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Abstract In this work, we investigate the structure and
properties of neutron stars in R2 gravity using two approaches,
viz: the perturbative and non-perturbative methods. For this
purpose, we consider NS with several nucleonic, as well as
strange EoS generated in the framework of relativistic mean
field models. The strange particles in the core of NS are in the
form of � hyperons and quarks, in addition to the nucleons
and leptons. In both the approaches, we obtain mass–radius
relation for a wide range of values of the extra degree of
freedom parameter a arising due to modification of gravity
at large scales. The mass–radius relation of the chosen equa-
tion of states lies well within the observational limit in the
case of GR. We identify the changes in the property of neu-
tron star in the background of f (R) gravity, and compare the
results in both the methods. We also identify the best suited
method to study the modified gravity using the astrophysical
observations.

1 Introduction

Einstein’s General theory of Relativity (GR) has drastically
changed our understanding of space and time [1]. To this date,
it stands on a strong footing as it passed every single obser-
vational test we have ever thrown at it. Besides, impressive
number of phenomena that general relativity predicts - which
includes the presence of black hole, time dilation, gravi-
tational redshift, gravitational lensing, gravitational waves
have all been borne out of this century old classical theory
of gravity. Yet general relativity is not the ultimate theory
of gravity as it fails to explain primarily two main phenom-
ena of Universe. First, it fails to explain the present cosmic
acceleration without introducing ‘Dark Energy’, a gravity
defying mysterious component, which comprises 70% of the
Universe [2–5]. Second, it fails to explain the anomalous rota-
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tion curves of galaxies, the formation of large-scale structure
via gravitational instability. Within the framework of GR, the
solutions of these two problems demand existence of large
amount of invisible mysterious energy (dark energy) and mat-
ter (dark matter), respectively. Faced with these theoretical
issues the next natural consequence is to look for the modifi-
cation of the Einstein’ gravity at the large scale. Essentially,
it assumes gravity acts in novel ways in the largest and small-
est length scales compared to the well-tested middle length
scales. So far, GR has been only tested with high accuracy
within our own solar system. In addition, we know that, grav-
ity is modified at a short distance [6] and hence there is no
guarantee that it would not suffer any breakdown at large
scales where it is never directly verified. Large-scale modifi-
cations of gravity could arise in variety of ways – for example,
it might arise due to the extra dimensional effects or can be
inspired by fundamental theories. Alternatively, they could
also be motivated by phenomenological considerations such
as f (R) theories of gravity, where Einstein–Hilbert action
that describes GR is modified which in turn leads to the scalar
tensor theories [7]. Within these frameworks, the additional
scalar degree of freedom can be tuned to mimic any type
of viable cosmological evolution at any cosmological scales.
The simplest of these modifications are f (R) theories, where
f (R) has the higher order extensions of the Ricci scalar [8].

Though these modifications are well motivated and con-
sistent, the overabundance of ideas and possibilities has led
to the lack of one compelling theory which could actually
describe gravity. To be a viable model of gravity, any large-
scale modification of gravity must reconcile with the local
physics constraints by undergoing the solar system tests and
laboratory tests. Majority of these models have undergone
the solar system tests where the gravitational field is substan-
tially weak and has been subject to numerous experimental
tests, which confirms the accuracy of GR on the weak gravi-
tational background. However, any consistent theory of grav-
ity, classical or modified, should also be equally applicable
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to the strong gravity regime. The compact objects, such as
‘Neutron stars’ (NS) provide a good platform to study the
behaviour of strong gravity. They provide a powerful probe
of the GR in the strong-field regime and opens new windows
to explore and constrain the modified theories of gravity.

To study NS in f (R) theory of gravity, one can derive a set
of modified Tolman–Oppenheimer–Volkoff (TOV) equations
that describe a static, spherically symmetric mass distribution
under hydrostatic equilibrium. Due to the presence of higher
order curvature terms in the action, it is not trivial to derive
the TOV equations. There are two methods proposed to tackle
this problem: (a) perturbative approach [9–11,31–33] and (b)
non-perturbative approach [12,13].

