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Abstract In the present paper, we discuss the role of grav-
itational decoupling to isotropize the anisotropic solution of
Einstein’s field equations in the context of the complete geo-
metric deformation (CGD) approach and its influence on
the complexity factor introduced by Herrera (Phys Rev D
97:044010, 2018) in the static self-gravitating system. More-
over, we proposed a simple and effective technique as well to
generate new solutions for self-gravitating objects via CGD
approach by using two systems with the same complexity
factor and vanishing complexity factor proposed by Casadio
et al. (Eur Phys J C 79:826, 2019). The effect of decoupling
constant and the compactness on the complexity factor have
also been analyzed for the obtained solutions.

1 Introduction

Quantifying the term “complexity” has been quite a fasci-
nating challenge among researchers. Depending on various
physical problems, the term complexity changes its notion.
For example, a perfect crystal can be thought of as a system
with zero complexity. Here, zero complexity means the crys-
tal structure is perfectly ordered and periodic. In contrast, an
isolated ideal gas is fully disordered and it contains maximum
information as the system can be obtained in any accessible
state with equal probability. Now, if we consider the con-
cept of “disequilibrium” i.e. how a system deviates from the
equilibrium, we find that the ideal gas has minimum disequi-
librium while the perfect crystal has maximum disequilib-
rium. So the contrasting views of complexity while consid-
ering “information” and “disequilibrium” can be addressed
by defining complexity as a product of these concepts [1].
So in this way, complexity is zero for both perfect crystal
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and ideal gas, as it should be. The work of Lopez-Ruiz and
collaborators [1,2] about complexity has been extended to
self gravitating systems [3–8]. Recently, Carrasco-Hidalho
and Contreras [9] proposed a polynomial complexity factor
containing gravastar model [10] as a special case. Contreras
and Fuenmayor [11] considered the complexity factor as a
physical quantity containing anisotropy and gradients in the
density. Herrera [12] proposed a new definition of complexity
for self-gravitating, spherically symmetric systems, based on
a specific parameter that arises in the orthogonal splitting of
the Riemann tensor. Some more recent works in this regard
can be found in [13–16].

It can be said, that fixing some value of the complexity
factor for a specific scenario (example: a system having van-
ishing complexity) can act as an equation of state which may
lead close approximation to Einstein’s field equations. But for
these equations, it is very difficult to obtain analytical solu-
tions. In this scenario, a recent well-known tool called Gravi-
tational Decoupling (GD) by means of the minimal geometric
deformation (MGD) [17] and its extension known as com-
plete geometric deformation [18] formalism works perfectly
to convert the isotropic solutions into anisotropic domain or
can be even used to obtain new solutions. Moreover, it is
well-known that the MGD tool is a transformation that is
performed on the metric potential along with the radial com-
ponent of the line element by introducing a decoupler func-
tion. As a consequence, the original system splits into two
relatively simpler sets of equations. Another great advantage
of MGD is that it can extend a simple solution to more gener-
alized and complex cases by the addition of an extra source
(�i

j ) with the original energy-momentum tensor via coupled
with a dimensionless parameter. Later on, Ovalle and his col-
laborators found a drawback in the MGD approach, such as
considering only radial transformation can’t explain a stable
black hole with a well-defined horizon. In this regard, the
MGD was extended to deform both radial and temporal met-
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ric functions [18]. Mathematically, in the extended case of
MGD, the deformation acts in the following way:

ν(r) �→ ξ(r) + βh(r), and λ(r) �→ − ln[μ(r) + β f (r)]
It is noted here that the extended gravitational decoupling
(EGD) demands the supposition of a seed solution, which
allows reducing the number of free variables (or number of
degrees of freedom). Due to this, we need only two extra
conditions in order to close the system. There are many ways
to solve the equation despite the appearance of the new degree
of freedom h(r) in the θ -sector, such as implementing the
mimick approach with a particular form of h(r), or using the
EoS approach together with the mimick approach [19–21]
to solve the �-sector. On the other hand, it must be noted
that the hydrostatic balance gets severely modified because
of the deformation. Therefore, it is very important to check
the hydrostatic balance in order to assess the viability of the
solution. Recently some interior solutions were generalized
into the anisotropic domain using gravitational decoupling
via MGD and CGD approaches in different contexts [22–
48].

In cases like extremely dense compact star solutions, the
pressure can be broken down into radial and tangential com-
ponents and which leads to pressure anisotropy. It can also
be said, that considering anisotropic pressure components
gives more realistic results, whereas, the pressure isotropy
may be considered as an approximation in cases where the
magnitude of pressure anisotropy is small enough for the
general properties of a given model to remain unchanged.
This is efficiently discussed by Herrera [49] and from the
excerpt of that paper, we can see that due to the energy dis-
sipation in stellar evolution, even if the initial configuration
had isotropic pressure, it will disappear and the system will
become anisotropic. And an already anisotropic system has
no reason to lose its acquired anisotropy in the final stage
of dynamic evolution. This dissipation happens due to the
emission of massless particles like photons or neutrinos and
it is one of the key features of the evolution of massive stars.
In addition to that, neutrino emission is one of the reason-
able explanations of the process of carrying away the bulk
of the binding energy in collapsing stars which leads to the
formation of neutron stars and black holes. The reason for
this pressure anisotropy (radial and tangential components)
can have several causes.

In fact, in both very high and very low-density systems,
many factors can be the reason for the deviation from local
isotropy. This has been discussed in detail by Herrera and
Santos [50]. In extremely dense systems, the gravitational
collapse may occur due to exotic phase transitions, with the
most notable one of them being the pion condensed state.
This pion condensed state releases a large amount of energy
by softening the equation of state. This in turn has signif-
icant implications in the collapsing configurations. Sawyer

and Scalapino [51] pointed out that pressure anisotropy can
be one of the reasons for pion condensed phase because
of the geometry of π− modes. While several researchers
[52,53] discussed that the anisotropic part of the stress ten-
sor is related to the flux lines of a type-II superconductor
and which is relevant to the neutron star configuration. The
anisotropic factor is also associated with the existence of
solid core [54,55], boson stars [56,57] and type-P superfluid
as well. Viscosity is one of the potential sources of local
anisotropy. But, in highly dense matter, where the Fermi
energy is much higher than the temperature, the matter can
be approximated to be isentropic as the dissipative processes
are not taken into account during the relativistic calculation
of gravitational collapse. This approximation is however not
applicable in some specific stellar evolutionary scenarios.
One such scenario is the event of neutrino trapping which
can occur when the central density becomes of the order of
1011 − 1012g/cm3 [58]. These trapped neutrinos have high
energy density and long mean free path and small radiative
Reynolds number [59] and as a result, it makes the core fluid
viscous [60,61] and which in turn results in local anisotropy.
In this connection, Ruderman [62] showed that for densi-
ties higher than 1015g/cm3, the two components of pressure
don’t have the same magnitude and nuclear matter trans-
forms into anisotropic distribution.In this regard, Herrera and
Varela [63] have introduced a condition of the anisotropy
parameter in the form Pt −Pr = g q2 r2 where g is a nonzero
constant under a specific case of the electromagnetic mass
model. Furthermore, Herrera and his collaborators have dis-
cussed the anisotropic polytropes in the context of the New-
tonian [66] and the general relativistic regimes [64,65].

