q1)q̄(q2)), of one-loop scattering amplitudes for radiation
of a qq̄ pair in the collinear limit [26,27,34].

The one-loop current J (1) for soft-qq̄ emission has been
independently computed in Ref. [50], and the corresponding
result is presented in Sect. 3.3 therein. We first note that the
one-loop result of Ref. [50] differs from our result already at
the level of ε-pole contributions. However, we also note that
we can remove such difference by adjusting the relative size
of the four contributions in the right-hand side of Eq. (3.20)
of Ref. [50]. More precisely, we modify the size of M s.l. by

applying the replacement
(
− 4

Nc
+ Nc

2

)
→
(
−CF + Nc

2

)
=

1
2Nc

to its colour coefficient (see the line 10 of Eq. (3.21)). We
have contacted the author of Ref. [50] and he agreed with this
correction. Performing such replacement, we have explicitly
checked that the expression of J (1) in Eq.(3.20) of Ref. [50]
agrees with our result (modulo the overall normalization of
the one-loop current, which is not clearly specified in Ref.
[50]) for both the ε-pole terms and the finite contributions
at O(ε0). However, we note that this check and comparison
involve some ‘limitations’. The explicit result of Ref. [50]
only refers to the ‘time-like’ region, namely to the kinemat-
ical region in which the soft partons and all the hard partons
are physically produced in the final state. Moreover, the result
of Ref. [50] is specified for fixed (four dimensional) helici-
ties of the soft quark and antiquark, and the comparison with
our result requires the repeated use of the Schouten identity
(which, precisely speaking, is valid only in four space-time
dimensions) for the product of helicity spinors.

5 Soft qq̄ radiation: squared amplitudes and current

Using the colour+spin space notation of Sect. 2, the squared
amplitude |M|2 (summed over the colours and spins of its
external legs) is written as follows

|M|2 = 〈M|M〉. (45)

Accordingly, the square of the soft-emission factorization
formula in Eq. (5) gives

|M(q1, . . . , qm, p1, . . . , pn)|2
� 〈M(p1, . . . , pn)| |J(q1, . . . , qm) |2 |M(p1, . . . , pn)〉,

(46)

where, analogously to Eqs. (7) and (8), the symbol � means
that we have neglected contributions that are subdominant
in the soft multiparton limit (i.e., the contributions that are
denoted by the dots on the right-hand side of Eq. (5)). In
the right-hand side of Eq. (46), |J |2 denotes the all-loop
squared current summed over the colours {c1, . . . , cm} and
spins {s1, . . . , sm} of the soft partons:

|J(q1, . . . , qm)|2 = [
J c1,...,cm
s1,...,sm (q1, . . . , qm)

]†
J c1,...,cm
s1,...,sm (q1, . . . , qm)

≡ [J(q1, . . . , qm)]† J(q1, . . . , qm). (47)

The squared current |J |2 is a colour operator that depends
on the colour charges (and momenta) of the hard partons in
M(p1, . . . , pn). These colour charges produce colour cor-
relations and, therefore, the right-hand side of Eq. (46) is not
proportional to |M(p1, . . . , pn)|2 in the case of a generic
scattering amplitude3. As remarked on in Sect. 2, J is sim-
ply proportional to the unit operator in the spin subspace of
the hard partons. Therefore, we note that the squared current
|J |2 of Eq. (47) still applies to spin-polarized hard-scattering
processes, namely, to processes in which the spin polariza-
tions of the hard partons are fixed (rather than summed over).
Obviously, Eqs. (45)–(47) can also be properly generalized
to the case in which the spin polarizations of one or more
soft partons are fixed.

In the following part of this Section, we only consider soft-
qq̄ radiation and the corresponding soft current J(q1, q2)

(see Eq. (14) and Sect. 4). We define the loop expansion of
the squared current as follows

|J(q1, q2)|2 ≡ (
gS με

)4 | Ĵ(q1, q2)|2(0�)

+ (gS με
)6 (|q2

12|
)−ε

c� | Ĵ(q1, q2)|2(1�)

+O(g8
S), (48)

3 Colour correlations can be simplified in the case of scattering ampli-
tudes with two and three hard partons (see Sect. 5.3).
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where | Ĵ |2(0�) and | Ĵ |2(1�) are the tree-level (0 loop) and one-

loop rescaled contributions to |J |2, respectively.

5.1 The tree-level squared current

The tree-level squared current in Eq. (48) is

| Ĵ(q1, q2)|2(0�) =
[
Ĵ

(0)
(q1, q2)

]†
Ĵ

(0)
(q1, q2), (49)

where Ĵ
(0)

is the rescaled current in Eqs. (14) and (33). The
computation of the right-hand side of Eq. (49) is straightfor-
ward and the explicit result was first presented in Sect. 3.2
of Ref. [28]. We have

| Ĵ(q1, q2)|2(0�)

= TR
∑
i, j∈H

T i · T j Ii j (q1, q2), (50)

where the momentum-dependent function Ii j (q1, q2) is (see
Eq. (96) in Ref. [28])

Ii j (q1, q2)

= (pi · q1) (p j · q2) + (p j · q1) (pi · q2) − (pi · p j ) (q1 · q2)

(q1 · q2)2 (pi · q12) (p j · q12)
.

(51)

Using colour charge conservation (see Eq. (10)), the tree-
level squared current | Ĵ |2(0�) can be recast in the following
different form

| Ĵ(q1, q2)|2(0�) cs
= − 1

2
TR

∑
i, j ∈H
i �= j

T i · T j wi j (q1, q2), (52)

where the soft function wi j is

wi j (q1, q2) = Ii i (q1, q2) + I j j (q1, q2) − 2 Ii j (q1, q2).

(53)

The expressions in the right-hand side of Eqs. (50) and (52)
are not identical at the algebraic level, but they are fully
equivalent by acting onto scattering amplitudes (or, gener-
ically, colour-singlet states). The expression in Eq. (52) has a
more straightforward physical interpretation, since the func-
tion wi j (q1, q2) is directly related (see Sect. 5.3.1) to the
intensity of soft-qq̄ radiation from two hard partons, i and j ,
in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) pro-
duces two-particle correlations between the hard partons.
Their colour structure has the form of dipole contributions
T i · T j . We note that the momentum-dependent functions
Ii j (q1, q2) and wi j (q1, q2) are symmetric with respect to the
exchange q1 ↔ q2 (they are also symmetric with respect to
pi ↔ p j ). In contrast, our result for the one-loop squared

current (see Sect. 5.2) produces both two-particle and three-
particle correlations and, moreover, it involves also an anti-
symmetric dependence on the momenta q1 and q2.

5.2 The one-loop squared current

The one-loop squared current in Eq. (48) is

Ĵ(q1, q2)|2(1�) =
(

−q2
12 − i0

|q2
12|

)−ε

×
[
Ĵ

(0)
(q1, q2)

]†
Ĵ

(1)
(q1, q2) + h.c.,

(54)

where ‘h.c’ denotes the hermitian-conjugate contribution,

and the rescaled currents Ĵ
(0)

and Ĵ
(0)

are defined in
Eqs. (33) and (34).

The explicit computation of Eq. (54) produces some con-
tributions that involve the fully-symmetric colour tensor
dabc,

dabc = 1

TR
Tr
(
{ta, tb} tc

)
. (55)

with indices {a, b, c} in the adjoint representation of SU (Nc).
The presence of dabc is a distinctive feature of (squared)
currents for radiation of soft quarks and antiquarks.

Using dabc we also define the d-conjugated (quadratic)
charge operator D̃i of the parton i as follows

D̃a
i ≡ dabc T b

i T c
i . (56)

Performing the SU (Nc) colour algebra, we explicitly find

i = q : D̃a
i = 1

2
dA T

a
i , (57)

i = q̄ : D̃a
i = −1

2
dA T

a
i , (58)

i = g : D̃a
i = 1

2
CA Da

i , 〈b|Da |c〉 = dbac, (59)

where we have used

dabcddbc = dA δad , dA = N 2
c − 4

Nc
. (60)

Note that the tensor dabc is odd under charge conjugation.
This fact is responsible for the opposite overall sign between
the d-charge D̃i and the colour charge T i of quarks and anti-
quarks (see Eqs. (57) and (58)). Analogously, in the gluon
case the d-charge 〈b|Da

i |c〉 in Eq. (59) is symmetric with
respect to b ↔ c, while the colour charge 〈b|T a

i |c〉 is anti-
symmetric with respect to b ↔ c.

