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Abstract Gravitational decoupled compact polytropic
hybrid stars are here addressed in generalized Horndeski
scalar-tensor gravity. Additional physical properties of hybrid
stars are scrutinized and discussed in the gravitational decou-
pling setup. The asymptotic value of the mass function, the
compactness, and the effective radius of gravitational decou-
pled hybrid stars are studied for both cases of a bosonic and a
fermionic prevalent core. These quantities are presented and
discussed as functions of Horndeski parameters, the decou-
pling parameter, the adiabatic index, and the polytropic con-
stant. Important corrections to general relativity and general-
ized Horndeski scalar-tensor gravity, induced by the gravita-
tional decoupling, comply with available observational data.
Particular cases involving white dwarfs, boson stellar con-
figurations, neutron stars, and Einstein–Klein–Gordon solu-
tions, formulated in the gravitational decoupling context, are
also scrutinized.

1 Introduction

The direct observation of gravitational waves emitted from
mergers consisting of neutron stellar configurations has
nowadays comprised one of the most important stages of
investigation in physics. Two orbiting neutron stellar config-
urations may spiral towards each other and radiate gravita-
tional waves. Neutron stars mergers can lead to the formation
of either a more massive neutron star or form the coalescence
of a black hole binary [1,2]. When gravity is investigated in
the strong regime, general relativity and generalizations can
be experimentally probed by current observations gleaned
mainly at LIGO, eLISA, and the Chandra X-ray Observatory.
Such experiments can precisely approach extended models
that describe gravity when the remnant coalescent binary
black hole system does emit gravitational waves pulses while
entering into its final state.
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One of the most successful extensions of general relativ-
ity, that describes a myriad of stellar configurations, includ-
ing self-gravitating compact stars, is the gravitational decou-
pling of Einstein’s effective field equations. Anisotropic stel-
lar configurations are naturally addressed by several gravita-
tional decoupling procedures, which is a sharp apparatus that
can be used in a wide range to derive new analytical solu-
tions to Einstein’s coupled system of field equations [3–5].
Although the gravitational decoupling method is a sponta-
neous extension of the minimal geometrical deformation [6–
14], which is also an important setup to study stars and black
holes on fluid branes [15–17], gravitational decoupled meth-
ods do not necessarily depend on any higher-dimensional
background, consisting of a genuine and well-established 4-
dimensional framework. The gravitational decoupling was
comprehensively applied to the study and analysis of sev-
eral compact stellar configurations, based on an appropri-
ate modification of the stress–energy–momentum tensor that
enters Einstein’s field equations, beyond the Schwarzschild
term [18–21]. Employing the gravitational decoupling of ker-
nel solutions of Einstein’s field equations, gravitational field
sources can be split into a solution in general relativity and an
associate source, which encodes any additional interaction in
the theory, including gauge and tidal charges, hairy physical
fields, and extended models of gravity. This approach has
been generating new solutions that describe a comprehen-
sive list of stellar configurations and include particular cases
of coalescing binary neutron stars and black holes [22–27],
whose acoustic analogs were scrutinized [28,29]. The gravi-
tational decoupling was also used to study gravity coupled to
hidden gauge fields [30] and to derive new physical features
of superfluid stars [31]. Other models involving the gravita-
tional decoupling have been developed [32–49], with relevant
applications to recently observed anisotropic stellar config-
urations [50–67]. Also, the quantum entanglement entropy
of anisotropic gravitational decoupled black holes revealed
important directions towards placing the gravitational decou-
pling method in gauge/gravity duality [68,69]. Gravitational
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decoupled anisotropic quark stars, neutron stars, and dwarf
remnants constituted mostly of electron-degenerate matter
were proposed and scrutinized in Refs. [70–74]. Besides,
gravitational decoupled black holes with hair were studied
[75–77]. Holographic Weyl anomalies have also imposed
new directions to the study of hairy gravitational decoupled
black holes [78,79].

The main physical incitements to study hybrid stars,
as solutions of the gravitational decoupling in generalized
Horndeski scalar-tensor gravity, are the observations by
LIGO, that also corroborate to previsions by extended mod-
ified gravity models for black holes and stellar configura-
tions, complying to astrophysical objects with masses up to
∼ 107M�, where M� denotes the Solar mass. Also, sev-
eral recent observations put forward general relativity inef-
fectual to evoke gravitational physics at large cosmological
scales [80]. Therefore, modifications of gravity are necessary
to describe cosmology. With the emergence of gravitational
waves detection, new star solutions in modified gravity have
become less elusive to pursue [81]. Since the observational
signature of different astrophysical objects can be detected by
gravitational waves, one can address compact stellar distri-
butions generated by scalar fields. They constitute successful
models to describe boson stars [82,83], and can interact with
surrounding matter of fermionic origin, amalgamating with
it and yielding hybrid stellar configurations [84–86].

The coalescence of compact stars, such as neutron stars,
yields environments with huge curvature and very strong
gravity. Hence, investigating gravitational decoupled com-
pact stellar configurations enhances the contrast between
results obtained by modified gravity theories and general
relativity. This work is devoted to investigating gravitational
decoupled hybrid stars as solutions beyond Horndeski grav-
ity, as a subclass of Gleyzes–Langlois–Piazza–Vernizzi mod-
els of gravity [87]. This low-energy effective family of field
theories [88–90] contains higher derivative operators that do
not appear in appropriate limits of Horndeski gravity, such
as the Brans–Dicke model, general relativity with a mini-
mally coupled scalar field, covariant galileons, and Gauss–
Bonnet gravity, among others [91]. Horndeski gravity is usu-
ally introduced as a way of explaining the current accelerat-
ing expansion of the Universe, implementing modifications
of general relativity due to inflatons, at a large scale. The
propagation of primordial gravitational waves in Horndeski
theories complies with the GW170817 event. The ampli-
tude of the gravitational waves in Horndeski theory can sig-
nificantly vary, when compared to general relativity [92],
showing a completely different physical signature of neutron
stars mergers in Horndeski theories and extensions [93,94].
Investigating black hole solutions in scalar-tensor models
also permits to study the strong gravity regime, wherein the
non-perturbative sector contributions can generate substan-
tial deviations from general relativity. Also, singularity and

no-hair theorems can be further analyzed in different setups,
evincing the possibility of new scenarios eventually specified
by additional scalar charges and hair.

Scrutinizing modifications of gravity that comply with
current observations also leads to a more profound knowl-
edge of general relativity, besides perusing further aspects of
gravity itself. For example, the Lovelock theorem states that
Einstein’s field equations are the only possible second-order
Euler–Lagrange equations derived from a 4-dimensional
Lagrangian that is solely metric-dependent. Hence, to gen-
eralize general relativity, one must circumvent the Love-
lock theorem, whose assumptions must be therefore relaxed.
The most straightforward way of implementing it consists
of considering additional objects, as a scalar field, beyond
the metric [95]. It is the procedure that will be chosen in
this work, approaching modified gravity and adding a scalar
degree of freedom to the gravitational sector. Endowed with
these important motivations and new developments, gravi-
tational decoupled hybrid stellar configurations will be here
addressed in a low-energy effective theory of gravity. This
work is organized in the following way: Sect. 2 is devoted
to the gravitational decoupling method, turning to the case
of anisotropic polytropic stellar configurations. Three cases
are then presented, regarding physically relevant values of
the adiabatic index. They encode isothermal self-gravitating
compact spheres of gas, encompassing collisionless systems
of stars in globular clusters, neutron stars, white dwarfs, and
ultrarelativistic degenerate Fermi gases. Section 3 is dedi-
cated to presenting a family of solutions in the Gleyzes–
Langlois–Piazza–Vernizzi approach that generalizes Horn-
deski scalar-tensor gravity, in a low-energy effective the-
ory with infrared modifications of the gravitational sector.
In this setup, Einstein’s effective field equations are solved,
using the gravitational decoupling procedure. The asymp-
totic value of the mass function, the compactness, and the
effective radius of gravitational decoupled compact hybrid
stars are then scrutinized and discussed for hybrid stars with
a bosonic and a fermionic dominant core. Prominent mod-
ifications of inherent features of compact hybrid stars are
addressed and analyzed. Additional discussion, perspectives,
and conclusions compose Sect. 4.