On the other hand, the finding of the new physical viable
anisotropic solution for a static self-gravitating system is
easier than the isotropic solution of Einstein’s field equa-
tions. Till now, the researchers have obtained around 130
interior solutions of Einstein’s field equations (EFE) for per-
fect fluid matter distributions but only few of them are well-
behaved that can be used for modeling the self-gravitating
compact objects [67]. This is why it is still a challenge to
obtain the new well-behaved isotropic solution of the Ein-
stein field equations. Therefore, recently Casadio and his
collaborators [68] have proposed is a very powerful method-
ology, known as isotropization techniques via gravitational
decoupling using the MGD approach to find the new isotropic
solutions for any known seed spacetime geometry corre-
sponding to anisotropic matter distribution. In this work,
they have investigated a new isotropic solution using the
MGD approach as well as two other gravitationally decou-
pled anisotropic solutions corresponding to two systems with
the same complexity factor, and zero complexity factor using
Tolman IV solution. Some recent solutions on anisotropic
stars with different complexity factor can be seen in the fol-
lowing works [9,69–72].
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In the current article, we develop a method of isotropiza-
tion by employing a mathematical tool using gravitational
decoupling in the framework of a complete geometric defor-
mation (CGD) approach to find the new isotropic solutions
from a known spacetime geometry for the anisotropic matter
distribution. An example has been presented to validate this
methodology. Moreover, we also discussed the complexity
factor and the effect of the decoupling constant on the com-
plexity factor for this isotropic solution. The present sim-
ple methodology has also been utilized to obtain the new
anisotropic solutions by taking two systems with the same
complexity factor as well as for zero complexity factor using
the Karori-Barua solution.

The article is arranged as follows: Sect. 1 is the intro-
duction, while in the Sect. 2, the Einstein field equation for
two sources by gravitational decoupling has been discussed.
Section 3 consists of the method of isotropization of the grav-
itationally decoupled system and new solution obtained by
taking Tolman-Kuchowicz spacetime for seed solution. The
complexity by gravitational decoupling has been analyzed in
the Sect. 4. In this section, we also discussed the complexity
factor for the isotropic solution obtained in Sect. 3. In Sect.
5, we have investigated new anisotropic EGD solutions gen-
erated by two systems with the same complexity factors and
vanishing complexity factor using Karori-Barua seed solu-
tion, which are presented in Sects. 5.1 and 5.2. The last Sect.
6 contains the discussions and conclusions of the article.

2 Einstein’s field equation for two sources introduced
by gravitational decoupling

We propose the brief review of Einstein’s field equations with
two different sources,

Ri j − 1

2
gi j R = −8π(Ti j + β �i j ) (1)

Now with G = c = 1, the relativistic units are considered
to express the field equations for the Ricci tensor denoted by
Ri j , and R is contracted Ricci scalar, and β is decoupling
constant. Here, Ti j denote the energy-momentum tensor and
the source θi j may contain new fields, like scalar, vector
and tensor fields. Since the Einstein tensor (1) satisfy the
Bianchi identity, therefore the effective energy-momentum
tensor T̂i j = Ti j + β �i j must be conserved, that is,

∇i T̂
i j = 0. (2)

The following static spherically symmetric line element is
taken for describing the space-time of the interior region of
the stellar system as,

ds2 = −eλ(r)dr2 − r2(dθ2 + sin2 θ dφ2) + eν(r)dt2, (3)

where the metric potentials ν and λ are only radially depen-
dent. However, the effective energy-momentum tensor T̂i j is
considered for anisotropic matter distribution,

T̂i j = (ε + Pr ) uiu j + P⊥gi j + (Pr − P⊥)χi χ j , (4)

where Pr and P⊥ denote the radial and tangential pres-
sures, respectively while ε is the energy density of mat-
ter. Moreover, ui denotes a contravariant 4-velocity and
χ i = √

1/grr δi1 is a unit space-like vector in the radial direc-
tion. Then under the line element (3), the Einstein field Eq.
(1) with Eq. (4) provides the following differential equations,

8πε = T 0
0 + β �0

0 = 1

r2 − e−λ

(
1

r2 − λ′

r

)
, (5)

8π Pr = −T 1
1 − β �1

1 = − 1

r2 + e−λ

(
1

r2 + ν′

r

)
, (6)

8π P⊥ = −T 2
2 − β �2

2

= e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (7)

and, the conservation equation for system (5)–(7) will
become,

(Pr )
′ + ν′

2

(
ε + Pr

)− 2

r
(P⊥ − Pr ) = −(T 1

1 )′

+ν′

2

(
T 0

0 − T 1
1

)
+ 2(T 2

2 − T 1
1 )

r
− β L(�i

i ) = 0, (8)

where the function L(θ ii ) is given by

L(�i
i ) ≡

(
�1

1

)′ + ν′

2

(
�0

0 − �1
1

)
+ 2

r

(
�1

1 − �2
2

)
. (9)

Now it is important to mention here that the source Ti j can
describe perfect fluid or anisotropic fluid matter distribution.
Suppose It describes an anisotropic fluid matter distribution
then, the effective density and effective pressures can be read
as,

ε = T 0
0 + β �0

0 = ρ + β �0
0, (10)

Pr = −T 1
1 − β �1

1 = pr − β �1
1, (11)

P⊥ = −T 2
2 − β �2

2 = pt − β �2
2. (12)

where, ρ, pr and pt denote the energy density, radial pres-
sure and tangential pressure, respectively. Then the effective
anisotropy can be given as,

�̂ = P⊥ − Pr = � + β �� (13)

where,

� = pt − pr and �� = (�1
1 − �2

2). (14)

Here the anisotropy �� is generated by second source �i j ,
and Misner-Sharp mass function m(r) for the effective sys-
tem can be calculated by the formula,

m(r) = r

2
[1 − e−λ(r)] = 4π

∫ r

0
x2ε(x)dx
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= 4π

∫ r

0
x2ρ(x)dx

︸ ︷︷ ︸
mGR

+ 4πβ

∫ r

0
x2�0

0(x)dx
︸ ︷︷ ︸

m�

. (15)

The mGR and m� represent the mass function due to matter
distribution Ti j and �i j , respectively.

