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Abstract We present a simple quantum description of the
gravitational collapse of a ball of dust which excludes those
states whose width is arbitrarily smaller than the gravitational
radius of the matter source and supports the conclusion that
black holes are macroscopic extended objects. We also com-
ment briefly on the relevance of this result for the ultraviolet
self-completion of gravity and the connection with the cor-
puscular picture of black holes.

1 Introduction and motivation

It has been often argued that quantum gravity should remove
the singularity predicted by General Relativity at the end-
point of the gravitational collapse [1]. We study this issue
by considering a simple quantum description of the gravita-
tional collapse of a ball of dust [2]. Since gravity is the only
interaction acting on dust, the areal radius R of the ball clas-
sically follows a radial geodesic in the (outer) Schwarzschild
spacetime1

ds2 = −
(

1 − 2 GN M

r

)
dt2

+
(

1 − 2 GN M

r

)−1

dr2

+r2 d�2, (1.1)

where M is the Arnowitt–Deser–Misner (ADM) [3] mass
of the dust. In analogy with the quantum mechanics of the
hydrogen atom, in which one quantises the position of the
electron with respect to the centre-of-mass of the system, only

1 We use units with c = 1, the reduced Planck constant h̄ = �p mp and
the Newton constant GN = �p/mp, where �p is the Planck length and
mp the Planck mass.
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the radius R of the ball will be quantised here.2 The radial
geodesic equation will then become a time-independent
Schrödinger equation for a particle in the Newtonian poten-
tial, with the important feature that quantum states with width
significantly smaller than the gravitational radius

RH = 2 GN M (1.2)

are not physically allowed. This is similar to the quantum
removal of the classical UV catastrophe in the hydrogen
atom, except that the mass M naturally introduces a lower
bound on the energy spectrum which would be absent in
the Newtonian approximation. One could then infer that the
quantum nature of black holes as extended objects follows
from the non-linearity of the gravitational interaction as it is
described by General Relativity.

The main results will be obtained in the next section, with
more speculative considerations summarised in Sect. 3.

2 Minisuperspace model for the gravitational collapse

We consider a self-gravitating ball of dust of radius R and
ADM mass M [2,10]. In General Relativity, the surface of
the ball follows a radial geodesic in the Schwarzschild space-
time (1.1) and its areal radius R = R(τ ) must therefore sat-
isfy an equation of the form3

(
dR

dτ

)2

+ 1 − 2 GN M

R
� E2

M2 , (2.1)

where τ is the proper time and E < M is the conserved
energy of a bound trajectory. The above can be rewritten as

2 For more refined approaches in which the singularity is also removed,
see e.g. Refs. [4–9].
3 Numerical coefficients of order one will often be omitted or approx-
imated for the sake of clarity, given that the simplicity of the model
diminishes their physical relevance. A more precise analysis is left for
future refinements.
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H ≡ P2

2 M
− GN M2

R
= M

2

(
E2

M2 − 1

)
≡ E, (2.2)

where we introduced the momentum P = M (dR/dτ). One
can immediately notice that Eq. (2.2) is formally the same
as the Newtonian equation for energy conservation. In fact,
Eq. (2.2) is the mass-shell condition for the ball and the
Hamiltonian constraint of General Relativity for dust.

The study of spherically symmetric gravitational collapse
in the quantum theory has a long history (for a partial selec-
tion of papers, see Refs. [4,6–9,11–13]). We here proceed
with a simple quantisation prescription for the above equa-
tion by introducing the momentum operator P̂ = −i h̄ ∂/∂R.
This is physically equivalent to assuming that the radius of
the ball R satisfies an uncertainty relation stemming from the
usual canonical commutator, that is
[
R̂, P̂

]
= i h̄ ⇒ �R �P � h̄ = �p mp, (2.3)

where �O ≡ 〈 Ô2 〉− 〈 Ô 〉2
for Ô = R̂ or P̂ . Moreover, all

of the expectation values are taken on wavefunctions � =
�(R) satisfying

Ĥ � = E �, (2.4)

which is just the time-independent Schrödinger equation for
a gravitational (Newtonian) atom. In particular, the energy
spectrum contains the eigenstates

�n �
√

M9

π n5 �3
p mp

9
e
− M3 r

n mp3 �p L1
n−1

(
2 M3 r

n mp
3 �p

)
. (2.5)

where the integer number n ≥ 1 and L1
n−1 are the generalised

Laguerre polynomials (for zero angular momentum4). The
corresponding eigenvalues are given by