2 Gravitational decoupling and polytropic stellar
configurations

Einstein’s field equations relate geometry to the matter con-
tent encoded into the stress–energy–momentum tensor, and
can be written as

Rμν − 1

2
Rgμν = −a2T total

μν . (1)
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The stress–energy–momentum tensor can be split into two
components [3],

T total
μν = T matter

μν + αζμν, (2)

where

T matter
μν = (ρ + p) uμ uν − pgμν (3)

regards the stress–energy–momentum tensor describing ordi-
nary matter, whose thermodynamic properties are deter-
mined by the mass density ρ and the thermodynamic pressure
p. The 4-velocity field of the fluid is normalized, whereas
the symmetric tensor ζμν stands for any source term due
to supplementary interactions, such as any gauge charge,
tidal charge, hairy physical fields, or extended models of
gravity [75], which will be the case to be addressed here.
The source ζμν coupling to gravity is controlled by a non-
perturbative constant parameter α, eventually generating
anisotropic models for stellar configurations. As the perfect
fluid term is governed by the Bianchi identity, also the equa-
tion

∇μ T total
μν = 0, (4)

must hold, accordingly. A static, spherically symmetric, met-
ric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2 dθ2 − r2 sin2 θ dφ2, (5)

can be employed, where the fluid velocity has components
u0(r) = e−ν(r)/2 and ui = 0, for 0 ≤ r ≤ R, where R
denotes the radius of the stellar configuration. The metric (5)
must satisfy Einstein’s effective field equations (1), which
can be thus written as the following system of coupled dif-
ferential equations,

a2
(
ρ(r) + αζ 0

0 (r)
)

= 1

r2 − e−λ(r)
(

1

r2 − λ′(r)
r

)
, (6)

a2
(
−p(r) + αζ 1

1 (r)
)

= 1

r2 − e−λ(r)
(

1

r2 + ν′(r)
r

)
, (7)

a2
(
−p(r) + αζ 2

2 (r)
)

= e−λ(r)

4

(
− 2 ν′′(r) − ν′2(r)

+λ′(r)ν′(r) − 2

r
(ν′(r) − λ′(r))

)
, (8)

where f ′ denotes the derivative of a function f with respect
to r and spherical symmetry implies that ζ 3

3 = ζ 2
2 . The

conservation equation (4) is a linear combination of Eqs. (6)–
(8), and yields

p′(r) + α

2
(ρ(r) + p(r)) − α

(
ζ 1

1 (r)
)′

+α

2

(
ζ 0

0 (r) − ζ 1
1 (r)

)
+ 2 α

r

(
ζ 2

2 (r) − ζ 1
1 (r)

)
= 0,

(9)

The perfect fluid scenario can be recovered when the limit
α → 0 is taken into account. The effective density, the effec-
tive radial, and tangential pressures are respectively given by

ρ̌(r) = ρ(r) + αζ 0
0 (r), (10a)

p̌r (r) = p(r) − αζ 1
1 (r), (10b)

p̌t (r) = p(r) − αζ 2
2 (r). (10c)

As the stellar distribution is usually described by a hydrody-
namical fluid, the introduction of the source term ζμν gener-
ates anisotropic models for stellar configurations. The effec-
tive tangential pressure occurs whenever the direction of a
deforming force is parallel to the cross-sectional area, chang-
ing the shape of the stellar distribution out of the perfect
sphere fluid description. The effective radial pressure acts
towards or away from the central axis in the stellar distri-
bution. One must also observe that ρ̌, p̌r , and p̌t are well
defined at the star center and are regular functions, singular-
ity free throughout the interior of the stellar configuration.
The effective energy density has to attain positive values
throughout the stellar configuration, whereas at the star center
it must be also finite and monotonically decreasing towards
the boundary inside the stellar interior, such that dρ̌

dr ≤ 0.
Also, the effective radial and tangential pressures must be
positive inside the stellar configuration, whereas the gradi-
ent of both the effective radial and tangential pressures are
negative inside the stellar configuration. At the stellar config-
uration boundary, the effective radial pressure must vanish,
however, the effective tangential pressure might not be nec-
essarily equal to zero at the boundary.

The ancillary source then originates anisotropy, as quan-
tified by the coefficient

�(r) = p̌t (r) − p̌r (r) = α
(
ζ 1

1 (r) − ζ 2
2 (r)

)
. (11)

At the stellar configuration center, both the radial and tangen-
tial pressures are equal, meaning that the anisotropy has to
vanish at the center, yielding Eq. (11) to read limr→0 �(r) =
0. The metric gμν that solves the complete Einstein’s field
equations (1) and satisfy the gravitational decoupling has
only its radial component influenced by the ancillary source
ζμν [77]. This metric gμν can be derived when Einstein’s
field equations for the perfect fluid source T matter

μν ,

Gμν = −a2 T matter
μν , ∇μT

matterμν = 0, (12)

is solved. Thereafter, the remaining quasi-Einstein’s equa-
tions for the additional source ζμν

Ǧμν = −a2 ζμν, ∇μζμν = 0, (13)

are solved, where [3]

Ǧ ν
μ = G ν

μ + 1

r2

(
δ 0
μ δ ν

0 + δ 1
μ δ ν

1

)
. (14)
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Therefore the solution of Einstein’s field equations and the
conservation law (12) can be expressed as

ds2 = eχ(r) dt2 − dr2

1 − 2M(r)
r

− r2dθ2 − r2 sin2 θ dφ2,

(15)

where

M(r) = a2
∫ r

0
r2ρ(r)dr (16)

is the Misner–Sharp–Hernandez mass function. The outcome
of the additional source ζμν , that generates the gravitational
decoupling, on the perfect fluid solution can be emulated by
the radial component in Eq. (15). The gravitational decoupled
solution can be then implemented when Eq. (5) is taken into
account, by the mapping ν(r) �→ χ(r), yielding

e−λ(r) �→ 1 − 2M(r)

r
+ α f	(r), (17)

where f	 = f	(r) is the decoupling function to be determined
from the use of Eq. (13), equivalently written as

a2 ζ 0
0 (r) = − f	

′
(r)

r
− f	(r)

r2 , (18)

a2 ζ 1
1 (r) = −f	(r)

(
χ ′(r)
r

+ 1

r2

)
, (19)

a2 ζ 2
2 (r) = a2 ζ 3

3 (r)

= − f	(r)
4

(
2χ ′′(r) + 2χ ′(r)

r
+ χ ′2(r)

)

− f	
′
(r)

4

(
χ ′(r) + 2

r

)
, (20)

(
ζ 1

1

)′ = χ ′(r)
2

(
ζ 0

0 (r) − ζ 1
1 (r)

)

+2

r

(
ζ 2

2 (r) − ζ 1
1 (r)

)
. (21)

One can now derive the decoupling function f	, itera-
tively taking the Schwarzschild solution. The gravitationally
decoupled metric can be thus expressed as

ds2 =
(

1 − 2M(r)

r

)
dt2 −

(
1 − 2M(r)

r
+ α f	(r)

)−1

×dr2 − r2dθ2 − r2 sin2 θdφ2. (22)

To obtain the gravitational decoupling f	(r), the ancillary
source can be considered the one describing a polytropic
fluid, satisfying the polytropic Lane–Emden equation of state
for the radial pressure,

p̌r = K ρ̌Γ , (23)

with Γ = 1 + 1/n, where n is the polytropic index and K
is the polytropic constant encoding the temperature and the

entropy per nucleon, as well as the star chemical composition.
The energy density reads

ε(r) =
(
p̌r (r)

K

)1/Γ

+ p̌r (r)

Γ − 1
. (24)

In the case where heat flow across the stellar configuration is
absent, one can identify Γ to the adiabatic index, namely, the
fluid heat capacities ratio at constant pressure and volume.
The polytropic index quantifies the pressure derivative of the
bulk modulus, whose inverse is the fluid compressibility. The
higher the polytropic index, the heavier the density distribu-
tion is weighted about the star center. Substituting ρ = p = 0

into Eqs. (10a) and (10b) yields αζ 1
1 = −K

(
αζ 0

0

)Γ
. Now,

Eqs. (18) and (19) can be replaced into it, implying that [23]

f	′
(r) + f	(r)

r
− 1

K

(
Ka2r

α

)1−1/Γ (
f	(r)

r − 2M

)1/Γ

= 0.