Also, there is another definition in order to describe the
energy content inside a fluid sphere which was proposed
by Tolman many years before. The Tolman mass (mT ) for
the spherically symmetric static spacetime (3) and energy-
momentum tensor T̂i j can be given by the formula [73]

mT = 4π

∫ r

0
x2 e(λ+ν)/2(ρ + Pr + 2P⊥)dx . (16)

The above formula was proposed in order a measure the
energy contained inside a fluid sphere of radius r . However,
Tolman mass function mT using the field Eqs. (5)–(7) under
the spacetime (3) can be written as,

mT = r2 ν′

2
e(ν−λ)/2. (17)

The above formula states about the physical meaning of mT

as the active gravitational mass. Since instantaneously at rest
in a static gravitational field, the gravitational acceleration of
a test particle is given by (see [12], for more details)

a = ν′ e−λ

2
= e−ν/2 mT

r2 (18)

Now we apply the extended gravitational decoupling by
means of a complete geometric deformation (CGD) approach
in order to see the general effects of the extra source � on the
energy-momentum tensor Ti j . Under this, the metric func-
tions eλ and eν undergone by the following transformation
Ovalle [18] as,

ξ(r) �→ ν(r) = ξ(r) + β h(r), (19)

μ(r) �→ e−λ(r) = μ(r) + β f (r). (20)

where, f (r) and h(r) denote the geometric deformation func-
tions for the radial and temporal metric components, respec-
tively. Since here we are considering the extended case there-
fore we need to set f (r) 	= 0 and h(r) 	= 0. Then the transfor-
mations (19) and (20) allow us to split the field Eqs. (5)–(7)
into two sets of equations: (i) the standard Einstein field equa-
tions corresponding to energy-momentum tensor Ti j (same
as at β = 0) as

8πρ = 1 − μ

r2 − μ′

r
, (21)

8πpr = μ − 1

r2 − μ ξ ′

r
, (22)

8πpt = μ

(
ξ ′′

2
+ ξ ′2

4
+ ξ ′

2r

)
+
(

ξ ′μ′

4
+ μ′

2r

)
, (23)

with the conservation equation,

(pr )
′ + ξ ′

2

(
ρ + pr

) = 2�

r
. (24)

and the solution of this system can be described by the fol-
lowing spacetime,

ds2 = −μdr2 − r2(dθ2 − sin2 θdφ2)+ eξdt2, (25)

with

μ = 1 − 2mGR

r
= 4π

∫ r

0
x2ρ(x)dx . (26)

(ii) Now the second set of equations for the extra source is
determined by turning on β as,

8π�0
0 = −

(
f ′

r
+ f

r2

)
, (27)

8π�1
1 = − f

(
ν′

r
+ 1

r2

)
− μh′

r
, (28)

8π�2
2 = − f

2

(
ν′′ + ν′2

2
+ ν′

r

)

−β f ′

2

(
ν′

2
+ 1

r

)
− μ

4

(
2h′′ + βh′2

+2 h′

r
+ 2ξ ′h′)− μ′ h′

4
. (29)

whose conservation equation read as,

−ν′

2

(
θ0

0 − θ1
1

)+ (
θ1

1

)′ − h′

2

(
pr + ρ

) = 2��

r
. (30)

3 Isotropization of gravitationally decoupled system

In this section, we will adopt the systematic approach pro-
posed by Casadio and his collaborators [68] to isotropize
the decoupled system (5)–(7) under the EGD scenario. As
we discussed previously, the effective anisotropy �̂ given
by (13) may not be same as the anisotropy � due to extra
contribution β ��. Here, our aim is to isotropize the effec-
tive system, which can be obtained by setting �̂ = 0 with
assuming � 	= 0 [see Ref.[68] for more details]. Therefore,
�̂ = � + β �� = 0 leads

� = −β �� 
⇒ � = −β(�1
1 − �2

2). (31)

Now by plugging the Eqs. (28) and (29) in Eq. (31), we
get the following non-linear differential equation,

f ′(2 + ν′r) + f (−4 − 2ν′r + 2ν′′r2 + ν′2r2) + r(−2h′μ

+h′μ′r + 2h′′μr + bh′2μr + 2h′ν′μr) + 4r2

β
� = 0.

(32)

As we can see that the above Eq. (32) is a first-order lin-
ear ODE in f (r) while it is a second-order non-linear in
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h(r). Therefore, we solve the above differential for f (r)
due to simplicity. Now we assume a spacetime correspond-
ing energy-momentum tensor Ti j generated by Tolman-
Kuchowicz metric functions {ξ, μ}
ds2= − (1+Kr2+Lr4) dr2−r2d�2

2 +eAr
2+Bdt2. (33)

together with temporal deformation function h(r) = Cr2 in
order to isotropize the gravitationally decoupled system (5)–
(7). Then, the metric functions μ(r) = 1/(1 + Kr2 + Lr4)

and eξ(r) = eAr
2+B describe the anisotropic solution for the

system (21)–(23). The constant parameters K , L , A, and B
will be determined by matching of the seed spacetime (33)
with exterior vacuum spacetime at surface r = R, If we
consider exterior vacuum spacetime is described by exterior
Schwarzschild solution, then

1 − 2Ms

R
= eξ(R), (34)

1 − 2Ms

R
= μ(R), (35)

pr (R) = 0, (36)

where mGR(R) = Ms is the total mass of the seed spacetime
(33) related to the energy-momentum tensor Ti j . Using the
conditions (34)–(36), we find the constants A, B, and K

A = Ms

R2(R − 2Ms)
, (37)

B = −4M2
s + 5Ms R − R2

(2Ms − R)R
, (38)