The explicit expression of the one-loop squared current

| Ĵ(q1, q2)|2(1�) is obtained by inserting Ĵ
(0)

(see Eqs. (14)

and (33)) and Ĵ
(1)

(see Eqs. (35)–(37)) in the right-hand side
of Eq. (54), and by performing the sum over the colours and
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spins of the soft quark and antiquark. We find the following
result:

| Ĵ(q1, q2)|2(1�) = −1

2
TR

∑
i, j ∈H
i �= j

[
T i · T j w

[S]
i j (q1, q2)

+ D̃i · T j w
[A]
i j (q1, q2)

]

− TR
∑

i, j,k ∈H
dist.{i, j,k}

T a
i T b

j T
c
k

[
f abc F [S]

i jk (q1, q2)

+ dabc
(
F [A]
i jk (q1, q2) − 1

2
F [A]
i j i (q1, q2)

−1

2
F [A]
i j j (q1, q2)

)]
, (61)

which is valid to arbitrary orders in the ε expansion. The
ε dependence is embodied in the c-number functions w[S],
w[A], F [S] and F [A]. The dependence on the colours of the
hard partons is due to the colour charges T a

i and D̃a
i . The

structure of Eq. (61) involves contributions with both two
hard-parton correlations and three hard-parton correlations.
In the case of three hard-parton correlations, the subscript
‘dist.{i, j, k}’ in

∑
i, j,k ∈H

dist.{i, j,k}
denotes the sum over distinct

hard-parton indices i, j and k (i.e., i �= j, j �= k, k �= i).
The functions w

[S]
i j , w[A]

i j , F [S]
i jk and F [A]

i jk in Eq. (61) depend
on the momenta of the hard partons and on the momenta q1

and q2 of the soft quark and antiquark. The superscript [S]
in w

[S]
i j and F [S]

i jk denotes the fact that these functions are
symmetric under the exchange q1 ↔ q2 of the momenta of
the soft quark and antiquark:

w
[S]
i j (q1, q2) = w

[S]
i j (q2, q1),

F [S]
i jk (q1, q2) = F [S]

i jk (q2, q1). (62)

Analogously, the superscript [A] in w
[A]
i j and F [A]

i jk highlights
the fact that these functions are antisymmetric under the
exchange q1 ↔ q2:

w
[A]
i j (q1, q2) = −w

[A]
i j (q2, q1),

F [A]
i jk (q1, q2) = −F [A]

i jk (q2, q1). (63)

Therefore, w[A] and F [A] produce a quark–antiquark charge
asymmetry in the one-loop squared current. We note that
the charge-asymmetry contributions appear in Eq. (61) with
the associated colour factors D̃i · T j = dabcT a

i T b
i T c

j and

dabcT a
i T b

j T
c
k that have a linear dependence on the colour

tensor dabc (which is odd under charge conjugation). The
charge-asymmetry contributions to |J(q1, q2)|2 have a quan-
tum origin and are characteristic of the radiation of soft
quark–antiquark pairs (the squared current |J(q1, . . . , qm)|2
for radiation of m soft gluons is instead fully symmetric with
respect to the soft-gluon momenta q1, . . . , qm).

We present the explicit result of the ε expansion of the
functions w[S], w[A], F [S] and F [A] up to O(ε0). More pre-
cisely, we limit ourselves to presenting the expressions of
these functions in the kinematical region where q0

1 > 0 and
q0

2 > 0 (i.e., the soft quark and antiquark are produced in
the physical final state), which is the most relevant physi-
cal region4. In this region, the squared current depends (see
Eqs. (36) and (37)) on the logarithms �i1 ± � j2 (which are
purely real, independently of whether the momenta pi and
p j are physically incoming or outgoing) and on the real part

Li j R and discontinuity 
(in)
i j of the logarithm Li j . We have

(see Eqs. (27) and (28))

�i1 + � j2 = ln
(pi · q1)(p j · q2)

(pi · q12)(p j · q12)
,

�i1 − � j2 = ln
(pi · q1)(p j · q12)

(pi · q12)(p j · q2)
,

Li j = Li j R + 2iπ 
(in)
i j , (64)

where

Li j R = ln
(pi · q12)(p j · q12)

(pi · p j )(q1 · q2)
= ln

(
1 + q2

12⊥i j

q2
12

)
,


(in)
i j ≡ (−p0

i )(−p0
j ) . (65)

The function w
[S]
i j has the following expression in the

region where q0
1 > 0 and q0

2 > 0:

w
[S]
i j (q1, q2) =

{
wi j (q1, q2)

[
− CF

(
2

ε2 + 3

ε

−π2 + 8 + (δR − 1)
)

− 4

3
TR N f

(1

ε
+ 5

3

)

+ 1

3
CA

(11

ε
+ 76

3
− π2 + (δR − 1)

)

+1

2
CA

( 2

ε

(
Li j R + �i1 + � j2

)

−L2
i j R − (�i1 − � j2)

2
)]

−CA
[ Ii i (q1, q2) − I j j (q1, q2)

]

q2
12

q2
12⊥i j

Li j R
(
�i1 − � j2

)+ O(ε)

}

+(q1 ↔ q2). (66)

This function (which is symmetricunder the exchange i ↔ j)
controls the size of the one-loop radiative corrections to the
tree-level colour dipole correlations T i · T j .

We note that w
[S]
i j also depends on colour coefficients,

while F [S]
i jk , w[A]

i j and F [A]
i jk only depends on parton momenta.

4 Expressions in other kinematical regions can be obtained by using the
fully general one-loop current in Eqs. (36) and (37).
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The function F [S]
i jk is associated with non-abelian three-

particle correlations with colour charge factor f abcT a
i T b

j T
c
k .

In the region where q0
1 > 0 and q0

2 > 0, we have the explicit
result

F [S]
i jk (q2, q1) = 2π Iki (q1, q2)

{
Li j R + �i1 + � j2

+
(in)
i j

[
2
(1

ε
− Li j R

)

−2
q2

12

q2
12⊥i j

(�i1 − � j2)
]

+ O(ε)
}

+(q1 ↔ q2). (67)

The charge-asymmetry contributions to Eq. (61) can be
expressed through the function F [A]

i jk . In the region where

q0
1 > 0 and q0

2 > 0 we have

F [A]
i jk (q2, q1) =

{
Iki (q1, q2)

[
−2

ε
(�i1 + � j2)

+(�i1 − � j2)
2 + 2

q2
12

q2
12⊥i j

Li j R
(
�i1 − � j2

)]

+O(ε)
}

− (q1 ↔ q2). (68)

At arbitrary orders in the ε expansion, the two-particle cor-
relation function w

[A]
i j is directly related to F [A]

i jk as follows

w
[A]
i j (q1, q2) =

[
F [A]
i j i (q1, q2) + F [A]

j i i (q1, q2)
]

− (i ↔ j
)
.

(69)

In contrast to w
[S]
i j , we note that w

[A]
i j is antisymmetric under

the exchange i ↔ j of the hard-parton momenta. In particu-
lar, this antisymmetry of w

[A]
i j implies that in the sum over i

and j of Eq. (61) we can replace D̃i · T j by its antisymmet-
ric component, namely, D̃i · T j → (

D̃i · T j − D̃ j · T i
)
/2.

Inserting Eq. (68) in Eq. (69), w[A]
i j has the following expres-

sion:

w
[A]
i j (q1, q2) =

{
wi j (q1, q2)

[
−2

ε

(
�i1 + � j2

)+ (�i1

− � j2)
2
]

+ [ Ii i (q1, q2) − I j j (q1, q2)
]

× 2 q2
12

q2
12⊥i j

Li j R
(
�i1 − � j2

)+ O(ε)
}

− (q1 ↔ q2). (70)

By inspection of Eqs. (66)–(70) we note that only the func-
tion F [S]

i jk exhibits a discontinuity with respect to the momenta

of the hard partons (see 
(in)
i j in Eqs. (65) and (67)). The dis-

continuity contributes in the kinematical region where two
hard-parton momenta i and j have negative time compo-
nent (p0

i < 0 and p0
j < 0), namely, the partons i and j

collide in the physical initial state. This discontinuity term
of the squared current in Eq. (61) originates as interference
between a one-loop absorptive (imaginary) contribution and

the antihermitian colour factor i f abc T a
i T b

j T
c
k (we recall that

i, j and k refer to three distinct partons). Actually, the entire
term proportional to f abc T a

i T b
j T

c
k in Eq. (61) has this ori-

gin5 as absorptive/colour interference (the absorptive term
being related to the kinematical region where q0