(25)

The case Γ = 1 yields Eq. (23) to represent a barotropic
equation of state, representing an isothermal self-gravitating
compact sphere of gas. It also describes a system of stars that
do not collide with each other, in a globular cluster. Dense star
clusters play the role of formation sites of binary black holes,
being realistic sources of binary black holes mergers. It is a
prominent case to be scrutinized hereon since binary black
holes formed in globular clusters have a variety of distinct
properties when compared to coalescing black holes mergers
formation on isolated backgrounds. The gravitational decou-
pling deformation for Γ = 1 reads

f	(r) =
(

1 − 2M

r

)−1/K (



r

)1+1/K

, (26)

where 
 > 0 has dimension of length. Hence, the gravita-
tional decoupled radial component is given by [23]

e−λ(r) =
(

1 − 2M

r

) [
1 + α

(



r − 2M

)1+1/K
]

, (27)

when r > 2M . Asymptotic flatness at r → ∞ demands
that K ≤ −1, whose saturation takes place for the standard
Schwarzschild metric. Besides, the effective density reads

a2ρ(r) = α

K r2

(



r

)1+1/K (
1 − 2M

r

)−1−1/K

, (28)

whereas the effective tangential pressure is given by

p̌t (r) = −α θ 2
2 (r) = −α (K + 1)

2 K r2

(
1 − M

r

)

×
(




r

)1+1/K (
1 − 2M

r

)−2−1/K

. (29)

Besides the case Γ = 1, other cases are quite important to
the study of gravitational decoupled hybrid stars. The case
� = 2 will be also considered, as the prototypical case
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wherein neutron stars are successfully described by self-
gravitating compact polytropes [96]. This case might also
encompass stars made of Bose–Einstein condensates, obey-
ing the polytropic equation of state (23) with Γ = 2. The
first gravitational waves event GW170817, originated from a
binary neutron star merger, contained a comprehensive net-
work of details regarding neutron stellar configurations [1].
In particular, their tidal deformability is one of the most auspi-
cious physical quantities that can be obtained from the detec-
tion of gravitational waves. The last case to be addressed,
� = 4

3 , corresponds to the core of stellar core remnants
constituted by electron-degenerate matter. Moreover, ultra-
relativistic degenerate Fermi gases can be described by this
value of the polytropic constant, which can be also employed
to study main-sequence stellar distributions as the Sun in the
apparatus of the Eddington model describing stellar struc-
tures.

3 Gravitational decoupled hybrid stellar configurations

The Gleyzes–Langlois–Piazza–Vernizzi approach general-
izes Horndeski gravity and represents a comprehensive set
of scalar-tensor theories constituted by a linear combination
of the Horndeski Lagrangians. The action that governs the
Gleyzes–Langlois–Piazza–Vernizzi model is given by [87]

S =
∫

d4x
√−g

(
5∑

k=2

Lk[φ, gμν] + Lmatter[ψ, gμν]
)

,

(30)

where Lmatter is the Lagrangian referring to matter and con-
tains standard model fields; the Lk regard the gravitational
sector with contributions due to the scalar field, and can be
expressed as

L2 =G2(φ, X), (31)

L3 = G3(φ, X)�φ, (32)

L4 = G4(φ, X)R + F4(φ, X)εμνρ
σ εταβσ

×(∇μφ)(∇βφ)(∇ν∇αφ)(∇ρ∇βφ),

−2G4,X (φ, X)
[
(�φ)2 − (∇μ∇νφ)(∇μ∇νφ)

]
(33)

L5 = G5(φ, X)

(
Rμν − 1

2
Rgμν

)
∇μ∇νφ

+ F5(φ, X)εμνρσ εταβζ

×(∇μφ)(∇τφ)(∇ν∇αφ)(∇ρ∇βφ)∇σ ∇ζ φ

+1

3
G5,X (φ, X)

[
(�φ)3 − 3�φ(∇μ∇νφ)(∇μ∇νφ)

+2(∇μ∇νφ)(∇μ∇σ φ)∇ν∇σ φ
]
, (34)

where R is the Ricci scalar curvature, and G2, G3, G4, G5,
F4, F5 are arbitrary functions depending on the scalar field
φ that generates bosonic scalar matter; the kinetic term,
X = gμν∇μφ∇νφ, is the leading dimension-four operator
that rules the scalar field dynamics, and �φ = gμν∇μ∇νφ,
whereas Gi,X denotes the partial derivative with respect to
the kinetic term. When G4 = M2

p /2, where Mp denotes
the Planck mass, and G2 = −M2

p Λ, for all other functions
vanishing, one recovers general relativity with cosmologi-
cal constant. Also, making G2 = − 1

2 X − V (φ) yields the
Einstein–Klein–Gordon theory.

Suitably choosing the Lk , in such a way that low-energy
effective gravity sets in, yields [97,98]

Lgrav = 1

2
M2

p R − X − m2φφ̄ + Mp

Λ3

×
{
c4

[
XR − 2�φ�φ̄ − (∇μ∇νφ)(∇μ∇νφ̄)

]

+d4

X
εμνρ

σ εταβσ (∇μφ)(∇τ φ̄)(∇ν∇αφ)∇ρ∇βφ̄

}
.

(35)

The Lagrangian (35) encodes generalized Horndeski scalar-
tensor gravity, containing a subgroup of families that contain
infrared modifications of the gravitational sector. The scalar
field φ has a mass parameter denoted by m. It is worth men-
tioning that as the F5 sector in Eq. (32) includes operators
that have mass dimension at least equal to nine, it is there-
fore suppressed at low energies. The contributions from L3

and L5 vanish when Z2 symmetry acting on φ is taken into
account. Hereon, the range m < Λ � Mp will be regarded,
such that the Lagrangian (35) holds [86].

The variation of the action (35) with respect to the metric
yields

Rμν − 1

2
Rgμν + c4

2MpΛ3Hμν = 1

M2
p

(
T f

μν − Tφ
μν

)
, (36)

where the tensor Hμν encodes the generalized Horndeski
model correction to general relativity, having the form [86]

Hμν =
(
Rμν − 1

2
Rgμν

)
X + gμν

(
(∇α∇ρφ̄)∇α∇ρφ

−�φ�φ̄ + 2Rαρ∇αφ∇ρφ̄
)−∇αφ∇ρφ̄Rμ(α|ν|ρ)

+
[
∇μφ

(
R

2
∇νφ − Rνα∇αφ

)
+ (∇μ∇νφ̄)�φ

−Rμα∇νφ̄∇αφ − (∇μ∇αφ̄)∇ν∇αφ

]
, (37)

with correspondent complex conjugate terms, where T f
μν and

Tφ
μν denote the energy-momentum tensor of the fermionic

and bosonic fields, respectively,

T f
μν = − 2√−g

δLmatter

δgμν
, (38)
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Tφ
μν = gμν

(
X + m2φφ̄

)
− ∇μφ∇νφ̄ − ∇μφ̄∇νφ. (39)

Varying the action (35) with respect to the complex conjugate
φ̄ yields the following equation of motion,

�φ − m2φ + 2c4Mp

Λ3

(
Rμν − 1

2
gμνR

)
∇μ∇νφ = 0. (40)

The case c4 = 0, or equivalently Λ → ∞, yields the usual
case regarding the Klein–Gordon equation.