K = −2Ms − 2LMs R4 + LR5

(2Ms − R)R2 . (39)

By plugging of spacetime geometry (33) into Eq. (32) and
using h = Cr2, we obtain the deformation function f (r) as

f (r) = r2e−(r2(A+bC)
)

β
√
K 2 − 4L

(
Kr2 + Lr4 + 1

) (
A2 + 2AβC − AK + β2C2 − βCK + L

)

×
[
e− AK+βCK+L

L

(
e

{√
K 2 − 4L

(
K + Lr2

) (
A2 + 2AβC − AK + β2C2 − βCK + L

)

×e
(A+βC)(K+Lr2)

L + β2C2 f2(r)
(
Kr2 + Lr4 + 1

)
χ1 + β2C2 f3(r)

(
Kr2 + Lr4 + 1

)
χ2

}

− f1(r)
√
K 2 − 4L(A + βC)

(
Kr2 + Lr4 + 1

)
e

K (A+βC)
L

×
(
A2 + 2AβC − AK + 3β2C2 − βCK + L

))
+ F

]
, (40)

where, F is a constant of integration, and then the solution
of the system (5)–(7) can be described by the spacetime

ds2 = − (1+Kr2+Lr4)

1+β (1+Kr2+Lr4) f (r)
dr2 − r2d�2

2

+(eAr2+B+βCr2)
dt2. (41)

However, the effective energy density and effective pressures
can be given as,

Pr (r, β) = 1

Kr4 + Lr6 + r2

[
β f (r)

(
2Ar2 + 1

)

×
(
Kr2 + Lr4 + 1

)
+ r2

(
2A − K − Lr2

)

+2β2Cr2 f (r)
(
Kr2 + Lr4 + 1

)
+ 2βCr2

]
, (42)

P⊥(r, β) = 1

2r
(
Kr2 + Lr4 + 1

)2

×
[
2r
(
A2
(
Kr4 + Lr6 + r2

)

+A
(
Kr2 + 2

)
− K − 2Lr2

)

+β2Cr
(
Kr2 + Lr4 + 1

) (
4 f (r)

(
Ar2 + 1

)

×
(
Kr2 + Lr4 + 1

)

+r
(

6Cr + �(r)Kr2 + �(r)Lr4 + �(r)
) )

+β
{

2r
(
C
(

2A
(
Kr4 + Lr6 + r2

)
+ Kr2 + 2

)

+A f (r) ×
(
Ar2 + 2

) (
Kr2 + Lr4 + 1

)2 )

+�(r)
(
Ar2 + 1

) (
Kr2 + Lr4 + 1

)2 }

+2β3C2 f (r)r3
(
Kr2 + Lr4 + 1

)2 ]
, (43)
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ε(r, β) = 1
(
Kr3 + Lr5 + r

)2

[
− β(�(r)r + f )

×
(
Kr2 + Lr4 + 1

)2

+K 2r4 + Kr2
(

2Lr4 + 3
)

+ Lr4
(
Lr4 + 5

)]
. (44)

The matching conditions (34)–(36) for new solution (41)–
(44)

e−λ(R) = 1

1 + K R2 + LR4 + β f (R) = 1 − 2M

R
, (45)

eν(R) = eAR
2+B+β CR2 = 1 − 2M

R
, (46)

Pr (R) = 0, (47)

determine the constant B, total mass M , and integration con-
stant F as

B = ln
[
1 − 2M

R

]
− AR2 − β CR2, (48)

M = Ms − β R

2
f (R) (49)

where m(R) = M is the total mass of the deformed compact
object corresponding to energy-momentum tensor T̂i j given
by Eq. (4). However, we avoid writing the expression for F
due to lengthy expression.

It is important to mention here that the expressions (42)
and (43) given by Pr and P⊥ are the same at each point
within the compact object for allβ i.e. the effective anisotropy
�̂ = 0 (see Fig. 1), which implies that the solution given
by spacetime geometry (41) represents an isotropic solu-
tion of the decoupled system (5)–(7). Therefore, the grav-
itational decoupling not only extends the isotropic solution
to anisotropic domain but also plays an important role to
convert anisotropic solution to isotropic domain.

4 Complexity by gravitational decoupling

The definition of the complexity factor in static and spher-
ically symmetric self-gravitating systems was initially pro-
posed by Herrera, which is a scalar function denoted by YT F

and it can be measured by anisotropy � and energy density
gradient ρ′. Later on Herrara and his collaborators extended
this complexity in the context of dynamical spherically sym-
metric dissipative self-gravitating fluid distributions. Based
on the Herrera definition, we denote ŶT F as a complexity
factor for the spherically symmetric static self-gravitating
systems (5)–(7) which is given by,

ŶT F = 8π�̂ − 4π

r3

∫ r

0
x3ε′(x)dx . (50)

As it is mentioned by Herrera that the complexity factor ŶT F

represents the influence of local anisotropy of pressure and

density inhomogeneity on the Tolman mass (mT ) Or, how the
Tolman mass is changed by the above two factors defined in
ŶT F . In order to see the influence of ŶT F on the Tolman mT ,
we write the Eq. (16) in terms of complexity factor as,

mT = MT

( r
R

)2 + r3
∫ R

r

e(ν+λ)/2

x
ŶT Fdx . (51)

Here, MT denote the total Tolman mass of the fluid sphere
of radius R.

According to Herrera [12] observations, it is worthwhile
noting that

(i) The complexity factor vanishes for not only isotropic
fluid but also for all other configurations where both the
terms in (50) identically vanish.

(ii) From the abovementioned criteria, it is evident that there
are plenty of configurations with vanishing complexity
factors.

(iii) It must also be noted that although the contribution of
pressure anisotropy to ŶT F is local in nature, this is not
the case for density energy inhomogeneity.

In the context of MGD, Casadio et al. argued that the
complexity factor satisfies the additive property and then the
complexity factor for the gravitationally decoupled systems
will be the sum of two existing complexity factors generated
by the sources Ti j and θi j . Therefore, using the above facts,
the complexity factor ŶT F given by Eq. (50) can be also
written into the sum of two complexity factors corresponding
to the source Ti j and �i j as,

ŶT F = 8π �̂ − 4π

r3

∫ r

0
x3ε′(x)dx,

= 8π � − 4π

r3

∫ r

0
x3ρ′(x)dx

+8π β �� − 4π β

r3

∫ r

0
x3
[
�0

0(x)
]′
dx, (52)

which is denoted as,

ŶT F = YT F + Y�
T F . (53)

Here, we denote the YT F is the complexity factor for the
system (21)–(23) while Y�

T F for (27)–(29) corresponding to
the sources Ti j and �i j , respectively.