1 > 0 and
q0

2 > 0).
As discussed in Sect. 4 (see Eqs. (41)–(43) and accom-

panying comments) the one-loop current of soft-qq̄ emis-
sion has a transverse-momentum singularity at q12⊥i j → 0.
This singularity has a non-abelian character and an absorp-
tive origin. At the level of the one-loop squared current, this
singularity does appear in the function F [S]

i jk (see the term

(q2
12⊥i j )

−1 
(in)
i j in Eq. (67)), while it is absent in all the

other contributions (in Eqs. (66), (68) and (70) we see the
term (q2

12⊥i j )
−1 Li j R → (q2

12)
−1, which is not singular at

q12⊥i j → 0). Therefore, the transverse-momentum singu-
larity at q12⊥i j → 0 contributes through colour correlation
f abc T a

i T b
j T

c
k to one-loop squared amplitudes for the class

of processes with initial-state colliding partons i and j and
two or more final-state hard partons (as recalled below in
Eq. (71), the colour correlation vanishes if there is only one
final-state hard parton). This class of processes includes, for
instance, dijet (or heavy-quark pair) production in hadron–
hadron collisions and the transverse-momentum singularity
is directly related to the transverse momentum of the dijet
system (heavy-quark pair). Interestingly, we note that this is
the same class of processes that is sensitive to effects due
to the violation of strict collinear factorization [33]. How-
ever, we remark on the fact that the transverse-momentum
singularity at q12⊥i j → 0 and violation of strict collinear
factorization are independent phenomena (e.g., the singular-
ity at q12⊥i j → 0 is not due to violation of strict factorization
in the one-loop collinear limit of three partons, such as the
soft quark and antiquark and a hard parton i or j).

Regarding three-particle correlations of the type f abc T a
i

T b
j T

c
k with three distinct hard partons, we also recall two

general features. As first noticed in Ref. [29], such colour
correlations vanish by acting onto scattering amplitudes with
only three hard partons (plus additional colourless external
particles). Indeed, we have [29]

f abc T a
i T b

j T
c
k |i j k〉 = 0, dist.{i j k}, (71)

where |i j k〉 denotes a generic colour singlet state of three
distinct hard partons i, j and k (the result in Eq. (71) simply
follows from the colour conservation relation (T i + T j +
T k)|i j k〉 = 0). As pointed out in Refs. [90,91], such colour
correlations vanish by considering their expectation value

5 The one-loop squared current for single soft-gluon radiation [29] has
three-particle correlations of the type f abc T a

i T b
j T

c
k , which have an

analogous origin as absorptive/colour interference.
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onto pureQCD amplitudes at the tree level. Namely, we have
[90,92]

〈M(0)(p1, . . . , pn)| f abc T a
i T b

j T
c
k |M(0)(p1, . . . , pn)〉

= 0 dist.{i j k}, (72)

whereM(0) is a generic scattering amplitude with only quark
and gluons external lines (and no additional colourless exter-
nal particles) as obtained by tree-level QCD interactions.
Therefore, the three-particle correlations f abc T a

i T b
j T

c
k con-

tributes to the one-loop squared current in Eq. (61) only
(see Eq. (71)) for processes with four or more hard par-
tons and only (see Eq. (72)) through the introduction of
either QCD loop corrections or electroweak interactions
(see Refs. [29,91]) in the hard-parton scattering amplitude
M(p1, . . . , pn).

We present some general comments on the charge-
asymmetry contributions to the one-loop squared current of
Eq. (61). Such contributions produce non-vanishing effects
only for specific classes of scattering amplitudes (see the
discussion below and in Sect. 5.3) and quantities that are
not invariant under charge conjugation. Obviously, due to
their antisymmetry under the exchange q1 ↔ q2, the charge-
asymmetry contributions in Eq. (61) give vanishing effects
after phase-space symmetric integration over the momenta
q1 and q2 of the soft quark and antiquark. At the cross sec-
tion level, the charge-asymmetry contributions can give non-
vanishing effects to quantities in which the soft quark (or
antiquark) is triggered, either directly (as it can be done for
bottom or charm quark) or indirectly (e.g., through its frag-
mentation), in the final state. For instance, we recall that
the Altarelli–Parisi splitting functions for collinear evolu-
tion of parton densities and fragmentation functions have a
quark–antiquark charge asymmetry [42,93–95], which starts
atO(α3

S) (the same perturbative order of the soft-qq̄ one-loop
squared current) and which does not vanish in the soft limit.

Considering 〈M(p1, . . . ,pn)||J(q1, q2) |2|M(p1, . . . ,pn)〉,
the charge-asymmetry contributions vanish ifM(p1, . . . , pn)
is a pure multigluon scattering amplitude, namely, if it has
only gluon external lines (with no additional external qq̄
pairs or colourless particles). This is a general consequence
of the fact that the original (i.e., before performing the
soft-qq̄ limit) squared amplitude |M(q1, q2, p1, . . . , pn)|2
is charge-conjugation invariant, since its external legs are
gluons and a single qq̄ pair (one cannot distinguish between
the quark and the antiquark at the squared amplitude level).
At the purely technical level, it turns out (as it can be verified)
that the colour charge operators D̃i · T j and dabc T a

i T b
j T

c
k

in Eq. (61) have vanishing expectation value onto pure
multigluon amplitudes.

We also note that the three-particle correlations of the type
dabc T a

i T b
j T

c
k in Eq. (61) contribute only for processes with

four or more hard partons. Indeed, in the case of only three

hard partons we have

dabc T a
i T b

j T
c
k |i j k〉 = 0,

({i j k} = {g g g}, {g q q̄}), (73)

where the three distinct hard partons (i, j and k) in the colour
singlet state |i j k〉 are either three gluons or a gluon and a
qq̄ pair. The proof of Eq. (73) is given in Sect. 5.3.2 (see
Eqs. (85), (89) and related comments).

5.3 Processes with two and three hard partons

The soft-emission factorization formula (46) for squared
amplitudes embodies colour correlations produced by the
squared current |J |2. In the case of scattering amplitudes
with two or three hard partons (plus, necessarily, additional
colourless external particles) the colour correlations have
a simplified structure. A related discussion and some gen-
eral results for multiple soft-gluon radiation can be found
in Ref. [49]. The radiation of soft-qq̄ pairs produces addi-
tional colour correlations from charge-asymmetry contribu-
tions: their main features are discussed in this Section.

5.3.1 Processes with two hard partons

We consider a generic scattering amplitudeMBC (q1, q2, pB ,

pC ) whose external legs are two hard partons (denoted as B
and C), a soft qq̄ pair and additional colourless particles
(which are never explicitly denoted). The two hard partons
can be either a qq̄ pair (note that we specify B = q and
C = q̄) or two gluons ({BC} = {gg}). The corresponding
scattering amplitude |MBC (pB, pC )〉 without the soft-qq̄
pair is a colour singlet state. There is only one colour singlet
configuration of the two hard partons, and the corresponding
one-dimensional colour space is generated by a single colour
state vector that we denote as |BC〉.

Since the soft-qq̄ squared current |J(q1, q2)|2 conserves
the colour charge of the hard partons, the state |J |2 |BC〉 is
also proportional to |BC〉. We write

|J(q1, q2)|2 |BC〉 = |BC〉 |J(q1, q2)|2BC , (74)

where |J |2BC is a c-number (it is the eigenvalue of the oper-
ator |J |2 onto the colour state |BC〉). Therefore, the soft-
factorization formula (46) has the following factorized c-
number form:

|MBC (q1, q2, pB, pC )|2
� |J(q1, q2)|2BC |MBC (pB, pC )|2, (75)

with no residual correlation effects in colour space (the
dependence on SU (Nc) colour coefficients is embodied in
the c-number factors |J |2BC and |MBC |2). In this respect,
the structure of Eq. (75) is similar to that of soft-photon fac-
torization formulae in QED. We recall that a c-number fac-
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torization formula analogous to Eq. (75) is equally valid for
multiple soft-gluon radiation from two hard partons [49].

We note that Eqs. (74) and (75) are valid at arbitrary
loop orders in the perturbative expansion of both the squared
amplitude and the squared current. Therefore, by consider-
ing Eq. (74) and the loop expansion in Eq. (48), we can limit
ourselves to evaluate the eigenvalues (c-numbers) | Ĵ |2(0�)BC

and | Ĵ |2(1�)BC , which are the tree-level and one-loop contri-

butions to |J |2BC .