The gravitational decoupled metric (22, 26, 27) can be
now taken into account, together with the harmonic splitting
of the scalar field,

φ(t, r) = σ(r)eiωt . (41)

Therefore the equations of motion (36)–(40) are led to the
coupled system of ODEs,

(1 + �)

r
λ′e−λ + (1 − κ0)

M2
p

e−λζ2 −
[
m2 + (1 − γ)ω2eν

]

× σ2

M2
p

+
(

1 + e−λ
) 1

r2 = T00

M2
p

e−ν, (42)

(1 + �)

r
νe−λ − (1 − κ1)

M2
p

e−λζ2

+
[
m2 − (1 − γ)ω2eν

] σ2

M2
p

−
(

1 + e−λ
) 1

r2 = T11

M2
p

e−ν,

(43)

(1 + ξ)ζ′ +
[
(1 − η)

2

(
ν′ − λ′) + 2(1 + ζ)

r

]
ζ

−eλ
(
m2 − (1 + θ)e−νω2

)
σ = 0, (44)

where the dimensionless functions are respectively given by
the sets

�(r) = 2c4σ
2(r)

MpΛ3

[
ω2e−ν(r) − 3σ′2(r)

σ2(r)
e−λ(r)

]
, (45a)

κ0(r) = 2c4Mp

Λ3r2

[
1 − e−λ(r) + 4rσ′′(r)ν′(r)

σ′(r)

]
, (45b)

γ(r) = 2c4Mp

Λ3r2

[
1 − e−λ(r)

]
, (45c)

κ1(r) = 2c4Mp

Λ3r2

[
1 + 3e−λ(r) − 4ω2σ(r)

σ′(r)
reν(r)

]
, (45d)

and

ξ(r) = −2c4Mpeλ(r)

Λ3r2

[
1 + rν′(r) + eλ(r)

]
, (46a)

η(r) = −2c4Mp

Λ3r2

[
3 + e−λ(r)

]
, (46b)

ζ(r) = −c4Mp

Λ3 e−λ(r)
[
ν′′(r) + ν′2(r) − 6ν′(r)

λ′(r)

]
, (46c)

θ(r) = 2c4Mp

Λ3r2

[
1 + eλ(r) − rλ′(r)

]
. (46d)

Gravitationally decoupled hybrid stars profiles can be then
derived by noticing that the gravitationally decoupled met-
ric is a solution of the coupled system of equations (42)–
(44), with conservation equation ∇μTμν = 0 and fermionic
matter modelled by Eq. (3). This description of fermionic
matter can be alternatively implemented in the fluid/gravity
correspondence [99]. The resulting system can be thus solved
numerically, with boundary conditions,

lim
r→0

λ(r) = 0, lim
r→0

ν(r) = ν0, lim
r→0

p(r) = p0,

lim
r→0

σ(r) = σ0, lim
r→0

σ′(r) = 0, (47)

where p0 is the central fermionic pressure, whereas ν0 is
related to the lapse function at the center of gravitational
decoupled hybrid star configuration, since the only non-null
component of the fluid velocity is the temporal one, given by
u0(r) = e−ν(r)/2. The conditions (47) match regular space-
time configurations with no divergent curvature invariants.

Gravitationally decoupled hybrid stars profiles can be then
derived by noticing that the gravitationally decoupled metric
is a solution of the coupled system of equations (42)–(44),
with conservation equation ∇μTμν = 0 and fermionic matter
modeled by Eq. (3). Besides, the asymptotic radial limits
must be adopted,

lim
r→∞ p(r) = 0, lim

r→∞ σ(r) = 0,

lim
r→∞ ν(r) = ν∞ ∈ R

+, lim
r→∞ λ(r) = 0, (48)

where the equality ν∞ = − limr→∞ λ(r) is derived when
α = 0 in Eq. (2), corresponding to the Schwarzschild solu-
tion.

The coupled system of equations (45a)–(46d) can be
hereon solved by taking into account the polytropic equa-
tion (23) and by suitable expressing them with respect to
dimensionless quantities,

r̃ = mr, ω̃ = ω

m
, σ̃ = σ

Mp
,

Λ̃ = Λ

(Mpm2)1/3 , ε̃ = ε

m2M2
p

p̃ = p

m2M2
p

. (49)

As posed in Ref. [86], this rescaling makes the equations
of motion (36)–(40) to be independent of m and Mp, also
unifying the two energy scales, m and Λ, into a single one
given by Λ̃.

The profiles of gravitational decoupled hybrid stars can
be derived when one solves numerically the coupled sys-
tem (45a)–(46d) under the Neumann and Dirichlet boundary
conditions (47) and (48), employing the shooting method
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[27,30]. One must observe that given a 2-tuple (σ0, p0), the
scalar field ground state must be chosen to circumvent the
eventual appearance of nodes in the scalar field profiles. The
first step of the numerical analysis is to reduce the second-
order differential equations to first-order ones, the number of
resulting differential equations matches the boundary condi-
tions (47) and the asymptotic radial limits (48). The shooting
method involves finding solutions to the initial value problem
for different initial conditions until one finds the solution that
also satisfies the boundary conditions of the boundary value
problem. The central values in the boundary conditions (47)
must be consistent with the asymptotic radial limits. The
shooting method is then implemented by the multidimen-
sional and globally convergent Newton–Raphson method.
Hence one solves the coupled system of differential equa-
tions with boundary conditions (47). Thereafter the asymp-
totic limit r → ∞ to the numerical solutions is calculated
and the difference between the asymptotic limit r → ∞
to the numerical solutions and the asymptotic radial limits
given by (48) is minimized [100]. This can be implemented
by shooting out trajectories in different directions from the
boundaries at r = 0 until one finds the trajectory that hits
the asymptotic conditions at r → ∞. The Newton–Raphson
method is employed to derive the adjustment of the bound-
ary conditions at r = 0 that make the discrepancies, between
the subsequent values of the respective derived functions at
r → ∞ and the chosen asymptotic values (48) to be less than
the numerical acceptable error ε = 10−10. One can consider
phenomenological values for the polytropic index in Eq. (23),
chosen to cover a large range of stellar configurations, as
discussed at the end of Sect. 2. In what follows gravitational
decoupled hybrid stellar configurations with either a bosonic
core or a fermionic one will be separately studied. For imple-
menting it, generalized Horndeski models with the values
c4 ∈ {0,±0.5} and d4 = 0 will be employed, regarding the
low-energy effective Lagrangian (35). Also, the parameter α

that governs the gravitational decoupling strength in Eq. (2),
defining the polytropic gravitational decoupled radial com-
ponent in Eq. (27), will be considered in what follows attain-
ing the values α = 0.1 and α = 0.5, to a deeper analysis.
Other values of α have been numerically investigated and
the results are qualitatively analogous. The numerical range
of ω was chosen to ensure that the scalar field decays expo-
nentially fast. It is worth noticing that the case involving the
Einstein–Klein–Gordon system is equivalent to considering
c4 = 0 and α = 0. Also, one must observe that the arbitrary
parameter 
 naturally emerges from the solution encoded in
Eq. (27) by dimensional reasons. Since the constant terms in
Eqs. (27)–(29) regard α
1+1/K , one can absorb the constant
α
1+1/K into α, for the sake of conciseness at numerical
calculations.

First, the stationary splitting of the scalar field in Eq. (41)
and the fermionic fluid pressure p are addressed as functions

of the radial coordinate, for hybrid stellar configurations in
Horndeski generalized models, for different values of the
parameters c4, α, and the adiabatic index Γ . The plots in
Figs. 1 and 2 illustrate gravitational decoupled hybrid stars
with a bosonic core, whereas Figs. 3 and 4 regard gravi-
tational decoupled hybrid stars with a fermionic core. The
type of core in hybrid stars is encoded by the choice of the
parameters Λ, σ0, and p0 [97,101]. In all plots that follow,
the polytropic constant K = 102 m−2M−2

p is employed, cor-
roborating to phenomenological data. The involved param-
eters were taken in the parameter space derived in Refs.
[97,101], in such a way that fermionic matter emulates typ-
ical astrophysical neutron stellar configurations, with cen-
tral density ρ0 = limr→0ρ(r) ∼ 1012ρ� and central pres-
sure p0 ∼ 1018 p�, denoting the Solar average density by
ρ� = 1.412×103 kg/m3 and the Solar core average pressure
by p� = 2.653 × 1015 Pa.