Now we will discuss two following cases: i. Complexity
factor generated by the isotropic solution (40)–(44) for the
energy-momentum tensor T̂i j , and ii. Some new solutions
generated by the EGD approach for the systems having same
or vanishing complexity factors.
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Fig. 1 The behavior of radial
pressure (Pr × 104)-top left,
tangential pressures
(P⊥ × 104)-top right, energy
density (ε × 104)-bottom left
and anisotropy
(�̂ × 104)-bottom right versus
radial coordinate r/R for
different coupling constant β

with compactification factor
Ms
R = 0.2 with C = 0.0002, and
L = 1.5 × 10−8. The figures are
plotted corresponding to the
isotropic solution discussed in
Sect. 3

4.1 Complexity factor generated by isotropic solution
(41)–(44)

The complexity factor for the systems (5)–(7) corresponding
to the energy-momentum tensor T̂i j is

ŶT F = 8π �̂ − 4π

r3

∫ r

0
x3ε′(x)dx, (54)

Since the solution (41)–(44) is isotropic, then the effective
anisotropy will be zero i.e. �̂ = 0, yields

ŶT F = −4π

r3

∫ r

0
x3ε′(x)dx, (55)

Using Eq. (5), we get

ŶT F = 1

r2 − e−λ

r2 − λ′ e−λ

2r
, (56)

Now using the solution (41), we find expression for com-
plexity factor ŶT F

ŶT F = r2
(
K 2 + 2K Lr2 + L

(
Lr4 − 1

))

(
Kr2 + Lr4 + 1

)2

+ β

2r2

[
r �(r) − 2 f (r)

]
. (57)

It is noticed from Fig. 2, the decoupling constant β is
influencing the complexity factor ŶT F . The ŶT F increases
when β increase, which implies that gravitational decoupling
enhances the complexity of the self-gravitating isotropic
models.

Fig. 2 The behavior complexity factor (ŶT F ×104) versus radial coor-
dinate r/R for different coupling constant β with compactness factor
Ms
R = 0.2 with C = 0.0002, and L = 1.5 × 10−8. This complexity

figure is plotted for the isotropic solution obtained in Sect. 3

5 Some new solutions generated EGD approach for the
systems having same or vanishing complexity factors

5.1 EGD solution for two systems with the same
complexity factor

In this section, we will consider the situation where the com-
plexity factor YT F related to energy-momentum tensor Ti j
remains same after using gravitational decoupling via CGD,
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that is ŶT F = YT F , which implies Y�
T F = 0 or

�� = 1

2r3

∫ r

0
x3 [�0

0(x)
]′
dx, (58)

where,
∫ r

0
x3
[
�0

0(x)
]′
dx = r3

4π

(
f

r2 − f ′

2r

)
. (59)

Now using the Eqs. (27)–(29), the equation (58) yields,

f ′(4r + ν′r2) + f (2ν′′r2 + ν′2r2 − 8 − 2ν′r) + r(−2h′μ
+h′μ′r + 2h′′μr + βh′2μr + 2h′ν′μr) = 0, (60)

It is clear that the new source �i j can be determined by
any solution of the Eq. (60) which can be obtained through
any known solution of the system (21)–(23) described by the
metric functions ξ and μ together with imposing any viable
form of deformation function f (r) or h(r). For this purpose,
we consider a well-known spacetime geometry proposed by
Karori-Barau,

eξ(r) = eAr
2+B, and μ(r) = e−Dr2

. (61)

where A, B, and D are constant parameters. Using above ξ

and μ, the system (21)–(23) provides the energy density and
pressures expressions for the energy-momentum tensor Ti j
as,

pr =
e−Dr2

(
1 − eDr

2 + 2Ar2
)

r2 , (62)

pt = e−Dr2
[
A2r2 + A

(
2 − Dr2

)
− D

]
, (63)

ρ =
e−Dr2

(
−1 + eDr

2 + 2Dr2
)

r2 . (64)

The constants involved in the solution are determined by
the same matching conditions (34)–(36) for metric functions
(61), which yields

D = ln R − ln [R − 2Ms]

R2 , (65)

A = Ms

(R − 2Ms)R2 , (66)

B = − Ms

R − 2Ms
+ ln

[
1 − 2Ms

R

]
. (67)

wheremGR(R) = Ms is the total mass of the object. Now we
find the complexity factor YT F by using the definition (50)
as,

YT F=
e−Dr2

(
−2+2eDr

2+A2r4−Dr2
(
2+Ar2

))

r2 , (68)

Using the spacetime geometry (61) together with the same
form of temporal deformation function h(r) = Cr2 as used

in previous Sect. 3, we find the radial deformation function
by solving of the Eq. (60) as,

f (r) = − C(2A + 3βC − D)r2 f8(r)

(A + βC)2 e
2(A+βC−D)

A+βC +(A+βC)r2

+
(
2 + Ar2 + βCr2

)
r2 F

e(A+βC)r2 , (69)

where F is a constant of integration with dimension length−2

and

f8(r) = −(A + βC)e
(A+βC−D)(2+Ar2+βCr2)

A+βC

+(A + βC − D) ×
(

2 + Ar2 + βCr2
)
f9(r),

f9(r) = ExpIntegralEi

×
[

(A + βC − D)
(
2 + Ar2 + βCr2

)

A + βC

]

,

The deformation function f (r) given in Eq. (69) leads the
same complexity factor ŶT F = YT F i.e. Y�

T F = 0 for all β.
Then the deformed metric functions can be read as,

e−λ(r) = e−Dr2 + β

[
− C(2A + 3βC − D)r2 f8(r)

(A + βC)2 e
2(A+βC−D)

A+βC +(A+βC)r2

+
(
2 + Ar2 + βCr2

)
r2 F

e(A+βC)r2

]
, (70)

eν(r) = eAr
2+B+β Cr2

. (71)

The expressions for effective pressure and energy density,

Pr (r, β) = e−Dr2

r2

[
1 + 2Ar2 + 2βCr2 + eDr

2

×(− 1 + 2β2C × f (r)r2 + β

×{ f (r) + 2Ar2 f (r)
})]

, (72)