In the perturbative approach, the modifications to the the-
ory are considered as higher-order corrections to the GR.
The effects of these corrections can be controlled by the free
parameter and can be tuned to obtain the required corre-
lation with observation. However, the interior and exterior
solutions are not obtained by solving the equation simulta-
neously. A Schwarzschild solution is considered as the vac-
uum solution. In some papers, negative values of a were
considered which leads to tachyonic instabilities. In the non-
perturbative approach, the interior and exterior equations
are solved simultaneously and self-consistently to derive the
TOV equations. Negative values of a are not considered. In
this paper, we use the above both approaches and examine the
properties of NS and compare them. We will also comment
on the impact of the free parameter in both approaches.

The highly degenerate interior of NS is described by the
equation of state (EoS), that relates between a set of ther-
modynamic variables such as pressure, energy density, den-
sity, temperature, etc. At present there is no single EoS
that an accurately model the NS core. Scientists do con-
strain the EoS by the nuclear physics experiments, such as
the binding energy, compressibility, effective mass of nucle-
ons, symmetry energy, and its slope. These observations are
limited to normal nuclear matter density whereas the mass
and radius data of the observed NS definitely conforms to
a dense core that surpasses normal nuclear matter density
(> ρ0). Constraints on NS masses and radii now come
from a variety of astrophysical observations including pulsar
timing, thermal and bursting X-ray sources, and the multi-
messenger gravitational waves events, specially GW170817,
the first observed binary neutron star merger. In addition to
the assumptions inherent to general relativity and causality
of the EoS, the pulsar timing measurements of the most mas-
sive pulsars can limit the NS maximum mass from the lower
end while the multimessenger GW events can convincingly
set an upper limit and also constrain radius through tidal
deformibility (�) estimations [14,15]. The measurements
of pulsar masses for PSR J1614-2230 (1.97 ± 0.04M�) in
2010 and PSR J0348+0432 (2.01 ± 0.04M�) in 2011 have
tremendous implications for constraining the NS EoS. One

of the most intriguing question one may ask is, if there exist
strange degrees of freedom (hyperons, anti-kaon conden-
sates, quarks) at the high-density core of the NS and whether
their presence can change the waveform coming from the
merger. Pauli exclusion principle strongly dictates the pres-
ence of strange hadrons in the high density baryonic matter.
Regardless of precise compositions, any additional degrees of
freedom results in a softer EoS, lowering the maximum mass
predicted by EoS that is constructed for neutron, protons,
and leptons only. The mass–radius data of PSR J0030+0451
published and recently updated by NASA’s Neutron star
Interior Composition Explorer (NICER) [16]. Researcher
have estimated its mass and radius around 1.3 − 1.4M� and
radius ∼ 12.7 − 13 kilometers [16,17]. M = 1.44+0.15

−0.14M�,

R=13.02+1.24
−1.06 km [17] and M = 1.34+0.15

−0.16M�,

R = 12.71+1.14
−1.19 km [16], to the 68.3% credibility interval,

provide an additional useful constraint on the NS EoS.In
this paper, we use the relativistic EoS which are compatible
with the recent mass–radius observations. Also, we consider
strangeness in the form of �-hyperons and quarks in addition
to the nuclear matter.

The paper is organised as follows. In section II, we review
the field equations of f (R) modified gravity model consid-
ering its perturbative and non-perturbative forms. We obtain
the modified TOV equations in both forms. In section III, we
present an overview of the EoSs used in this work. In sec-
tion IV, the modified TOV equations are solved numerically
for various EoSs, the two different forms of f (R), and vari-
ous values of the free parameter a. Finally, in the discussion
section, we comment on the results of numerical study and
on the significance of the scale of the free parameter a for
R2-modified gravity model, f (R) = R + aR2.