The tree-level squared current | Ĵ |2(0�) in Eqs. (48) and (52)
depends on the colour dipole factor T B · TC and, by sim-
ply using charge conservation (TC |BC〉 = −T B |BC〉), we
have T B · TC |BC〉 = −|BC〉 T 2

B (T2
B = CB). This leads

to the tree-level result first presented in Ref. [28]:

| Ĵ(q1, q2)|2(0�)BC = TR CB wBC (q1, q2), (76)

where wi j (q1, q2) is given in Eq. (53) andCB is the quadratic
Casimir coefficient of the hard parton (either CB = CF for
{BC} = {qq̄}, or CB = CA for {BC} = {gg}).

The one-loop squared current in Eq. (61) depends on the
colour dipole T B · TC (as at the tree level) and on charge-
asymmetry colour correlations.

By using Eqs. (56)–(59), we have the following colour
algebra results:

i = q : D̃i · T i = 1

2
dA CF , (77)

i = q̄ : D̃i · T i = − 1

2
dA CF , (78)

i = g : D̃i · T i = 0. (79)

We note that the operators D̃i · T i = dabcT a
i T

b
i T

c
i in

Eqs. (77)–(79) are proportional to the unit operator in colour
space. This proportionality is actually valid for D̃i ·T i in any
colour (irreducible) representation T a

i , and the proportional-
ity factor is known as cubic Casimir coefficient of SU (Nc).

The action onto |BC〉 of the charge-asymmetry colour
correlations in Eq. (61) can be explicitly evaluated by using
colour conservation (we have D̃B · TC |BC〉 = − D̃B ·
T B |BC〉 and D̃C · T B |BC〉 = − D̃C · TC |BC〉) and the
cubic Casimir coefficients in Eqs. (77)–(79).

Combining all the contributions in Eq. (61), we find the
following final result:

| Ĵ(q1, q2)|2(1�)BC = TR CF

[
w

[S]
BC (q1, q2)

+1

2
dA w

[A]
BC (q1, q2)

]
,

({B = q,C = q̄}), (80)

| Ĵ(q1, q2)|2(1�)BC = TR CA w
[S]
BC (q1, q2),

({BC} = {gg}), (81)

where the functions w
[S]
i j and w

[A]
i j are given in Eqs. (66) and

(70), respectively
In the case of soft-qq̄ radiation from the hard partons

{BC} = {qq̄} (see Eq. (80)), we do find charge-asymmetry
contributions in | Ĵ(q1, q2)|2(1�)BC . We recall that the func-

tion w
[A]
i j (q1, q2) is antisymmetric with respect to the sepa-

rate exchanges q1 ↔ q2 and i ↔ j . Therefore, in Eq. (80)
the asymmetry in the momenta of the soft-qq̄ pair is corre-
lated with a corresponding asymmetry in the momenta pB
and pC of the hard q and q̄ . In particular, | Ĵ(q1, q2)|2(1�)BC
is invariant under the overall exchange of fermions and
antifermions (i.e. {q1, pB} ↔ {q2, pC }), consistently with
charge-conjugation invariance.

In the case of soft-qq̄ radiation from two hard gluons,
the one-loop result in Eq. (81) shows no charge-asymmetry
effects. We state that this feature persists at arbitrary orders in
the QCD loop expansion. The absence of charge-asymmetry
effects follows from the fact that the c-number squared cur-
rent |J(q1, q2)|2BC for {BC} = {gg} is entirely controlled
by QCD interactions, with absolutely no dependence (both
explicitly and implicitly) on the production mechanism of the
two hard gluons. Therefore, such squared current is charge-
conjugation invariant (similarly to the squared amplitude for
the process gg → qq̄) and one cannot distinguish between
the soft quark and antiquark.

5.3.2 Processes with three hard partons

Before considering the explicit evaluation of the soft-qq̄
squared current |J(q1, q2)|2 for processes with three hard
partons, we recall and derive some general algebraic rela-
tions for the action of colour charge correlations operators
onto a generic colour singlet state |i jk〉 formed by three dis-
tinct partons i, j and k (i �= j, j �= k, k �= i) in arbitrary
representations of the gauge group SU (Nc). We consider
the correlations operators that appear in |J(q1, q2)|2 up to
one-loop level, namely, T i · T j , f abcT a

i T
b
j T

c
k , D̃i · T j and

dabcT a
i T

b
j T

c
k .

As is well known, the action of dipole factors onto |i jk〉
can be evaluated in terms of quadratic Casimir coefficients
T2
i = Ci (see the Appendix A of Ref. [22]). We have

2 T i · T j |i jk〉 = |i jk〉 (Ck − Ci − C j
)
, (82)

and related permutations of i, j, k. In particular, any generic
colour singlet state |i jk〉 is an eigenstate of T i ·T j or, equiv-
alently, the action of T i · T j onto |i jk〉 is always propor-
tional to the unit operator in colour space. The result in
Eq. (82) simply follows from the charge conservation rela-
tion (T i + T j + T k)|i jk〉 = 0, which also leads to the result
in Eq. (71) for the operator f abcT a

i T
b
j T

c
k .

Considering charge-asymmetry correlations and using
colour conservation ( T a

k |i jk〉 = −(T a
i + T a

j )|i jk〉 ), we
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have the following relations

D̃k · T k |i jk〉 = − ( D̃k · T i + D̃k · T j
) |i jk〉,(83)

dabc T a
i T b

j T
c
k |i j k〉 = − ( D̃i · T j + D̃ j · T i

) |i jk〉, (84)

and related permutations of i, j, k. We note that we are deal-
ing with seven colour correlations operators (six two-particle
correlations of the type D̃i ·T j , and the three-particle correla-
tion dabc T a

i T b
j T

c
k ) whose action onto |i jk〉 is ‘non-trivial’,

while the action of the three operators D̃i · T i is directly
worked out in c-number form in terms of cubic Casimir
coefficients (see Eqs. (77)–(79)). Since colour conservation
leads to the six linear relations (exploiting permutations) in
Eqs. (83) and (84), all the non-trivial colour correlations can
be expressed in terms of a single correlation operators. To
explicitly show this, we derive the following relations. The
three-particle correlation is directly related to cubic Casimir
coefficients as follows

dabc T a
i T b

j T
c
k |i j k〉 = 1

3

(
D̃i · T i

+ D̃ j · T j + D̃k · T k
) |i jk〉. (85)

The three symmetric (with respect to i ↔ j) two-particle
correlations are equal and directly related to cubic Casimir
coefficients as follows

(
D̃i · T j + D̃ j · T i

) |i jk〉= ( D̃ j · T k + D̃k · T j
) |i jk〉 =

(
D̃k · T i + D̃i · T k

) |i jk〉 = −1

3

(
D̃i · T i + D̃ j · T j

+ D̃k · T k
) |i jk〉. (86)

The three antisymmetric (with respect to i ↔ j) two-particle
correlations fulfil two independent linear relations (which are
related through i ↔ j) as follows
[
( D̃ j · T k − D̃k · T j ) − ( D̃i · T j − D̃ j · T i )

+2

3
( D̃i · T i + D̃k · T k) − 4

3
D̃ j · T j

]
|i jk〉 = 0 , (87)

[
( D̃k · T i − D̃i · T k) − ( D̃i · T j − D̃ j · T i )

−2

3
( D̃ j · T j + D̃k · T k) + 4

3
D̃i · T i

]
|i jk〉 = 0. (88)

The derivation of Eqs. (85)–(88) from Eqs. (83) and (84) is
relatively straightforward. For instance, Eq. (85) is derived by
first summing Eq. (84) and its two independent permutations
to obtain 3dabc T a

i T b
j T

c
k |i jk〉 = −[ D̃k · (T i + T j )+ (k ↔

i) + (k ↔ j) ] |i jk〉, and then by using Eq. (83). Similar
algebraic operations lead to Eqs. (86)–(88).