P⊥(r, β) = e−Dr2

r2

[
2 + 4βCr2 + 6β2C2r4 − 2βCDr4 + 4A

×(r2+βCr4)+eDr
2(− 2+2β3C2 f (r) r4+β2Cr2

×[r �(r) + 4 f (r)
(

1 + Ar2
) ]

+βr [�(r) + A�(r)r2

+2A f (r) r ×
(

2 + Ar2
)
])
]
, (73)

ε(r, β) = e−Dr2

r2

×
(

2D r2 − 1 +
(
1 − β [ f (r) + �(r) r ])

e−Dr2

)

, (74)

and effective anisotropy �̂ = P⊥ − Pr is

�̂(r, β)=e−Dr2

2r2

[
eDr

2
(

2+2β3C2 f (r) r4+β2 C r3(�(r)

+4A f (r) r
)+ β

(
1 + Ar2

) {− 2 f (r) + �(r)r
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+2A f (r)r2}
)

− 2
(
1 − A2r4 − 2AβCr4 − 3β2C2

× r4 + D
(
r2 + (A + βC)r4

) )]
. (75)

where the expression�(r) is mentioned in the Appendix. The
metric functions (70) and (71) together with the Eqs. (72)–
(75) represent the complete exact solution of the Einstein
field equations (5)–(7), which is new a anisotropic form of
Karori-Barua solution whose complexity factor ŶT F is same
form as the complexity factor YT F given by Eq. (68). How-
ever, we impose the matching conditions (34)–(36) under
the new solution (69)–(75) in order to determine the constant
parameters F and B, and M ,

F =
[
βC(2A + 3βC − D) f8(R) (2AR2 + 2βCR2 + 1)

(A + βC)2e
2(A+βC−D)

A+βC +(A+βC)R2

+
(
−1 + eDR2 − 2AR2

)

R2eDR2 − 2βCe−DR2
]
F1(R), (76)

B = e−DR2 + β f (R)

eAR2+β CR2 , (77)

M = Ms − β R

2
f (R). (78)

where Ms = R
2 (1−e−Dr2

), while F1(R) is mentioned in the
Appendix.

Figure 3 shows the behaviors of effective radial and
tangential pressures, energy density, and anisotropy inside
the self-gravitating anisotropic compact object. it can be
observed that all the physical parameters Pr , P⊥, and ε, and
�̂ are satisfying the condition for a viable compact object,
which implies that the CGD approach is also a very power-
ful technique to discover new physical viable gravitationally
decoupled solution for two systems with same complexity
factor.

For this anisotropic solution, the complexity factor ŶT F

takes the form

ŶT F =
[
2eDr

2 − 2 + A2r4 − D r2
(
2 + A r2

) ]

r2 eDr2 . (79)

Here we can generate the family of complexity factors by
taking the different values of the compactness factor Ms

R .
Since the complexity factor for the new anisotropic solu-

tion is same as the seed solution. Therefore β will not show
any direct effect on the complexity. Therefore, we show the
influence of the compactness on the complexity factor ŶT F .
As we can see from the Fig. 4, the complexity is increasing
when the compactness factor Ms

R increases.

5.2 EGD solution generated by zero complexity factor

In this section, we discuss the gravitational decoupling solu-
tion via complete geometric deformation approach when the

complexity factor is zero i.e. ŶT F = 0 with the condition
YT F 	= 0. Therefore, based on the Eq. (52), we can write

ŶT F = YT F + Y�
T F = 0


⇒ YT F = −8π β �� + 4π β

r3

∫ r

0
x3�0

0(x)dx . (80)

Plugging of the Eqs. (27)–(29) in condition (80), we deter-
mine the following differential equation in geometric defor-
mation functions f (r) and h(r),

(4 + ν′r)r f ′ − [
2ν′r + 8r − 2ν′′r2 − ν′2r2] f

+[r βh′2μr − 2h′μr + h′μ′r2 + 2h′′μr2 + 2h′ν′μr2]

+4r2

β
YT F = 0. (81)

Now by considering again the Karori-Barua solution and the
complexity factor given by Eqs. (61) and (68), respectively
together with deformation function h(r) = Cr2, we get the
following solution of the above differential equation,

f (r) = r2
(
2 + Ar2 + βCr2

)

e(A+βC)r2

×
[
F − f12(r)

2β
− f13(r)

]
, (82)

where F is a constant of integration and this above defor-
mation f (r) provides the vanishing complexity factor i.e.
ŶT F = 0. The expressions for effective radial and tangential
pressures with effective energy density are given as,

Pr (r, β)=
(

1−eDr
2+2Ar2

)

r2 eDr2 −β

[(
2Ar2+2βCr2 + 1

)

e(A+βC)r2

×
(

2 + Ar2 + βCr2
)

×
(
F − f12(r)

2β
− f13(r)

)
+ 2C

eDr2

]
, (83)

P⊥(r, β) =
(

1 − eDr
2 + 2Ar2

)

r2 eDr2

+β

[
ζ(r)

(
1 + Ar2 + βCr2

)

2r

+CD r2

eDr2 +
(
2 + 2Ar2 + 3βCr2

)
C

eDr2 + e−(A+βC)r2
r2

×
(

2 + Ar2 + βCr2
) {

A2r2 + 2A
(

1 + βCr2
)

+ βC

×
(

2 + βCr2
) }(

F − f12(r)

2β
− f13(r)

)]
, (84)

ε(r, β) =
(
eDr

2 + 2Dr2 − 1
)

r2 eDr2
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Fig. 3 The behavior of radial
pressure (Pr × 104)-top left,
tangential pressures
(P⊥ × 104)-top right, energy
density (ε × 104)-bottom left
and anisotropy
(�̂ × 104)-bottom right versus
radial coordinate r/R for
different coupling constant β

with compactification factor
Ms
R = 0.2 with C = 0.0002.