Figure 1 shows the behavior of the scalar field, in gravita-
tional decoupled hybrid stars with a bosonic core, as a func-
tion of the radial coordinate. For each fixed value of the adi-
abatic index Γ and fixed gravitational decoupling parameter
α, the higher the c4 parameter, the less sharp the scalar field
decreases along the radial coordinate. When α varies and c4

is kept fixed, the lower the α parameter, the steeper the scalar
field decreases as a function of the radial coordinate. Now, for
fixed α and c4, making the adiabatic index Γ to vary yields
an interesting result: the higher the adiabatic index Γ , the
slower the scalar field reaches its asymptotically null value.
It is also important to emphasize that for all values of c4, α,
and Γ the scalar field attains the asymptotically null value,
however at different rates. Remembering that c4 = 0 rep-
resents the gravitational decoupled Einstein–Klein–Gordon
system, for values c4 > 0 [c4 < 0], the scalar field profile
is smoother [sharper] along the radial coordinate when com-
pared to the Einstein–Klein–Gordon system. For the plots
Fig. 1a–c, both the asymptotic conditions limr→∞σ(r) = 0
and limr→∞σ′(r) = 0 hold, for all values of α, Γ , and c4.

Figure 2 illustrates the profile of the fermionic fluid pres-
sure, regarding gravitational decoupled hybrid stars with a
bosonic core, as a function of the radial coordinate. Although
the results are qualitatively similar to the one depicted in the
plots of Fig. 1, the main difference resides in the evanescence
rate of the fermionic fluid pressure. For each fixed value of the
adiabatic index Γ and fixed decoupling parameter α, for the
studied values of c4, the fermionic fluid pressure dampens to
its asymptotically null value in a slower rate, when compared
to the respective scalar field profiles. Besides, still comparing
to Fig. 2 to the plots in Fig. 1 with the same respective value
of the adiabatic index Γ , one can realize that the rate at which
the scalar field profile decays to its asymptotically null value
is around four times steeper than the fermionic fluid pres-
sure profile. Also, for values c4 > 0 [c4 < 0], the fermionic
fluid pressure is smoother [sharper] along the radial coordi-
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(a) (b)

(c)

Fig. 1 Scalar field φ generating gravitational decoupled hybrid stellar
configurations with a bosonic core, in generalized Horndeski gravity
for three values of c4 and two values of α; Λ = 1.5(Mpm2)1/3, and a

fermionic fluid with K = 102 m−2M−2
p and σ0 = 0.15Mp is consid-

ered. a Shows the case Γ = 1 and b illustrates the case where Γ = 2,
whereas c shows the case Γ = 4

3

nate, when compared to the results coming from the grav-
itational decoupled Einstein–Klein–Gordon solution, which
corresponds to c4 = 0. In addition, in Fig. 2 the asymptotic
limits limr→∞ p(r) = 0 and limr→∞ p′(r) = 0 also hold.

Now, Fig. 3 portrays the profile of the scalar field related
to gravitational decoupled hybrid stars with a fermionic core.
For each fixed value of the adiabatic index Γ and fixed gravi-
tational decoupling parameter α, the higher the c4 parameter,
the smoother the scalar field decreases along the radial coor-
dinate. For fixed α and c4 and making the adiabatic index Γ to
vary, the higher the adiabatic index Γ , the broader the graphic
is. Besides, the scalar field in Fig. 3 reaches its asymptoti-
cally null value at a higher value of the radial coordinate,
when compared to the respective cases of hybrid stars with
a bosonic core in Fig. 1, for each fixed Γ . Again a recurrent
feature can be observed: for positive [negative] values of c4,

the scalar field fades in a smoother [sharper] rate, along the
radial coordinate, when compared to the gravitational decou-
pled Einstein–Klein–Gordon system. However, contrary to
the scalar field profile for hybrid stars with a bosonic core in
Fig. 1, the plots in Fig. 3 show a peculiar behaviour regard-
ing gravitational decoupled hybrid stars with a fermionic
core: allowing α to vary and c4 to be fixed, the higher the
α parameter, the steeper the scalar field decreases along the
radial coordinate. Similarly to the case of a bosonic core,
here also for fermionic cores both the asymptotic conditions
limr→∞σ(r) = 0 and limr→∞σ′(r) = 0 are valid.

Figure 4 illustrates the fermionic fluid pressure pro-
file, regarding gravitational decoupled hybrid stars with a
fermionic core, as a function of the radial coordinate. For
each fixed value of the adiabatic index Γ and fixed gravi-
tational decoupling parameter α, for the respective values

123



Eur. Phys. J. C (2022) 82 :34 Page 9 of 21 34

(b)(a)

(c)

Fig. 2 Fermionic fluid pressure p of gravitational decoupled hybrid
stars with a bosonic core in generalized Horndeski gravity, for three
values of c4 and two values of α; Λ = 1.5 (Mpm2)1/3, and a fermionic

fluid with K = 102 m−2M−2
p and p0 = 10−2m2M2

p is considered. a
Shows the case Γ = 1 and b illustrates the case where Γ = 2, whereas
c shows the case Γ = 4

3

of the c4 parameter, the fermionic fluid pressure undergoes a
sharper approach to its asymptotically null value, when com-
pared to the respective scalar field profiles. This behavior is
opposite to the one regarding hybrid stars with a bosonic
core. Besides, for values c4 > 0 [c4 < 0], the fermionic
fluid pressure is smoother [sharper] along the radial coordi-
nate, when compared to the results coming from the gravita-
tional decoupled Einstein–Klein–Gordon solution. One can
conclude that regarding gravitational decoupled hybrid stars
with a fermionic core, fermionic fluid pressure profiles in
Fig. 4 are even sharper than the one for hybrid stars with a
bosonic core in Fig. 2. For the plots Fig. 4a–c, the asymptotic
limits limr→∞ p(r) = 0 and limr→∞ p′(r) = 0 are verified,
irrespective of the values of α, Γ , and c4.

Therefore, pairwise comparing Figs. 1, 2 and 3; and
Figs. 2, 3 and 4, in the gravitational decoupling context,
hybrid stars with a bosonic core present the scalar field
fading more sharply along the radial coordinate than the

fermionic fluid pressure profile, whereas in hybrid stars with a
fermionic core the fermionic fluid pressure profile evanesces
more steeply along the radial coordinate than the scalar field
profile. Besides, for fixed Γ and α, for c4 > 0 [c4 < 0]
both the scalar field and the fermionic fluid pressure are
smoother [sharper] along the radial coordinate, when com-
pared to the gravitational decoupled Einstein–Klein–Gordon
system, which corresponds to c4 = 0. Hence, one can
conclude that the gravitational decoupling setup emulates
standard results in extended Horndeski scalar-tensor gravity
[86,97], also corroborating to the conjecture that those nega-
tive [positive] couplings correspond to attractive [repulsive]
self-interaction. Comparing the plots in Figs. 1, 2, 3 and 4,
one can realize that in gravitational decoupled hybrid stars
with a bosonic core, the scalar field evanesces faster than the
pressure profile, as a function of the radial coordinate. On
the other hand, in gravitational decoupled hybrid stellar con-
figurations containing a fermionic core, the pressure profile
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(a) (b)

(c)

Fig. 3 Scalar field φ generating gravitational decoupled hybrid stars
with a fermionic core in generalized Horndeski gravity, for three values
of c4 and two values of α; Λ = 1.5(Mpm2)1/3, and a fermionic fluid

with K = 102 m−2M−2
p and σ0 = 0.26Mp is considered. a Shows the

case Γ = 1 and b illustrates the case where Γ = 2, whereas c shows the
case Γ = 4

3

plunges sharper than the scalar field. All these fields vanish
asymptotically.