In the specific cases in which i, j, k are either three glu-
ons or a gluon and a qq̄ pair, we can use the explicit results
for D̃i · T i in Eqs. (77)–(79) and, consequently, Eq. (85)
gives dabc T a

i T b
j T

c
k |i jk〉 = 0 (this proves Eq. (73)) and from

Eq. (86) we obtain
(
D̃i · T j + D̃ j · T i

) |i jk〉 = 0,

({i j k} = {g q q̄}, {g g g}), (89)

and related permutations of i, j, k.
Regarding the vanishing value of the correlations f abcT a

i
T b
j T

c
k and dabcT a

i T
b
j T

c
k in Eqs. (71) and (73), a comment

is in order. The result in Eq. (71) applies to arbitrary colour
representations of {i j k}, while Eq. (73) is valid (as we have
specified in its derivation from Eq. (85)) for some types of
colour representations. For instance, in the case of SU (Nc)

with Nc = 3, the colour singlet state |i jk〉 can be formed by
three quarks and in such case dabc T a

i T b
j T

c
k |i jk〉 does not

vanish.
We summarize our general discussion on colour correla-

tions for processes with three hard partons i, j, k in arbitrary
colour representations of SU (Nc). The charge-symmetric
component of |J(q1, q2)|2 up to one-loop order is propor-
tional to the unit operator in colour space, and it can be
expressed in c-number form, in terms of quadratic Casimir
coefficients (see Eqs. (71) and (82)). The charge-asymmetry
component of |J(q1, q2)|2 at one-loop order can eventually
be expressed (see Eqs. (85)–(88)) in terms of cubic Casimir
coefficients (c-numbers) and a single operator (e.g., D̃i ·T j )
whose action onto the colour singlet state |i jk〉 has to be
explicitly computed (the result depends on the specific state
|i jk〉).

We come to explicitly discuss soft-qq̄ radiation from scat-
tering amplitudes with three hard partons in the specific
cases that are relevant within perturbative QCD. We consider
a generic scattering amplitude MABC (q1, q2, pA, pB, pC )

whose external legs are colourless particles (which are not
explicitly denoted), a soft-qq̄ pair and three hard partons
(denoted as A, B,C) that can be either a gluon and a qq̄ pair
({ABC} = {gqq̄}) or three gluons ({ABC} = {ggg}). The
corresponding scattering amplitude |MABC (pA, pB, pC )〉
without the soft-qq̄ pair is a colour singlet state formed by
the three hard partons A, B and C . We consider the cases
{ABC} = {gqq̄} and {ABC} = {ggg} in turn.

gqq̄ case

We specifically set A = g, B = q and C = q̄ .
There is only one colour singlet configuration of the three

hard partons, gqq̄ , and the corresponding one-dimensional
colour space is generated by a single colour state vector that
we denote as |ABC〉. Therefore, we are in a situation in which
we can apply the same reasoning of Sect. 5.3.1 (see Eqs. (74)
and (75) and the accompanying discussion). The state |ABC〉
is an eigenstate of the soft-qq̄ squared current |J(q1, q2)|2,

|J(q1, q2)|2 |ABC〉 = |ABC〉 |J(q1, q2)|2ABC ,

({ABC} = {gqq̄}), (90)
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and the soft-factorization formula (46) has the following fac-
torized form:

|MABC (q1, q2, pA, pB, pC )|2
� |J(q1, q2)|2ABC |MABC (pA, pB, pC )|2,
({ABC} = {gqq̄}), (91)

where |J(q1, q2)|2ABC is the c-number eigenvalue in Eq. (90).
Analogously to Eq. (75), Eq. (91) has a c-number factorized
form with no residual correlation effects in colour space (the
dependence on SU (Nc) colour coefficients is embodied in
the c-number factors |J |2ABC and |MABC |2). We also recall
that a c-number factorized formula analogous to Eq. (91)
applies [49] to multiple soft-gluon radiation from the three
hard partons {ABC} = {gqq̄}.

Equations (90) and (91) are valid at arbitrary loop orders
in the perturbative expansion of both the squared amplitude
and the squared current. Therefore, considering Eq. (90) and
the loop expansion in Eq. (48), we can directly evaluate the
eigenvalues | Ĵ |2(0�)ABC and | Ĵ |2(1�)ABC , which are the tree-

level and one-loop contributions to |J |2ABC .

The tree-level squared current | Ĵ |2(0�) in Eqs. (48) and (52)
involves colour dipole correlations. Using Eq. (82), dipole
correlations can be expressed in terms of quadratic Casimir
coefficients and this leads to the tree-level result first pre-
sented in Ref. [28]:

| Ĵ(q1, q2)|2(0�)ABC = TR
{
CF wBC (q1, q2) + 1

2
CA [wAB(q1, q2)

+wAC (q1, q2) − wBC (q1, q2)]
}
,

({ABC} = {gqq̄}), (92)

where wi j (q1, q2) is given in Eq. (53). Note that the result in
Eq. (92) is symmetric under the exchange pB ↔ pC of the
momenta of the hard quark and antiquark.

The one-loop squared current | Ĵ(q1, q2)|2(1�) in Eq. (61)
has contributions with and without charge asymmetry. Owing
to Eq. (71), the charge-symmetric contributions only involve
colour dipole correlations, as at the tree level. As discussed in
Eqs. (85)–(88), the charge-asymmetry contributions require
the explicit evaluation of a single correlation operator of the
type D̃i ·T j . We consider the operator D̃B ·TC , whose action
onto |ABC〉 can be related to the action of the dipole operator
T B · TC . Indeed, we have

D̃B · TC |ABC〉 = 1

2
dA T B · TC |ABC〉

= |ABC〉 1

4
dA(CA − 2CF ) ,

({ABC} = {gqq̄}), (93)

where we have used first Eq. (57) and then Eq. (82). We note
that |ABC〉 is an eigenstate of D̃B · TC , as expected one the
basis of the general relation in Eq. (90). Using Eq. (93) and the
cubic Casimir coefficients in Eqs. (77)–(79), we can express

all the charge-asymmetry colour correlations in c-number
form (see Eqs. (85)–(88)). We find the following result for
the eigenvalue | Ĵ(q1, q2)|2(1�)ABC of the one-loop squared
current for soft-qq̄ radiation:

| Ĵ(q1, q2)|2(1�)ABC = TR
{[

CF w
[S]
BC (q1, q2)

+1

2
CA
(
w

[S]
AB(q1, q2)

+w
[S]
AC (q1, q2) − w

[S]
BC (q1, q2)

)]

+1

2
dA
[
CF w

[A]
BC (q1, q2)

−1

2
CA
(
w

[A]
AB(q1, q2) + w

[A]
CA(q1, q2)

+w
[A]
BC (q1, q2)

)]}
,

({ABC} = {gqq̄}), (94)

where the functions w
[S]
i j (q1, q2) and w

[A]
i j (q1, q2) are given

in Eqs. (66) and (70), respectively. We note that the charge
symmetric contribution in Eq. (94) is symmetric under the
exchange pB ↔ pC of the hard quark and antiquark. The
charge-asymmetry contribution in Eq. (94) is instead anti-
symmetric under the exchange pB ↔ pC , in complete anal-
ogy with the corresponding contribution for soft-qq̄ radiation
from two hard partons (see Eq. (80)).

ggg case

We now consider the case in which the three hard partons
A, B and C are gluons. The colour singlet space spanned
by the three hard gluons is two-dimensional. It is convenient
to choose the basis formed by the orthogonal colour state
vectors |(ABC) f 〉 and |(ABC)d 〉 that are defined as follows

〈 abc | (ABC) f 〉 ≡ i f abc, 〈 abc | (ABC)d 〉 ≡ dabc,

({ABC} = {ggg}), (95)

where a, b, c are the colour indices of the three gluons. We
note that the two states in Eq. (95) have different charge con-
jugation. The scattering amplitude |MABC (pA, pB, pC )〉 is,
in general, a linear combination of the colour antisymmetric
state |(ABC) f 〉 and the colour symmetric state |(ABC)d〉,
and we write

|MABC (pA, pB, pC )〉 = |(ABC) f 〉 M f (pA, pB, pC )

+|(ABC)d〉 Md(pA, pB, pC ),

(96)

where M f and Md are colour stripped amplitudes. Owing
to the Bose symmetry of |MABC 〉 with respect to the three
gluons, the amplitude M f (pA, pB, pC ) is antisymmetric
under the exchange of two gluon momenta (e.g., pA ↔ pB),
while M f (pA, pB , pC ) has a symmetric dependence on
pA, pB, pC .
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As examples of the scattering amplitude
|MABC (pA,pB,pC )〉, we can mention the three scattering
processes H → ggg, γ → ggg and Z → ggg. In the Higgs
boson process H → ggg (see, e.g., Ref. [96]) the amplitude
component Md of Eq. (96) vanishes, while in the photon
process γ → ggg (see, e.g., Ref. [97]) we have M f = 0. In
the case of the Z boson process Z → ggg both components
M f and Md are not vanishing (see, e.g., Ref. [97]). We also
note that all these scattering amplitudes are produced through
QCD interactions involving quark loops (within the Standard
Model, gluons have tree-level interactions only with quarks
and, consequently, MABC vanishes at the tree level).