The above figures are plotted for
EGD solution for the two
systems with same complexity
factor obtained in Sect. 5.1

−β

[
ζ(r)

r
+
(
2 + Ar2 + bCr2

)

e(A+bC)r2

×
(
F − f12(r)

2β
− f13(r)

)]
. (85)

where, ζ(r) is given in the Appendix and the effective
anisotropy factor read as,

�̂(r, β) =
e−Dr2

(
−1 + eDr

2 − 2Ar2
)

r2 + β

(
− 2Ce−Dr2

−
[
2β(F − f13(r)) − f12(r)

]
(2Ar2 + 2βCr2 + 1)

2βe(A+βC)r2
(2 + Ar2 + βCr2)−1

)

−β

[
CDr2

eDr2 − ζ(r)
(
1 + Ar2 + βCr2

)

2r
− (A + βC)

e(A+βC)r2

×
[
2β(F − f13(r)) − f12(r)

]
r2
(
2 + Ar2 + βCr2

)2

2β

−C
(
2 + 2Ar2 + 3βCr2

)

eDr2

]

−
[
D − A2r2 + A(Dr2 − 2)

]

eDr2 . (86)

Now again use the boundary conditions (34)–(36) for
present solution (82)–(86), we find the F , B and total mass
M ,

F = eR
2(A+βC)

β
(
2AR2 + 2βCR2 + 1

) (
AR2 + βCR2 + 2

)
[
f8(R)

2

×
(
AR2 + βCR2 + 2

)

e(A+βC)R2

(
2AR2 + 2βCR2 + 1

)+ f13(R)

2

Fig. 4 The behavior complexity factor ŶT F versus radial coordinate

r/R for different compactification factor
(
u = Ms

R

)
with C = 0.0002.

The above complexity figure is plotted corresponding to solution deter-
mined in Sect. 5.1

×
(
2AR2+2βCR2+1

)

R2 e(R
2(A+βC))+2

+
(
eDR2−2AR2 − 1

)

R2eDR2 − 2βC

eDR2

]
,

(87)

B = e−DR2 + β f (R)

eAR2+β CR2 , (88)

M = Ms − β R

2
f (R). (89)

where f (R) can be determined by Eq. (82) at r = R while
the constant A and D will be same as given by Eqs. (65)
and (66). Figure 5 has been plotted against the gravitation-
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Fig. 5 The behavior of radial
pressure (Pr × 104)-top left,
tangential pressures
(P⊥ × 104)-top right, energy
density (ε × 104)-bottom left
and anisotropy
(�̂ × 104)-bottom right versus
radial coordinate r/R for
different coupling constant β

with compactification factor
Ms
R = 0.2 with C = 0.0002.

The above figures are plotted
corresponding to EGD solution
generated by zero complexity
factor presented in in Sect. 5.2

ally decoupled solution obtained in the context of the zero
complexity factor. It is observed that Pr , P⊥, and ε are mono-
tonically decreasing towards the surface but the tangential
pressure (P⊥) is negative near the boundary. This happens
due to stronger attractive force generated by the anisotropy,
known as anisotropic force (Fa), near the surface of the object

i.e. Fa = 2�̂
r < 0. The same features also appear under the

MGD scenario for Tolman IV solution as discussed by Casa-
dio et al. [68]. Therefore, we can conclude that the gravita-
tionally decoupled solution under zero complexity factor may
not be suitable for modelling of the self-gravitating compact
objects.

6 Discussions and conclusions

In the present article, we have used gravitational decoupling
(GD) via complete geometric deformation (CGD) approach
to isotropize the self-gravitating anisotropic matter distribu-
tion and discussed the complexity of this isotropic solution
together with the effect of the decoupling parameter on the
complexity. Furthermore, we also investigated two new grav-
itationally decoupled anisotropic solutions by imposing the
condition of two systems with the same complexity factor as
well as systems with zero complexity factor. As we know that
most of the previous works, the new solutions were investi-
gated by taking some particular procedures such as equations
of state (EoS) for the extra sources added in the original
energy-momentum tensor, mimick approaches, and partic-
ular ansatz for the deformation functions, etc. However, in

this article we have adopted some different approaches to
solve the systems by introducing the gravitational decou-
pling in the context of CGD. For simplicity, first we started
with two energy-momentum tensors in which the first energy-
momentum tensor corresponding to anisotropic matter distri-
bution while the second one is an unknown source. As usual,
the decoupled system is divided into two sets of equations
through the CGD approach by introducing two unknown
deformation functions f (r) and h(r) along the radial and
temporal components of the metric function of the line ele-
ment, respectively. After splitting the field equations, we have
considered the following cases described in different sections
as below:

In Sect. 3, we have investigated the isotropic solution for
the gravitationally decoupled system. For this purpose, first
we consider the spacetime geometry for the seed system cor-
responding the Tolman-Kuchowicz metric, which is neces-
sary for GD system. After that we find the isotropic condition
of the gravitationally decoupled systems by employing the
effective anisotropy �̂ to be zero. In this way we get a differ-
ential equation containing two unknowns f (r) and h(r) and
solved this equation for f (r) by assuming a particular viable
form of h(r) = Cr2. The obtained solution for f (r) gives
the vanishing effective anisotropy throughout the star which
implies an isotropic solution of the gravitationally decoupled
system.

In Sect. 4, we extended the definition of complexity pro-
posed by Herrera [12] under gravitational decoupling. This
section contains full details about the complexity of the grav-
itationally decoupled systems. Moreover, we also discussed

123



48 Page 12 of 14 Eur. Phys. J. C (2022) 82 :48

the complexity factor and impact of decoupling constant β on
complexity for the obtained isotropic solution in Sect. 3. We
observe that the complexity is increasing when β increases.

Section 5 contains some new solutions generated by EGD
approach for the systems having same or vanishing complex-
ity factors which are divided into two Sects. 5.1 and 5.2:
(A). In the Sect. 5.1, we discover the anisotropic solution by
imposing the condition of two systems with same complexity
factor by using Krori-Barua seed solution. This said condi-
tion leads a vanishing complexity factor for extra source i.e.
Y�
T F = 0, which governs a differential equation in f (r) and

g(r). This differential equation has been again solved for
f (r) by using the same ansatz h(r) = Cr2. Furthermore, we
also discussed the complexity factor and the influence of the
compactness on the complexity within the compact objects
for the obtained GD anisotropic solution.
(B). The second Sect. 5.2 contains the GD anisotropic solu-
tion which is obtained by setting zero complexity factor
corresponding to the gravitationally decoupled systems i.e.
ŶT F = 0. The solution obtained in this section shows some
drawbacks such that it gives a negative anisotropy through-
out the configuration. Since this behavior of the anisotropy
leads to an attractive force which may not much suitable for
modeling the viable self-gravitating compact objects.