2 f (R) gravity and the modified TOV equations

NS are relativistic objects and their structure calculations are
carried out in a GR framework. The interior of a static star is
considered as a perfect fluid and its Schwarzschild metric is
represented by the line element:

ds2 = −e2φ(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2θdϑ2). (1)

Here m(r) is the gravitational mass inside radius r of a circle
about the origin. In hydrostatic equilibrium, the structure of a
spherically symmetric, static relativistic NS is determined by
the Tolman–Oppenheimer–Volkoff (TOV) equations. These
ordinary differential equations are:

dm

dr
= 4πρr2

dp

dr
= − (ρ + p)

dφ

dr
. (2)
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where ρ is energy density, p is pressure, both in the fluid
frame. Given a barotropic EoS, i.e., the EoS can be written
as ρ = ρ(nB) and p = p(nB), where nB is the baryon
number density in the fluid frame the stellar structure can be
computed by numerically integrating Eq. (2) from the centre
at r=0 out to the star surface at r=R. The boundary conditions
are p(r = R) = 0, p(r = 0) = pc(ρc), m(r = 0) =
0. M is the enclosed gravitational mass given by M(r) =
4π

∫ R
0 ρ(r)r2dr .

In the modified gravity basically two approaches are fol-
lowed: (A) Perturbative. (B) Non-perturbative.

2.1 Perturbative method

In the framework of perturbative approach, f (R) is expressed
as f (R) = R + ah(R) + O(a2), where h(R) is an arbitrary
function of R, a is the free parameter for perturbation, and
O(a2) denotes the possible higher-order corrections to a. In
this work, we have considered h(R) = R2, R being the Ricci
curvature scalar. The quantities from the EoS, i.e., pressure
and energy density are represented as zeroth order p(0) and
ρ(0), the corresponding calculated mass in GR is m(0). The
Ricci curvature scalar has to be evaluated at O(1) order, i.e.,

R = R(0) = 8π(ρ(0) − 3p(0)). (3)

The modified TOV equations in the perturbative method
are as follows:

dm

dr
= 4πρr2 − ar2

[

8πρ(0)R − R2

4

]

+a

[(
2r − 3m(0) − 4πρ(0)r3

) dR

dr

]

+a

[

r
(
r − 2m(0)

) d2R

dr2

]

(4)

r − 2m

ρ + p

dp

dr
= 4πr2 p + m

r

−ar2
[

8πp(0)R − R2

4

]

−2a
(
r − 3m(0) + 2πp(0)r3

)dR

dr
(5)

The full derivation of this formalism can be found in [10,
11,31–33].

As in GR, the modified TOV Eqs. (4), and (5), can be
solved numerically to obtain mass and radius of the NS.

We note that perturbation expansion parameter a intro-
duces a new scale into the theory. Further, by choosing a
realistic EoS, we compute mass–radius relation for various
values of a, thereby placing a bound on a for perturbative
f (R) gravity model: f (R) = R + aR2.

2.2 Non-perturbative method

In the non-perturbative method, we introduce a new field

	 = f ′(ψ) such that the scalar field ϕ =
√

3
2 ln	. We define

A2(ϕ) = 	−1(ϕ) = exp(−2ϕ/
√

3) and α(ϕ) = dlnA(ϕ)
dϕ

=
− 1√

3
. The full derivation of this formalism can be found in

[12,13]. The modified TOV equations in the non-perturbative
method are as follows:

dλ

dr
= e2λ

[

4πρr A4 + re−2λ

2

(
dϕ

dr

)2

+ r(1 − A2)2

16a
− (1 − e−2λ)

2r

]

(6)

dφ

dr
= e2λ

[

4πpr A4 + re−2λ

2

(
dϕ

dr

)2

− r(1 − A2)2

16a
+ (1 − e−2λ)

2r

]

(7)

d2ϕ

dr2 = e2λ

[
A2(1 − A2)

4
√

3a
− 4π A4(ρ − 3p)√

3

]

− dϕ

dr

(
dφ

dr
− dλ

dr
+ 2

r

)

(8)

dp

dr
= −(p + ρ)

[
dφ

dr
− 1√

3

(
dϕ

dr

)]

(9)

where φ and λ terms are taken from Eq. (1). In order to solve
the above systems of differential equations for the interior and
the exterior of the NS, we need EoS for the NS matter as well
as impose appropriate boundary conditions. The dimensions
of the parameter a is in terms of r2

g , where rg = 1.47664 km
corresponds to one solar mass.