We have previously discussed the case of the three hard
partons {ABC} = {gqq̄}, which generate a one-dimensional
colour singlet space. The fact that the colour singlet space is
two-dimensional for {ABC} = {ggg} is an essential differ-
ence. In particular, in the case {ABC} = {ggg} the all-order
soft-factorization formula (46) for squared amplitudes can-
not be recast in the factorized c-number form of Eq. (91).
The action of the squared current |J |2 onto |MABC 〉 of
Eq. (96) is colour conserving, but it can produce colour corre-
lations between the two colour singlet states |(ABC) f 〉 and
|(ABC)d〉 of the three hard gluons. In general, the squared
soft current |J |2 can be represented as a 2 × 2 correlation
matrix that acts onto the two-dimensional space generated
by |(ABC) f 〉 and |(ABC)d〉. The all-order structure of this
correlation matrix is discussed in Ref. [49] for the case of
multiple soft-gluon radiation. In the following we explicitly
consider soft-qq̄ radiation at the tree level and one-loop order.

The tree-level squared current | Ĵ |2(0�) in Eqs. (48) and (52)
only involves colour dipole correlations, whose action onto
both |(ABC) f 〉 and |(ABC)d〉 is proportional to the unit
matrix in colour space (see Eq. (82)). Therefore, the con-
tribution of | Ĵ |2(0�) to the factorization formula (46) can be
expressed in factorized c-number form and, using Eq. (82),
we have (see also Ref. [28])

〈MABC (pA, pB , pC )| | Ĵ(q1, q2)|2(0�) |MABC (pA, pB , pC )〉
= |MABC (pA, pB , pC )|2 TR CA

2
w{ABC}(q1, q2),

({ABC} = {ggg}), (97)

where

w{ABC}(q1, q2) = wAB(q1, q2) + wBC (q1, q2)

+wCA(q1, q2), (98)

and wi j (q1, q2) is given in Eq. (53). Since wi j is symmetric
under the exchange pi ↔ p j , we note that the function
w{ABC} has a completely symmetric dependence on the gluon
momenta pA, pB, pC (as required by Bose symmetry). We
also note that Eq. (97) is valid at arbitrary orders in the loop
expansion of the amplitude MABC (pA, pB, pC ).

The action of the one-loop squared current | Ĵ(q1, q2)|2(1�)

in Eqs. (48) and (61) onto |MABC 〉 involves charge symmet-

ric and charge-asymmetry contributions. As summarized in
the discussion below Eq. (89), the charge symmetric contri-
butions are proportional to the unit matrix in colour space,
while the charge-asymmetry contributions can be expressed
in terms of a single colour correlation operator. Specifically,
by using Eq. (82)) and Eqs. (85)–(88), we explicitly find

| Ĵ(q1, q2)|2(1�) |ABC〉 = TR

{
CA

2
w

[S]
{ABC}(q1, q2)

+ D̃B · T A w
[A]
[ABC](q1, q2)

}
|ABC〉,

({ABC} = {ggg}), (99)

where

w
[S]
{ABC}(q1, q2) = w

[S]
AB(q1, q2) + w

[S]
BC (q1, q2)

+w
[S]
CA(q1, q2) , (100)

w
[A]
[ABC](q1, q2) = w

[A]
AB(q1, q2) + w

[A]
BC (q1, q2)

+w
[A]
CA(q1, q2), (101)

and the functions w
[S]
i j (q1, q2) and w

[A]
i j (q1, q2) are given

in Eqs. (66) and (70), respectively. We note that the charge
symmetric contribution to Eq. (99) depends on the function
w

[S]
{ABC} that has a fully symmetric dependence on the hard-

gluon momenta pA, pB, pC . The charge-asymmetry func-
tion w

[A]
[ABC] is instead antisymmetric under the exchange of

two gluon momenta (e.g., pA ↔ pB).
The charge-asymmetry operator D̃B · T A in the right-

hand side of Eq. (99) acts differently onto the two colour
states |(ABC) f 〉 and |(ABC)d〉 of Eq. (96). By explicitly
performing the SU (Nc) colour algebra, we find the following
result:

D̃B · T A |(ABC) f 〉 = C2
A

4
|(ABC)d〉,

D̃B · T A |(ABC)d〉 = CA dA
4

|(ABC) f 〉, (102)

and we note that the operator D̃B · T A produces ‘pure’ tran-
sitions between the colour symmetric and colour antisym-
metric states |(ABC) f 〉 and |(ABC)d〉, which have different
charge conjugation.

Using Eqs. (96), (99) and (102), we obtain the final result
for the contribution of the one-loop soft-qq̄ squared current
to squared amplitudes with three hard gluons. We find

〈MABC (pA, pB , pC )| | Ĵ(q1, q2)|2(1�) |MABC (pA, pB , pC )〉
= TR CA

2

{
w

[S]
{ABC}(q1, q2) |MABC (pA, pB , pC )|2

+w
[A]
[ABC](q1, q2)

1

2
CAdA(N 2

c − 1)

×[M†
d(pA, pB , pC )M f (pA, pB , pC ) + h.c.

]}
,

({ABC} = {ggg}), (103)
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which is not simply proportional to |MABC |2 (unlike the
corresponding result in Eq. (91) for {ABC} = {gqq̄})). In
contrast with the case of scattering amplitudes with two hard
gluons (see Eq. (81)), we note that the expression in Eq. (103)
involves a charge-asymmetry contribution that is not van-
ishing, provided the hard-scattering amplitude includes non-
vanishing componentsM f andMd (i.e.,MABC has no def-
inite charge conjugation). Such feature ofMABC depends on
the specific production mechanism of the three hard gluons.
The functions w

[A]
[ABC] and (M†

dM f + h.c.) are separately
antisymmetric under the exchange of two gluon momenta
and, consequently, their product is symmetric. Therefore, the
right-hand side of Eq. (103) (including its charge-asymmetry
contribution) is fully symmetric under permutations of the
three hard gluons, as expected and required by Bose symme-
try.

6 Soft fermion-antifermion radiation in QED and
mixed QCD×QED

Our results in Sects. 4 and 5 for soft-qq̄ emission can be
generalized to consider the emission of a soft fermion–
antifermion ( f f̄ ) pair through QED (photon) interactions
and mixed QCD×QED (gluon and photon) interactions.
Before presenting the results, we precisely specify our frame-
work.

The soft fermions can be either massless quarks ( f = q) or
electrically-charged massless leptons ( f = �). We consider
generic scattering amplitudes, M, whose external particles
are massless quarks and gluons, massless leptons and, addi-
tionally, particles that carry no colour charge and no electric
charge (i.e., photons, Higgs and Z bosons in the context of
Standard Model). The external particles (i.e., their momenta
and quantum numbers) of M are treated as outgoing parti-
cles (as already specified in Sect. 2 for the pure QCD case).
The internal legs of M can include massless (photons, glu-
ons) and massive (e.g., heavy quarks and/or W± bosons)
particles. If an external f f̄ pair becomes soft, the scattering
amplitude M is singular and the singular behaviour is due to
the production of the soft- f f̄ pair through QCD (gluon) and
QED (photon) interactions. We formally treat QCD, QED
and mixed QCD×QED interactions on equal footing. There-
fore, the scattering amplitude M has a generalized pertur-
bative (loop) expansion in powers of two unrenormalized
couplings: the QCD coupling gS and the QED coupling g
(g2/(4π) = α is the fine structure constant at the unrenor-
malized level). Regarding the RS of the UV and IR diver-
gences, photons and charged leptons are treated in the same
way (see Sect. 3) as gluons and massless quarks, respectively.

6.1 The soft-f f̄ current

The dominant singular behaviour of |M〉 for emission of a
soft- f f̄ pair is given by the factorization formula in Eq. (5)
through the replacement J(q1, . . . , qm) → J f f̄ (q1, q2).
Here J f f̄ (q1, q2) is the soft current for emission of a fermion

f and an antifermion f̄ with momenta q1 and q2, respec-
tively. Analogously to the scattering amplitude M, the cur-
rent J f f̄ is perturbatively computable by performing a loop
expansion, and we write

J f f̄ (q1, q2) = J (0)

f f̄
(q1, q2) + J (1)

f f̄
(q1, q2)

+J (2)

f f̄
(q1, q2) + · · · . (104)

Since we formally treat QCD and QED interactions on equal
footing, the k-th loop term J (k)

f f̄
include contributions that are

proportional to powers of both coupling constants gS and g.
The pure-QCD and pure-QED cases are recovered by setting
{g = 0, f = q} and {gS = 0, f = �}, respectively.