Finally, we would like to mention here that the gravi-
tational decoupling via CGD approach is a very powerful
and effective technique to generate new physically viable
isotropic solutions from an anisotropic matter distribution.
Moreover, this methodology is also useful to generate well-
behaved anisotropic solutions by assuming of two systems
with same complexity factors. In future projects, we will try
to investigate some more conditions on complexity factor
for generating the new solutions of Einstein’s field equations
for static self-gravitating systems by using the gravitational
decoupling technique.
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Appendix

f1(r) = ExpIntegralEi[1 + (A + βC)r2],

f2(r) = ExpIntegralEi

⎡

⎣
(A + βC)

(
K − √

K 2 − 4L + 2Lr2
)

2L

⎤

⎦ ,

f3(r) = ExpIntegralEi

⎡

⎣
(A + βC)

(
K + √

K 2 − 4L + 2Lr2
)

2L

⎤

⎦ ,

χ1 =
(
A
(√

K 2 − 4L + K
)

+ βC
(√

K 2 − 4L + K
)

− 2L
)

e−
(√

K2−4L+K
)
(A+βC)

2L

,

χ2 =
(
A
(√

K 2 − 4L − K
)

+ βC
(√

K 2 − 4L − K
)

+ 2L
)

e−
(
K−

√
K2−4L

)
(A+βC)

2L

,

χ3 =
√
K 2 − 4L

(
A2 + 2AβC − AK + 3β2C2 − β CK + L

)
,

�(r) = r

e(r
2(A+βC))

×
(
r
[
2 f7(r)r

(
Kr2 + Lr4 + 1

)− 2r f5(r)
(
K + 2Lr2

)]

β χ3
(
Kr2 + Lr4 + 1

)2
e

AK+βCK+L
L

−2 f4(r)r
2(A + βC) + 2 f4(r)

)

f4(r) = F + 1

βχ3
(
Kr2 + Lr4 + 1

)
[
e− AK+βCK+L

L

×
(
e

{
χ3

(
K + Lr2

)
e

(A+βC)(K+Lr2)
L

+β2C2χ1 f2(r)
(
Kr2 + Lr4 + 1

)
+ β2C2

×χ2 f3(r)
(
Kr2 + Lr4 + 1

)}
− χ3 f1(r)(A + βC)

×
(
Kr2 + Lr4 + 1

)
e

K (A+βC)
L

)]

f5(r) = e

[
χ3
(
K + Lr2

)

e− (A+βC) (K+Lr2)
L

+β2C2
(
χ1 f2(r) + χ2 f3(r)

) (
Kr2 + Lr4 + 1

) ]

−χ3 f1(r)(A + βC)
(
Kr2 + Lr4 + 1

)

e− K (A+βC)
L

f6(r) = χ3L + χ3(A + βC)
(
K + Lr2

)

e− (A+βC)(K+Lr2)
L

+β2C2χ1 f2(r)
(
K + 2Lr2

)

+β2C2χ2 f3(r)
(
K + 2Lr2

)
+ f11(r) + f12(r),

f7(r) = −χ3 f1(r)(A + bC)
(
K + 2Lr2

)
e

K (A+bC)
L

−χ3(A + bC)2
(
Kr2 + Lr4 + 1

)
e

K (A+bC)
L +r2(A+bC)+1

r2(A + bC) + 1
+ e f6(r),
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�(r) = e−(A+βC)r2
r

[
2(A + βC)Fr2

+2F
(

2 + Ar2 + βCr2
)

− 2(A + βC)F r2

×
(

2 + Ar2 + βCr2
)

− f10(r) + f11(r)

A + βC
− f11(r)

(A + βC)2

]
,

f10(r) = 2C(A + βC − D)(2A + 3βC − D)e− 2(A+βC−D)
A+βC r2 f9(r),

f11(r) = 2C(2A + 3βC − D)e− 2(A+βC−D)
A+βC r2 f8(r),

f12(r) = −(A + βC)ExpIntegralEi
[
(A + βC)r2

]

+ (A + βC)ExpIntegralEi
[
2 + Ar2 + βCr2

]

e2 + 2

(A + βC)2 2

×
[

2β2C2(A + βC − D)e− 2(A+βC−D)
A+βC f9(r)

+ (A + βC)e(A+βC−D)r2 (
A + βC

(
1 − 2βCr2

))

r2
[
2 + Ar2 + βCr2

]
]
, ,

f13(r) = 1

2βe2r2
(
2 + Ar2 + βCr2

)

×
(

− 2e2+Ar2+βCr2

×
(

1 + Ar2 + βCr2
)

+ e2r2
(
A2r2 + 2A

(
1 + βCr2

)

+βC
(

2 + βCr2
))

×ExpIntegralEi
[
(A + βC)r2

]
+ r2

{
A2r2 + 2A

(
1 + βCr2

)

+βC
(

2 + βCr2
) }

ExpIntegralEi

×
[
2 + (A + βC)r2

])
,

F1(R) = e(A+βC)R2

β(2AR2 + 2βCR2 + 1)
(
2 + AR2 + βCR2

) ,

ζ(r) = − 1

β(A + βC)2 e
−2−(2A+2βC+D)r2

r(f14 − (A + βC)(f15)),

f14(r) = −(A + βC)3e(A+βC+D)r2

×
(
−2 + A2r4 + 2AβCr4 + β2C2r4

)
ExpIntegralEi

×
[
2 + Ar2 + βCr2

]
− 4β2C2(A + βC − D)

×e
(A+βC)r2+D

(
2

A+βC +r2
)

×
(
−2 + A2r4 + 2AβCr4 + β2C2r4

)
f9,

f15(r) = −2e2
[
β4C3e(A+βC+D)r2

Fr4 + β3C2r2

×
(
Ce2(A+βC)r2

(
2 + eDr

2
)

+3Ae(A+βC+D)r2
Fr2

)

+Ae2(A+βC)r2(− D + AeDr
2

×
(
−1 + Ar2

) )+ β
(
Ae(A+βC+D)r2

F
(
−2 + A2r4

)

−Ce2(A+βC)r2
(
D − AeDr

2
(
−2 + 3Ar2

)))

+β2C
(
e(A+βC+D)r2

F

×
(
−2 + 3A2r4

)

+Ce2(A+βC)r2
(
−2 + 2Ar2 + eDr

2
(
−1 + 3Ar2

)) )]

+(A + βC)2e(A+βC+D)r2
(

− 2 + A2r4 + 2AβCr4

+β2C2r4
)

ExpIntegralEi
[
2 + (A + βC)r2

]
.
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