One can define the asymptotic maximal value of the mass
function,

M∞ = lim
r→∞ M(r). (50)

Since Eq. (49) defined r̃ = mr , taking the limit r → ∞ is
equivalent to r̃ → ∞. The Misner–Sharp–Hernandez mass
function M(r) in Eq. (16) will be studied in the graphics in
Figs. 5, 6, 7 and 8 as a function of the radial coordinate, where
a rescaling M �→ MM2

p /m is regarded. The plots in Fig. 5
illustrate the mass profile of gravitational decoupled hybrid
stars with a bosonic core, for which the scalar field behaviour
is sharper towards its asymptotic null value than the respec-
tive fermionic fluid pressure profile, for each fixed value of Γ ,

c4, and α. Therefore the fermionic fluid density contributes
more to the asymptotic maximal mass value. For the three
values of Γ studied in Fig. 5a–c, the mass function profiles of
gravitational decoupled hybrid stars with a bosonic core are
very similar to the case of a gravitational decoupled neutron
star, corresponding to σ = 0 and � = 2, which is depicted
as the continuous thin Caribbean green curves in Fig. 5a–c,
for the same value of p0. Also, for c4 > 0 [c4 < 0], the mass
M(r) is greater (lower) than in the gravitational decoupled
Einstein–Klein–Gordon case corresponding to c4 = 0. The
plots in Fig. 5a–c differ by the respective value of the adia-
batic index Γ used to derive the curves. The Horndeski param-
eter c4 and the decoupling parameter α induce the hybrid star
to have an asymptotic maximal mass that is lower when com-
pared to the gravitationally decoupled neutron star case, for
the adiabatic index Γ = 2; when compared to the isothermal
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(a) (b)

(c)

Fig. 4 Fermionic fluid pressure p of gravitational decoupled hybrid
stars with a fermionic core in generalized Horndeski gravity, for three
values of c4 and two values of α; Λ = 1.5 (Mpm2)1/3, and a fermionic

fluid with K = 102m−2M−2
p and p0 = 2.3 × 10−4 (mMp)

2 is consid-
ered. a Shows the case Γ = 1 and b illustrates the case where Γ = 2,
whereas c shows the case Γ = 4

3

sphere of gas emulating globular clusters, when Γ = 1; and
when compared to the ultrarelativistic degenerate Fermi gas
case, for Γ = 4

3 , depicted by the respective Caribbean green
curves. The higher the decoupling parameter α, the lower
the hybrid star maximal mass is, irrespective of the value
of c4. Another important feature is the fact that the gravita-
tional decoupled hybrid stars with c4 = −0.5 have asymp-
totic maximal mass higher than the gravitational decoupled
Einstein–Klein–Gordon solution (c4 = 0), whose asymp-
totic maximal mass value is higher than hybrid stars with
c4 = 0.5, for both values of the decoupling parameter α and
all values of the adiabatic index Γ . Also, the minimal mass
represented by the bright green dashed curves in Fig. 5a–c
regard a gravitational decoupled boson star solution.

Figure 6 displays the mass function profile of gravitation-
ally decoupled hybrid stars with a fermionic core, for which

the scalar field behavior is smoother towards its asymptotic
null value than the respective fermionic fluid pressure pro-
file, for each fixed value of Γ , c4, and α. In this case, the
fermionic fluid density is suppressed, when compared to the
scalar field contribution to the value of the asymptotic max-
imal mass. For the three values of Γ studied in Fig. 6a–c,
the mass function profiles of gravitational decoupled hybrid
stars with a fermionic core are qualitatively similar to the
case of gravitational decoupled neutron stars, corresponding
to σ = 0 and � = 2, which is depicted as the thin magenta
curves in Fig. 6a–c for different values of the adiabatic index.
However, their asymptotic maximal values of the mass func-
tion, as well as their rate of increment, are completely differ-
ent, quantitatively. For c4 > 0 [c4 < 0], the mass function
is higher (lower) than the gravitational decoupled Einstein–
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(a) (b)

(c)

Fig. 5 Mass function M(r) of gravitationally decoupled hybrid stars
with a bosonic core, in generalized Horndeski gravity, for c4 ∈
{0,±0.5} and two values of α, for Λ = 1.5(Mpm2)1/3, and a fermionic
fluid with polytropic constant K = 102 m−2M−2

p and σ0 = 0.15Mp

is considered. Lightgray curves represent the case where α = 0.1 and
apple green curves regard the case where α = 0.5. Gravitational decou-

pled neutron stars with σ = 0 are depicted as the continuous thin
Caribbean green curves, whereas the case where the fermionic fluid
pressure is null represents a gravitationally decoupled boson star, dis-
played as the bright green dashed curve. a Shows the case Γ = 1 and b
illustrates the case where Γ = 2, whereas c shows the case Γ = 4

3

Klein–Gordon counterpart, which can be obtained by con-
sidering c4 = 0.

The plots in Fig. 6a–c differ by the respective value of
the adiabatic index Γ used to derive the curves. Similarly to
the case of gravitational decoupled hybrid stars with bosonic
core, both the Horndeski parameter c4 and the decoupling
parameter α yield a maximal value of the Misner–Sharp–
Hernandez mass function that can be lower or intermedi-
ary than the asymptotic maximal mass of the gravitational
decoupled boson stars, depicted by the respective magenta
curves. The higher the decoupling parameter α, the lower
the hybrid star maximal mass is, irrespective of the value of
the Horndeski parameter c4. Besides, the higher the value of
the adiabatic index Γ , the bigger the gap between the group

of light-gray curves, corresponding to α = 0.1, and the
group of curves, corresponding to α = 0.5, is. It means
that the asymptotic maximal mass value of hybrid stars
decreases at a higher rate, for higher values of the decou-
pling parameter α. Now, contrary to the bosonic core case,
gravitational decoupled hybrid stars with fermionic core with
c4 = −0.5 have maximal mass higher than the gravita-
tional decoupled Einstein–Klein–Gordon solution (c4 = 0),
whose maximal mass value is higher than hybrid stars with
c4 = 0.5, for both values of the decoupling parameter α

and all values of the adiabatic index Γ . Also contrary to the
bosonic core case, the gravitational decoupled hybrid star
with fermionic core has mass function displayed in Fig. 6d.
It shows that the mass function of the gravitational decou-
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(a) (b)

(c)

(d)

Fig. 6 Mass function M(r) of gravitationally decoupled hybrid stars
with a fermionic core, in generalized Horndeski gravity, for three val-
ues of c4 ∈ {0,±0.5} and two values of α; Λ = 1.5(Mpm2)1/3, and
a fermionic fluid with K = 102 m−2M−2

p and σ0 = 0.26Mp is con-
sidered. Light-gray curves represent the case where α = 0.5 and apple

green curves regards the case where α = 0.1. Gravitational decoupled
isothermal compact spheres of gas, with σ = 0 and � = 1, correspond
to the red curve in a. Neutron stars, with σ = 0 and � = 2, are depicted
as the red curve in b. Gravitational decoupled white dwarfs, with σ = 0
and � = 4

3 , are represented by the red curve in c

pled hybrid star with the fermionic core is much lower, when
compared to the isothermal sphere of gas, when Γ = 1
(green dashed curve); when compared to the gravitationally
decoupled neutron star case, for the adiabatic index Γ = 2
(orange dashed curve); and when compared to ultrarelativis-
tic degenerate Fermi gas case, for Γ = 4

3 (purple dashed
curve).

For gravitational decoupled isothermal compact sphere of
gas, with σ = 0 and � = 1 in Fig. 6a, although its mass
function increases with a rate that is lower than all cases
concerning α = 0.1, its asymptotic value M∞ converges
to the gravitational decoupled Einstein–Klein–Gordon case

c4 = 0, α = 0.1. Next, regarding gravitational decoupled
neutron stars, with σ = 0 and � = 2 in Fig. 6b, this case
splits the range of M∞, associated with gravitational decou-
pled hybrid stars, into two domains. The first one represents
the α = 0.1 case, whose asymptotic values of the mass
function are higher than M∞ associated with gravitational
decoupled neutron stars. The second domain represents the
α = 0.5 case, whose asymptotic values of the mass func-
tion are lower than M∞ of gravitational decoupled neutron
stars, irrespectively of the value of α. Now, a relevant feature
regards gravitational decoupled white dwarfs, with σ = 0
and � = 4

3 , in Fig. 6c. For this case, the asymptotic value
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Table 1 Asymptotic value of the mass function, M∞, for � = 1, in
Fig. 5a

c4 = −0.5 c4 = 0 c4 = 0.5

α = 0.1 160.13 156.17 145.78

α = 0.5 133.40 129.59 124.13

Table 2 Asymptotic value of the mass function, M∞, for � = 2, in
Fig. 5b

c4 = −0.5 c4 = 0 c4 = 0.5

α = 0.1 157.11 155.62 149.35

α = 0.5 138.16 129.48 124.10

Table 3 Asymptotic value of the mass function, M∞, for � = 4
3 , in

Fig. 5c

c4 = −0.5 c4 = 0 c4 = 0.5

α = 0.1 184.49 181.12 172.67

α = 0.5 127.30 120.09 110.85

Table 4 Asymptotic value of the mass function, for � = 1, in Fig. 6a

c4 = −0.5 c4 = 0 c4 = 0.5

α = 0.1 16.08 17.12 18.01

α = 0.5 13.10 13.79 14.23

of the mass function is lower than all other cases. The case
where the fermionic fluid pressure is null represents a gravita-
tionally decoupled boson star, separately displayed in Fig. 6d
for each value of the adiabatic index Γ . All cases in Fig. 6
show that the decoupling parameter α induces a decrement
of M∞.