En
M

� −G2
N M4

2 h̄2 n2
= − 1

2 n2

(
M

mp

)4

= 1

2

(
E2
n

M2 − 1

)
, (2.6)

and one also has

Rn ≡ 〈�n|R|�n〉 � h̄2 n2

GN M3 = n2 �p

(mp

M

)3
. (2.7)

At first sight, it thus appears that the spectrum contains
states �n of infinitesimally small width, since R1 ∼
�p (mp/M)3 	 �p for any macroscopic objects, like stars,
whose mass M 
 mp. This ground state would have an
energy density of the order of M/R3

1 ∼ (M10/mp
9) �−3

p ,
which can hardly be considered a satisfying alternative to
the classical singularity of infinite energy density.

4 An obvious generalisation is to consider a spinning ball, but that
breaks spherical symmetry, and a treatment fully consistent with Gen-
eral Relativity would thus become much more involved.

However, Eq. (2.6) yields

0 ≤ E2
n

M2 � 1 − 1

n2

(
M

mp

)4

, (2.8)

tantamount to E � −M/2 in Eq. (2.2), and we thus find that
acceptable states �n must satisfy

n ≥ NM �
(
M

mp

)2

. (2.9)

Correspondingly, we obtain

Rn � RNM ∼ RH, (2.10)

which results in the quantum upper bound

GN M

Rn
� 1. (2.11)

Moreover, we observe that the Hamiltonian eigenvalues are
also bounded from below as (see also Ref. [14])

En ≥ ENM � −M

2
, (2.12)

which corresponds to

E2
n ≥ E2

NM
� 0. (2.13)

Since any semiclassical state representing the collapsing ball
must be described in terms of superpositions of the �n’s
with n ≥ NM , the above quantum bound (2.11) implies that
any ball of dust must have compactness GN M/R � 1. It is
important to stress once more that this result holds up to a fac-
tor of order one and better estimates should be obtained only
by considering more realistic and complete models. How-
ever, it appears rather unnatural that such refinements can
bring down the minimum size from a fraction of RH to �p.

The present minisuperspace description only contains the
observable R. From the wavefunction � = �(R), we can
therefore only determine such information as the expectation
value of R and the probability that the ball be inside the
gravitational radius,

P(R ≤ RH) ≡
∫ RH

0
P(R) dR

= 4 π

∫ RH

0
|�(R)|2 R2 dR, (2.14)

which can be viewed as the probability that the dust ball is a
black hole (when the mass M is treated as a fixed parameter5).
For the ground state, whose wavefunction is given by

� = �NM �
√

mp

π �3
p M

e
− M r

mp �p L1
M2

mp2 −1

(
2 M r

mp �p

)
, (2.15)

5 Alternative viewpoints are considered in Refs. [15–18], where the
mass M is quantised, and in Ref. [19], where M is allowed a statisti-
cal uncertainty. We will comment again about the former approach in
Sect. 3.
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Fig. 1 Probability density P = P(R) for: (a) ground state with n = NM = M2/mp
2 [solid (dashed) line represents the region inside (outside)

the gravitational radius RH = 2 GN M]; (b) first excited state with n = NM + 1 (dotted line)

the probability density P = PNM (R) is plotted in Fig. 1 for
a few cases with very small M . For values of M 
 mp,
the probability density narrowly peaks around a value of R
slightly below RH and one thus finds

PNM (R ≤ RH) � 1. (2.16)

Moreover, the width of this highest peak

�RNM ∼ RNM

NM
∼ �p

mp

M
. (2.17)

As expected, �RNM 	 RNM , hence the radius of a very
massive matter source should behave like a classical variable.

Figure 1 also displays the first excited state, which asymp-
totically approaches the corresponding ground state for
increasing M . This implies that Pn(R ≤ RH) � 1 for a range
of states n � NM , which suggests that large astrophysical
black holes of a given mass M might not necessarily be in
their ground state with n = NM . In fact, for n � NM , the
quantum of the Hamiltonian H in Eq. (2.2) is given by

δH ≡ |En+1 − En| � mp
mp

M
, (2.18)

so that δH ∼ mp (�RNM /�p) 	 mp for a macroscopic
object of mass M 
 mp. Furthermore, since

δE ≡ |En+1 − En| � mp, (2.19)

it appears that the proper source “energy” is naturally quan-
tised in units of the fundamental Planck mass mp, but this
quantum is redshifted down to the much smaller δH mea-
sured by outer observers.