The lowest-order (tree-level) term J (0)

f f̄
of Eq. (104) is

J (0)

f f̄
(q1, q2) = (

gS με
)2 Ĵ

(0)
(q1, q2)

+ (gμε
)2 Ĵ

(0)

(1γ )(q1, q2), (105)

where Ĵ
(0)

(q1, q2) is the rescaled current in Eqs. (14) and

(33) for soft-qq̄ emission in QCD (note that Ĵ
(0)

vanishes if

f = �). The term Ĵ
(0)

(1γ ) has the following explicit expression:

Ĵ
(0)

(1γ )(q1, q2) = − e f � f

∑
i∈H

ei
pi · j (1, 2)

pi · q12
, (106)

where jν(1, 2) is the fermionic current in Eq. (15). The cur-

rent Ĵ
(0)

(1γ ) is due to a single-photon interaction between the
soft fermion f (with electric charge e f ) and the other external
charged particles (with electric charges ei ), i ∈ H , ofM. The
charges e f and ei are expressed in units of the positron charge
(e.g., for the up-quark u we have eu = +2/3). The factor � f

in the right-hand side of Eq. (106) is a colour operator that
depends on the type of soft fermion f . If f = �, we simply
have � f = 1. If f = q, � f is the projection operator onto
the colour singlet state of the f f̄ pair, namely, by using the
colour space notation of Sect. 2 we have 〈α1, α2| � f = δα1α2 .

The soft- f f̄ current J (1)

f f̄
in Eq. (104) is due to the one-

loop corrections (with respect to both gS and g) to the tree-
level current J (0)

f f̄
. We can write

J (1)

f f̄
(q1, q2) = (

με
)4 (−q2

12 − i0
)−ε

c�

[
g4

S Ĵ
(1)

(q1, q2)

+g2
S g

2 Ĵ
(1)

(1γ )(q1, q2) + g4 Ĵ
(1)

(2γ )(q1, q2)
]
,

(107)
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where the rescaled currents Ĵ
(1)

, Ĵ
(1)

(1γ ) and Ĵ
(1)

(2γ ) are intro-

duced similarly to Eq. (34). The term Ĵ
(1)

(q1, q2) in the
right-hand side of Eq. (107) is exactly the soft-qq̄ current
of Eqs. (34)–(37) for the QCD case. The results for the terms

Ĵ
(1)

(1γ ) and Ĵ
(1)

(2γ ) are obtained by properly modifying the QCD
result in Eqs. (36) and (37).

The rescaled current Ĵ
(1)

(2γ ) in Eq. (107) is entirely due to
QED interactions, and it has the following expression:

Ĵ
(1)

(2γ )(q1, q2) =
[
− e2

f

(
2

ε2 + 3

ε
+ 8 + (δR − 1)

)

−4

3
Nch.

(
1

ε
+ 5

3

)]
Ĵ

(0)

(1γ )(q1, q2)

+ jν(1, 2) e2
f � f

∑
i, j ∈H
i �= j

ei e j

×
[(

pν
i

pi · q12
− pν

j

p j · q12

)

×
(

−2

ε
(�i1 + � j2) + (�i1 − � j2)

2
)

+ q2
12

q2
12⊥i j

(
pν
i

pi · q12

+ pν
j

p j · q12

)
2 Li j

(
�i1 − � j2

)]+ O(ε) ,

(108)

where Ĵ
(0)

(1γ ) is given in Eq. (106). In Eq. (108) the soft
fermion f can be either a quark or a lepton and, similarly,
the charged hard particles i, j ∈ H can include quarks and
leptons. The factor Nch. in the right-hand side of Eq. (108)
is analogous to the factor TRN f of the QCD expressions
in the right-hand side of Eqs. (36) and (37). The coefficient
Nch. depends on the squared electric charges of the massless6

quarks and leptons in the theory, and we have

Nch. =
∑

�

e2
� + Nc

∑
q

e2
q . (109)

The one-loop term Ĵ
(1)

(1γ ) in Eq. (107) is due to mixed
QCD×QED interactions. It has the following explicit expres-
sion:

Ĵ
(1)

(1γ )(q1, q2) = δ f q

{(
2

ε2 + 3

ε
+ 8 + (δR − 1)

)

×
[
−CF Ĵ

(0)

(1γ )(q1, q2) − e2
f Ĵ

(0)
(q1, q2)

]

6 Analogously to the QCD case, in the one-loop current Ĵ
(1)

(2γ )(q1, q2)

we have not considered and included vacuum polarization effects due
to massive particles (charged leptons, quarks and W±).

+ jν(1, 2) e f tc
∑

i, j ∈H
i �= j

(
ei T

c
j + e j T

c
i

)

×
[(

pν
i

pi · q12
− pν

j

p j · q12

)

×
(

−2

ε
(�i1 + � j2) + (�i1 − � j2)

2
)

+ q2
12

q2
12⊥i j

(
pν
i

pi · q12

+ pν
j

p j · q12

)
2 Li j

(
�i1 − � j2

)]+ O(ε)

}
,

(110)

where Ĵ
(0)

and Ĵ
(0)

(1γ ) are the tree-level currents in the right-

hand side of Eq. (105). We note that Ĵ
(1)

(1γ ) is entirely propor-
tional to the Kronecker delta symbol δ f q and, consequently,
it is not vanishing only if the soft fermion f is a quark.
Therefore, if the soft fermion f is a charged lepton, the total
one-loop current J (1)

f f̄
in Eq. (107) receives a non-vanishing

contribution only from the QED interaction term Ĵ
(1)

(2γ ).
In Sect. 4 we have discussed the singularity at q12⊥i j → 0

of the current Ĵ
(1)

for soft-qq̄ QCD radiation at the one-loop
level, and we have concluded that it has a purely non-abelian

character. The results for Ĵ
(0)

(2γ ) and Ĵ
(0)

(1γ ) are consistent with
this conclusion, since the expressions in Eqs. (108) and (110)
do not have the transverse-momentum singularity. Although
the right-hand side of Eqs. (108) and (110) include the factor
1/q2

12⊥i j , its singular contribution at q12⊥i j → 0 turns out
to be antisymmetric under i ↔ j (see Eqs. (41)–(43) and
accompanying comments) and it cancels by summing over
i, j ∈ H .

6.2 The square of the soft-f f̄ current

The singular behaviour of squared amplitudes for soft-
f f̄ radiation is controlled by the square of the current in
Eq. (104). We have

|J f f̄ (q1, q2)|2 =
[
J (0)

f f̄
(q1, q2)

]†
J (0)

f f̄
(q1, q2)

+
{[

J (0)

f f̄
(q1, q2)

]†
J (1)

f f̄
(q1, q2) + h.c.

}
+ · · · ,

(111)

where the dots stand for higher-loop contributions (i.e., terms
of O((g2

S)4−n(g2)n
)

with 0 ≤ n ≤ 4)).
Using Eq. (105), the tree-level term in Eq. (111) is

[
J (0)

f f̄
(q1, q2)

]†
J (0)

f f̄
(q1, q2) ≡ (gS με

)4 | Ĵ(q1, q2)|2(0�)

+ (gμε
)4 | Ĵ(q1, q2)|2(0�;2γ ), (112)
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where | Ĵ(q1, q2)|2(0�) is the pure QCD contribution given in
Eq. (52). We note that the right-hand side of Eq. (112) does
not include a term proportional to g2

Sg
2 (such QCD×QED

interference is proportional to [ Ĵ (0)]† Ĵ
(0)

(1γ ) and it leads to
an overall vanishing colour factor, Tr(tc� f ) = 0). The term
| Ĵ |2

(0�;2γ )
in Eq. (112) is due to QED interactions, and it is

| Ĵ(q1, q2)|2(0�;2γ ) =
[
Ĵ

(0)

(1γ )(q1, q2)
]†

Ĵ
(0)

(1γ )(q1, q2)

= − (δ f � + Nc δ f q
)
e2
f

1

2

∑
i, j ∈H
i �= j

ei e j wi j (q1, q2), (113)

where the function wi j is given in Eq. (53).
The one-loop term in the squared current of Eq. (111)

includes all possible contributions that are proportional to
the powers (g2

S)3−n(g2)n with 0 ≤ n ≤ 3. We write it in the
following form:
[
J (0)

f f̄
(q1, q2)

]†
J (1)

f f̄
(q1, q2) + h.c.