Tables 1, 2 and 3 display the respective values of the
asymptotic value of the mass function (50) regarding grav-
itationally decoupled hybrid stars with a bosonic core, for
different values of the involved parameters. The values can
be read off Fig. 5.

Also, the asymptotic value of the mass function is regarded
for gravitationally decoupled hybrid stars with a fermionic
core, in Tables 4, 5 and 6, whose values are read off Fig. 6.

Table 5 Asymptotic value of the mass function, for � = 2, in Fig. 6b

c4 = −0.5 c4 = 0 c4 = 0.5

α = 0.1 17.77 18.57 20.16

α = 0.5 13.29 14.02 15.38

Table 6 Asymptotic value of the mass function, for � = 4
3 , in Fig. 6c

c4 = −0.5 c4 = 0 c4 = 0.5

α = 0.1 16.08 17.12 18.01

α = 0.5 13.10 13.79 14.23

Figures 5 and 6, and their particular portrait displayed in
Tables 1, 2, 3, 4, 5 and 6, show that the asymptotic value of
the mass function for gravitationally decoupled hybrid stars
with a fermionic core is one order of magnitude lower than
their counterparts with a bosonic core.

When boson stars are investigated, among other species
of stars, the effective radius R99 of a self-gravitating com-
pact distribution defines a region that encloses 99% of the
boson star total mass, namely, M(R99)/M = 0.99. One
can emulate this concept for determining the effective radius
of gravitational decoupled hybrid stars, since analogously
to boson stars, Figs. 1 and 3 showed that the scalar field
profile decreases monotonically along the radial coordinate
[86]. Therefore one can similarly define the effective radius
of gravitationally decoupled hybrid stars, also here denoted
by R99. It is worth emphasizing that the effective radius
R99 coincides to the standard classical radius, R, at which
p(R) = 0, to the case of hybrid stars with a fermionic core.
The dependence of M99 = M(R99) to the effective radius
of gravitational decoupled hybrid stars are numerically com-
puted and displayed in Fig. 7, for α = 0.1, and in Fig. 8,
for α = 0.5. The values σ0 = 0.06Mp and σ0 = 0.3Mp

of the scalar field central amplitude are adopted, and com-
pared to the respective stellar configurations when σ = 0, for
three values of the adiabatic index Γ . The results are shown
in Figs. 7 and 8, respectively for α = 0.1 and α = 0.5,
for the generalized Hordenski theory, taking into account the
Horndeski parameter c4 = −0.5 for comparison to the liter-
ature when α = 0 [86]. Gravitational decoupled hybrid stel-
lar configurations have effective radii and associated masses
that increase up to an absolute supremum, where the effective
radii and associated masses decrease.

Figure 7 shows the case α = 0.1. The maximal mass por-
tion M99 as a function of the effective radius R99 increases
up to an absolute maximum, for α = 0.1 and Λ =
1.5(Mpm2)1/3. The green dotted curve takes into account
σ0 = 0.3Mp and the blue dot-dashed curve regards σ0 =
0.06Mp, whereas σ0 = 0 regards the case for the fermionic
[bosonic] core indicated by the black [light-gray] curve.

Table 7 displays the maximal mass portion M99 as a func-
tion of the effective radius R99, for α = 0.1, regarding grav-
itationally decoupled hybrid stars with a bosonic core, for
different values of the involved parameters. The values can
be read off Fig. 7.

One can realize from Table 7 that for each fixed value
of the scalar field central density σ0, as the adiabatic index
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(a) (b)

(c)

Fig. 7 The mass portion M99 as a function of the effective radius
R99 of gravitationally decoupled hybrid stars, for α = 0.1 and
Λ = 1.5(Mpm2)1/3. Each curve was derived by the variation of p0
in the range from 10−6m2M2

p to 10−2m2M2
p . The green dotted curve

takes into account σ0 = 0.3Mp and the blue dot-dashed curve regards
σ0 = 0.06Mp, whereas σ0 = 0 regards the case for the fermionic
[bosonic] core indicated by the black [light-gray] curve

Γ increases, the greater the M99 and the smaller the effec-
tive radius R99 are. By fixing the adiabatic index Γ , both the
mass portion M99 and the effective radius R99 decrease as
σ0 increases.

A similar behavior holds for the case α = 0.5, illustrated
in Table 8, which displays the maximal mass portion M99 as
a function of the effective radius R99 for α = 0.5, regarding
gravitationally decoupled hybrid stars with a bosonic core,
for different values of the involved parameters. The values
can be read off Fig. 8. Also for each fixed value of the scalar
field central density σ0, the higher the adiabatic index Γ , the
greater the M99 and the smaller the effective radius R99 are.
When the adiabatic index Γ is fixed, both the mass portion
M99 and the effective radius R99 decrease as σ0 increases.

Increasing the value of c4 makes the results to be qualita-
tively similar, with the mass portion M99 also increasing, for
each fixed the effective radius R99. Besides, the rescaling

M99 �→ 5.31

m
M99 × 10−12M�,

R99 �→ 1.97

m
R99 × 10−10 km (51)

in Ref. [86] recovers the observable values of M99 and R99,
in Figs. 7 and 8, where the scalar field mass parameter mass
parameter m in Eq. (51) must be input in electron-volt.

Now the compactness of gravitational decoupled hybrid
stars can be addressed. The compactness C of hybrid stars
can be defined as the ratio between the mass portion M99

and its effective radius, as C = M99
R99

, emulating the gravi-

tational potential at the surface of the star.1 Figures 9 and
10 show the compactness of gravitational decoupled hybrid
stellar configurations as a function of the radial coordinate,

1 Remembering that relaxing the use of natural units, the compactness
is defined as C = GM99

c2R99
.
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(a) (b)

(c)

Fig. 8 The maximal mass portion M99 as a function of the effective
radius R99 of gravitationally decoupled hybrid stars, for α = 0.5 and
Λ = 1.5 (Mpm2)1/3. Each curve was derived by the variation of p0 in
the range from 10−6(mMp)

2 to 10−2(mMp)
2. The orange dotted curve

takes into account σ0 = 0.3Mp and the red dot-dashed curve regards
σ0 = 0.06Mp, whereas σ0 = 0 regards the case for the fermionic
[bosonic] core indicated by the black [light-gray] curve

Table 7 The maximal mass portion M99 as a function of the effective
radius R99, for α = 0.1

(Mmax
99 , Rmax

99 )

σ0 = 0 σ0 = 0.06Mp σ0 = 0.3Mp

Γ = 1 (204.47, 38.21) (198.05, 35.28) (179.88, 36,69)

Γ = 2 (238,03, 34.17) (225.32, 32.81) (203.75, 30.07)

Γ = 4
3 (246.86, 32.79) (232.90, 27.93) (213.67, 28.27)

respectively for α = 0.1 and α = 0.5, for different values of
c4 and the scalar field central density.