3 Concluding remarks and outlook

We have shown how the General Relativistic description of
gravity leads to an upper bound for the compactness of a
ball of dust in the quantum theory. It is interesting to notice
that the lower bounds on the eigenvalue En ≥ ENM and
radius Rn � GN M could not be obtained in the Newtonian
theory, since E = E in that approximation, and the entire
spectrum �n with n ≥ 1 would be physically acceptable
therein. The bound (2.11) on the compactness therefore fol-
lows from the nonlinearity of General Relativity and agrees
with previous results [20] obtained by adding a gravitational
self-interaction term to the Newtonian theory [21–24]. It
also agrees with those results following from the quantum
description of the gravitational radius and black hole hori-
zon [15–18]. In particular, the latter approach leads to very
similar conclusions to the ones shown in the previous sec-
tion, like the black hole probability (2.16) and radius uncer-
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tainty (2.17), when the self-gravitating object is described by
an extended many-body system with a very large occupation
number of order NM ∼ M2/mp

2 in its ground state [25]. The
first excited modes could then be populated thermally [25]
and reproduce the Hawking radiation [26].

It is indeed very intriguing that Eq. (2.9) and the
bound (2.11) allow for recovering the fundamental scal-
ing relations employed in the corpuscular description of
black holes [27–33]. In fact, the allowed state of minimum
energy (2.15) has principal quantum number

NM � NG, (3.1)

where NG is the number of soft gravitons in the coherent state
representing the gravitational potential generated by a source
of mass M [34–37]. We recall that the corpuscular picture
naturally reproduces Bekenstein’s area spectrum G2

N M2 ∼
NG �2

p [38], so that the black hole ADM mass is quantised in
units of

δM � δH, (3.2)

where δH is precisely the quantum of our Hamiltonian given
in Eq. (2.18). This is also the typical energy of particles emit-
ted by the Hawking evaporation process, which the corpus-
cular picture describes as the depletion of the quantum state
of gravity [27–33].

In this perspective, the wavefunction �NM = �NG

appears as the “non-perturbative ground state” for self-
gravitating macroscopic objects of mass M and should thus
be the closest possible to a classical black hole (as we have
already commented at the end of the previous section). This
result is consistent with the fact that a static gravitational field
must be fully determined by the state of the source, as it does
not contain independent degrees of freedom in a static system
[15–18]. It can further be interpreted as the fact that the quan-
tum state of a macroscopic self-gravitating system of mass M
is very far from the vacuum �0 of quantum gravity, for which
NG = 0. The number NM ∼ NG ∼ M2 hence provides a
quantitative measure for this “distance” from the vacuum in
the Hilbert space of quantum gravity states. The appearance
of the ground state �NM = �NG when the ADM energy is
given by Eq. (2.9), in turn, can be interpreted as a form of
classicalization ensuring the ultraviolet self-completeness of
gravity [39–42], because states with spatial momenta much
larger than h̄/RNM ∼ h̄/RH have n < NM and cannot be
populated at energy scales of the order of the mass M .

We note that, although quantum states corresponding to
the classical singularity appear to be removed from the spec-
trum, it would be phenomenologically very important to
determine a more precise maximum value of the compact-
ness in order to assess the size of quantum deviations from
the exterior Schwarzschild geometry. Moreover, in order to
make contact with actual observations, one needs an explicit
description of the exterior spacetime and of the interaction

among the collapsing object and signals that can reach out
to our detectors. For example, an effectively finite size of
the self-gravitating system is expected to induce the kind of
quantum deviations obtained in Ref. [37] from a ultravio-
let cut-off for the momenta generating the outer mean-field
geometry. A unified description of the quantum states of the
collapsing ball presented here and the quantum gravitational
potential of Ref. [37] is left for future investigations.

We conclude by remarking that spinning objects and elec-
trically charged sources would also be very interesting to
consider. In particular, charged sources have already been
analysed by means of the horizon quantum mechanics [15–
18], for which it was then shown that the inner Cauchy hori-
zon of the classical Reissner–Nordström black hole has van-
ishing probability to occur [43] and that quantum fluctua-
tions do not allow for the existence of an event horizon if
the source is (significantly) overcharged [44]. The case of
rotating black holes was likewise analysed in Ref. [45], and
the existence of the inner Cauchy horizon of the Kerr geom-
etry was again found to be highly disfavoured, although the
angular momentum could be included only as an asymptotic
quantity. We expect the present approach will lead to similar
conclusions, although more preliminary work is necessary
in order to describe the collapse of rotating or electrically
charged objects by means of a manageable minisuperspace.
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