= (με
)6 (|q2

12|
)−ε

c�

{
g6

S | Ĵ(q1, q2)|2(1�)

+
3∑

n=1

(g2
S)3−n (g2)n | Ĵ(q1, q2)|2(1�;nγ )

}
, (114)

where | Ĵ(q1, q2)|2(1�) is the pure QCD contribution given in
Eq. (61). Using Eqs. (105) and (107), the other contributions
in the right-hand side of Eq. (114) are given in terms of the

rescaled currents Ĵ
(0)

, Ĵ
(0)

(1γ ), Ĵ
(1)

, Ĵ
(1)

(1γ ) and Ĵ
(1)

(2γ ).

The one-loop contribution | Ĵ(q1, q2)|2(1�;3γ )
is entirely

due to QED interactions, and we explicitly obtain

| Ĵ(q1, q2)|2(1�;3γ ) =
[
Ĵ

(0)

(1γ )(q1, q2)
]†

Ĵ
(1)

(2γ )(q1, q2) + h.c.

= (δ f � + Nc δ f q
)
e2
f

⎧
⎪⎪⎨
⎪⎪⎩

−1

2

∑
i, j ∈H
i �= j

ei e j w
[S]( f )
i j (q1, q2)

−
∑
k∈H

∑
i, j ∈H
i �= j

e f ek ei e j 2 F [A]
i jk (q1, q2)

⎫
⎪⎪⎬
⎪⎪⎭

, (115)

where F [A]
i jk (q1, q2) is given in Eq. (68) and the one-loop func-

tion w
[S]( f )
i j (q1, q2) is

w
[S]( f )
i j (q1, q2) =

{
wi j (q1, q2)

[
− e2

f

(
2

ε2 + 3

ε
− π2

+8 + (δR − 1)

)
− 4

3
Nch.

(
1

ε
+ 5

3

)]

+O(ε)
}

+ (q1 ↔ q2
)
. (116)

Note that w
[S]( f )
i j explicitly depends on the squared electric

charge e2
f of the radiated soft fermion f .

We note that the result in Eq. (115) has a charge symmet-
ric contribution (which is proportional to the two-particle
correlation function w

[S]( f )
i j (q1, q2)) and an abelian charge-

asymmetry contribution that is proportional to the momen-
tum function F [A]

i jk (q1, q2). This structure is consistent with
the QCD result in Eq. (61), since the charge symmetric three-
particle correlations in Eq. (61) are purely non-abelian. At
variance with the expression in Eq. (61), in the right-hand
side of Eq. (115) we do not explicitly distinguish between
two-particle and three-particle charge-asymmetry correla-
tions (i.e., the summed index k can also be equal to either
i or j). In the QCD case, we also noticed that three-particle
correlations do not contribute to the squared of the soft- f f̄
current for emission from three hard partons (see Eqs. (71)
and (73)). A corresponding observation does not apply to
the one-loop contribution in Eq. (115). For example, we can
consider soft- f f̄ emission from the hard-scattering process
ūd → W− → ν̄ee− (the charges of the outgoing hard par-
ticles are {+2/3,+1/3,−1}) and we see that the product
ekei e j of three distinct charges in Eq. (115) does not vanish.

The terms | Ĵ |2
(1�;1γ )

and | Ĵ |2
(1�;2γ )

in Eq. (114) are due to
mixed QCD×QED interactions.

The contribution | Ĵ |2
(1�;1γ )

can be regarded as a one-loop
QED correction to the QCD radiation of the soft fermion–
antifermion pair. We obtain the following result:

| Ĵ(q1, q2)|2(1�;1γ ) =
{[

Ĵ
(0)

(q1, q2)
]†

Ĵ
(1)
(1γ )(q1, q2)

+
[
Ĵ

(0)
(1γ )(q1, q2)

]†
Ĵ

(1)
(q1, q2)

}
+ h.c.

= δ f q TR

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

∑
i, j ∈H
i �= j

T i · T j

×
[
wi j (q1, q2) e2

f

(
2

ε2 + 3

ε
− π2 + 8

+(δR − 1) + O(ε)

)
+ (q1 ↔ q2)

]

− e f
∑
k∈H

∑
i, j ∈H
i �= j

(
ei T k · T j + e j T i · T k

+ek T i · T j

)
2 F [A]

i jk (q1, q2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (117)

where the charge symmetric function wi j (q1, q2) and the

charge-asymmetry function F [A]
i jk (q1, q2) are given in Eqs. (53)

and (68), respectively. We note that the one-loop term in
Eq. (117) is not vanishing only if the soft fermion is a quark.
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Similarly to Eq. (115), the summed index k in Eq. (117) can
also be equal to either i or j .

The term | Ĵ |2
(1�;2γ )

can be regarded as a one-loop QCD
correction to the tree-level QED radiation (see Eq. (113)) of
the soft fermion–antifermion pair. Its explicit expression is

| Ĵ(q1, q2)|2(1�;2γ ) =
[
Ĵ

(0)

(1γ )(q1, q2)
]†

Ĵ
(1)

(1γ )(q1, q2) + h.c.

= δ f q Nc e
2
f

1

2

∑
i, j ∈H
i �= j

ei e j

{
wi j (q1, q2)

×
[
CF

(
2

ε2 + 3

ε
− π2 + 8 + (δR − 1)

)
+ O(ε)

]

+(q1 ↔ q2)

}
, (118)

where the function wi j (q1, q2) is given in Eq. (53). We note
that, analogously to Eq. (117), the term | Ĵ |2

(1�;2γ )
is not

vanishing only if the soft fermion is a quark. Unlike the
cases of the one-loop terms in Eqs. (115) and (117), charge-
asymmetry contributions do not appear in | Ĵ |2

(1�;2γ )
.

By direct inspection of the tree-level and one-loop results
in Eqs. (113), (115), (117) and (118), we see that the charge
symmetric (charge-asymmetry) contributions are propor-
tional to even (odd) powers of e f , as expected from charge
conjugation symmetry.

7 Summary

We have considered the radiation of two or more soft partons
in QCD hard scattering. In this soft limit the scattering ampli-
tude is singular, and the singular behaviour is controlled in
factorized form by a multiparton soft current, which has a
process-independent structure. At loop level, the scattering
amplitudes and the soft current have UV and IR divergences,
which we regularize in the form of ε poles by analytic con-
tinuation in d = 4 − 2ε space-time dimensions.

We have discussed the general structure of the ε-pole
divergences of the multiparton soft current. We have consid-
ered the soft current at one-loop order and we have presented
the explicit form of its ε-pole (divergent) contributions. We
have also discussed the RS dependence of the one-loop soft
current.

In the remaining part of the paper we have considered the
specific case of soft qq̄ radiation, by presenting a detailed
study at one-loop order. Considering arbitrary kinematical
regions of the soft-parton and hard-parton momenta, we have
explicitly computed the one-loop current by including the
finite terms at O(ε0). We find a relatively simple expression,
which, for instance, includes powers of logarithmic functions
but no dilog functions.

We find that the one-loop current produces a new type
of singularity if the soft-qq̄ pair is radiated with a van-
ishing transverse momentum with respect to the direction
of two colliding hard partons in the initial state. This new
transverse-momentum singularity has a quantum (more pre-
cisely, absorptive) origin and a purely non-abelian character.
Owing to its dynamical origin, the transverse-momentum sin-
gularity can appear also in the one-loop current for double
soft-gluon emission.

We have computed the one-loop contribution of the
squared current for soft-qq̄ emission and the ensuing colour
correlations for squared amplitudes of generic multiparton
hard-scattering processes. We have also explicitly considered
the specific cases of processes with two or three hard partons,
in which the colour correlation structure can be partly sim-
plified.

We find that, despite its absorptive origin, the new
one-loop transverse-momentum singularity contributes to
squared amplitudes (and, hence, cross sections) of scattering
processes with two initial-state colliding partons (hadrons)
and two or more hard partons (jets) in the final state.

At variance with the case of multiple soft-gluon radiation,
the emission of soft fermions and antifermions lead to charge
asymmetry effects. We have discussed in details the charge
asymmetry contributions of the one-loop squared current for
soft qq̄ radiation.

We have finally generalized our QCD study of soft qq̄
emission to the study of QED and mixed QCD×QED radia-
tive corrections in the context of soft fermion–antifermion
radiation. We have presented the corresponding one-loop
results for the soft current and its square.
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