For both the cases α = 0.1 and α = 0.5, Figs. 9 and 10
respectively show that for each fixed c4, the higher the value
of the adiabatic index Γ , the higher the absolute maximum
of the gravitational decoupled hybrid star compactness is.
Also, the higher the value of c4, the sharper the compact-
ness increases along the radial coordinate, whereas the faster
it decreases after the maxima, along the radial coordinate,
irrespectively of the value of the adiabatic index.

Table 8 The mass portion M99 as a function of the effective radius R99,
for α = 0.5

(Mmax
99 , Rmax

99 )

σ0 = 0 σ0 = 0.06Mp σ0 = 0.3Mp

Γ = 1 (330.09, 43.84) (280.15, 34.60) (220.18, 33,55)

Γ = 2 (336.78, 35.72) (301.34, 30.94) (240.48, 31.48)

Γ = 4
3 (340.01, 30.96) (336.90, 27.62) (310.56, 30.23)

The differences in the compactness profiles for gravita-
tional decoupled hybrid stars yield alterations in their several
properties, with special importance to the gravitational radi-
ation emitted by the particular case of gravitational decou-
pled neutron stars. The gravitational decoupled hybrid stars
compactness is in general thrice larger than the neutron stars
compactness and can be around four times higher than con-
ventional boson stars. Gravitational decoupled hybrid stars
have been here described as solutions to Einstein’s effec-
tive field equations, with scalar matter confined to the star
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(a) (b)

(c)

Fig. 9 Compactness of gravitational decoupled hybrid stars as a func-
tion of the radial coordinate, for α = 0.1 and three values of c4, and
σ0 = 0.26Mp. The cyan [red; light-gray] curve represents the case c4 =
0.5 [c4 = −0.5; c4 = 0], for Λ = (Mpm2)1/3, K = 102 m−2M−2

p ,

ε0 = 10−2 (Mpm)2, and p0 = 3 × 10−3 (Mpm)2. a Shows the case
Γ = 1 and b illustrates the case where Γ = 2, whereas c shows the case
Γ = 4

3

effective radius and the fermionic fluid described by a per-
fect fluid. However, bosonic matter described by a scalar
field is here implemented by a polytropic fluid, which a
priori might circumvent the Buchdahl bound. Even though
gravitational decoupled hybrid stars evade Buchdahl’s the-
orem, the compactness of gravitational decoupled hybrid
stars in Figs. 9 and 10 have values that are lower than the
Buchdahl bound M < 4Rc2

9G or, equivalently in natural units,
C < 4

9 .

4 Conclusions and perspectives

Gravitational decoupled hybrid stars were scrutinized and
described by anisotropic polytropic stellar configurations,
that are self-gravitating bound regular stellar structures con-

stituted by scalar bosons and fermionic matter. Gravitational
decoupled hybrid stars were studied in a low-energy effec-
tive theory of the Gleyzes–Langlois–Piazza–Vernizzi theory,
generalizing Horndeski scalar-tensor gravity with infrared
modifications of the gravitational sector, coupled to a scalar
field that comprises bosonic matter. As solutions of the result-
ing equations of motion, the three most important cases,
involving realistic choices of the adiabatic index in the poly-
tropic Lane–Emden equation of state, were analyzed. Each
one of these cases encloses several gravitational decoupled
astrophysical compact distributions that include: (a) isother-
mal self-gravitating spheres of gas that encompasses colli-
sionless systems of compact stellar configurations in glob-
ular clusters; (b) gravitational decoupled neutron stars, and
(c) gravitational decoupled white dwarfs and ultrarelativis-
tic degenerate Fermi gases. Each case was further considered
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(a) (b)

(c)

Fig. 10 Compactness of gravitational decoupled hybrid stars as a func-
tion of the radial coordinate, for α = 0.5 and three values of c4, and
σ0 = 0.26Mp. The orange [red; blue] curve represents the case c4 = 0.5

[c4 = −0.5; c4 = 0], for Λ = (Mpm2)1/3, K = 102 m−2M−2
p , and

ε0 = 10−2 (Mpm)2. a Shows the case Γ = 1 and b illustrates the case
where Γ = 2, whereas c shows the case Γ = 4

3

in appropriate limits, also encompassing gravitational decou-
pled boson stars and solutions of the Einstein–Klein–Gordon
system using the gravitational decoupling method. Several
properties of the scalar field that generates hybrid stars
were addressed and discussed. Also, the way the decoupling
parameter affects the fermionic pressure field and the asymp-
totic values of the Misner–Sharp–Hernandez mass function
was scrutinized and comprehensively presented in Sect. 3.
The decoupling parameter was shown to make a remarkable
difference in the high compactness regime of gravitational
decoupled hybrid stars. It provides the possibility of more
compact and more massive self-gravitating compact hybrid
stars when compared to the general-relativistic case, for the
same polytropic indexes, central pressure, and density. The
effective radius of gravitational decoupled compact hybrid
stars was and its relationship to hybrid star masses was dis-

cussed, for two subcases involving a bosonic and a fermionic
dominant core. Although some results regarding hybrid stars
are qualitatively analogous to the ones obtained heretofore,
the important results obtained here in the context of the grav-
itational decoupling devise new possibilities. The synergy
among the adiabatic index, the Horndeski parameter, and
the decoupling parameter has produced compelling physical
results, weaving new features of hybrid stars. It also yields
more realistic predictions for the emission of gravitational
wave radiation, as the asymptotic value of the mass func-
tion increases at a higher rate than their general-relativistic
counterparts.

Figures 9 and 10 represent the numerical computations
of the compactness of gravitational decoupled hybrid stellar
configurations, respectively with a bosonic and a fermionic
dominant core. The gravitational decoupled setup emulates
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its general-relativistic limit of the generalized Horndeski
scalar-tensor theory [86]. The compactness of gravitational
decoupled hybrid stars, along the radial coordinate, presents
absolute minima and maxima, for each value of the adiabatic
index and each value of both the Horndeski parameter and the
decoupling parameter, in the range here studied. This feature
differs from neutron and boson stars in general relativity and
can be probed by astrophysical observations and detection
of gravitational waves from realistic mergers of gravitational
decoupled hybrid stars, as well as the subcase of gravitational
decoupled neutron stars. Gravitational decoupled hybrid stars
were shown to present a variation in their compactness, that
is compatible with the emission of gravitational radiation
with more energy than the corresponding black hole system.
When regarding a coalescent binary constituted by gravi-
tational decoupled neutron stars or gravitational decoupled
hybrid stars, they can radiate more energy than black hole
mergers [102], since the compactness reaches higher values
when compared to Horndeski hybrid stars without gravita-
tional decoupling. Figures 9 and 10 respectively showed that
for each fixed c4, the higher the value of the adiabatic index Γ ,
the higher the absolute maximum of the gravitational decou-
pled hybrid star compactness that is. Also, the higher the
value of c4, the sharper the compactness increases, whereas
the faster it decreases after the maxima, along the radial coor-
dinate, irrespectively of the value of the adiabatic index.

Gravitational decoupled hybrid stars were successfully
studied in a gravitational equilibrium state, wherein the scalar
field interacts with the fermionic field only by the gravi-
tational force. One can further consider a self-interacting
potential in Eq. (35), and initial numerical results corroborate
to a significant increment of the mass of gravitational decou-
pled hybrid stars, that can even surpass the order of magni-
tude of general-relativistic neutron stars masses, for appro-
priate ranges of the decoupling and the Horndeski parame-
ter. These results have been known for boson stars [80] and,
although still an incipient numerical indication, one may con-
tinue to study extensions of the results presented heretofore.
The setup considered here focused on gravitational decou-
pled compact hybrid stellar distributions generated by scalar
fields, constituting boson stars that can interact with sur-
rounding fermionic matter. An alternative procedure for the
investigation of hybrid stars consists of considering the for-
mation of fermionic stars by a dynamical mechanism, which
is then encompassed by a bosonic cloud. This case was con-
sidered in Ref. [103], discussing a cloud accretion of a self-
interacting massive scalar field, and can be also studied in
the framework of gravitational decoupling. Finally, recent
results establish a bound on compactness due to quantum
effects [104] and the results for the compactness of gravi-
tational decoupled hybrid stellar configurations can be also
studied in the context of quantum corrections.
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