3 Neutron star EoS

We describe the interior of a static NS, that is supported
against the gravity by degeneracy pressure of the con-
stituent fermions. The DD2 [18,19] and FSU [20] models are
employed to represent the hadronic matter. The Fermi energy
of the constituent fermions are quite high compared to the
interior temperature of the NS, a zero temperature EoS is suf-
ficient to represent the dense matter relevant to NS interior.
Both the EoS are constructed following the original Walecka
model [21] where the basic relativistic Lagrangian has the
effective interaction through contribution from σ , ω and ρ

mesons without any self-coupling terms. The equation of
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motions are solved within the widely used relativistic mean-
field (RMF) approach. The meson-baryon couplings of the
DD2 EoS are density-dependent, they take care of the high
density behaviour of the supra-nuclear dense matter. Also,
the thermodynamical consistency is maintained through the
rearrangement terms which arise due to density dependent
couplings. However, the model parameters are fitted to the
properties of finite nuclei at normal nuclear matter density
(n0 = 0.149 f m−3) [22]. Also, the experimental mass val-
ues for the nuclei are used. DD2 has reasonable nuclear mat-
ter parameters: the binding energy per nucleon av = 16.02
MeV, incompressibility K = 242.7 MeV, symmetry energy
31.67 MeV and its slope coefficient 55.03 MeV [19]. The
sub-saturation density part of the hadronic EOS is calculated
with the statistical model with excluded volume and interac-
tions of Hempel and Schaffner-Bielich [18]. The parameters
of FSUGarnet, on the other hand are determined by fitting
model predictions to experimental data, based on genuine
physical observables that can be either measured in the lab-
oratory or extracted from observation [20]. The EoS is stiff,
the resulting values for the symmetry energy and its slope
at saturation density are 30.92 ± 0.47 and 51.0 ± 1.5 MeV
respectively, and are well within the acceptable range. The
other parameters are K = 229.5 MeV, ρ0 = 0.153 f m−3,
av = 16.23 MeV. The FSU EoS uses the outer crust adopting
the Baym, Pethick and Sutherland (BPS) model [23], whereas
the DD2 EoS use the same Lagrangian for the low density
part and allows a smooth and thermodynamically consistent
transition to the high density part. A proper core-crust match-
ing is very crucial to avoid uncertainties in the macroscopic
properties of the stars as emphasised in Ref. [24]. Both the
nuclear model EoSs are compatible with available astrophys-
ical observational constraints. Firstly, they obey the maxi-
mum mass constraint from astrophysical observations [25–
27]. Also, they are consistent with the tidal deformability
constraint �1.4 � 800, inferred from the first analysis of
GW170817 event (for NS of mass M = 1.4M�) [14].

We consider additional strange components along with
the nucleons only EoSs. The presence of any strange parti-
cle is expected to soften the EoS and lower the maximum
mass of the NS, However, one can still manage to construct
an EoS with strange matter and achieve a maximum mass
within the observable limit. Here, we consider two sets of
strange particles i.e. � hyperons, and quarks in addition to
the nucleons. To include the lightest baryon � hyperons, an
additional φ-mesons are introduced for hyperonic interaction
in addition to σ , ω and ρ mesons of usual density depen-
dent relativistic field theoretical model [28]. The SU(6) rela-
tions are exploited to determine the hyperon-vector meson
couplings, and hypernuclei data to determine hyperon-scalar
meson couplings. Finally, for the quark phase in the NS inte-
rior, we adopt the widely-used phenomenological MIT bag
model [29]. The Bag constant B1/4 is taken as 150 MeV.

This parameter can be adjusted to make the EoS consistent
with the mass–radius observations [30]. The hadronic part is
described within FSUGarnet model.

4 Numerical model and results

We now present our results for both the methods described
in Sect. 2. We start with plotting the EoS, mentioned in the
previous Section and the corresponding structure profile in
GR.

In Fig. 1a, the pressure (p) vs energy density (ρ) is plotted
for the the nucleonic EoS HS(DD2) and FSUGarnet in solid
lines. The DD2 EoS is named BHB�φ as per the original
nomenclature when�s are added to it [28]. On the other hand,
FSUQ EoS has quarks on top of the nucleonic FSUGarnet
EoS [20]. The strange BHB�φ, and FSUQ EoSs are plotted
in dashed and dotted lines respectively. Of the two nucleonic
EoSs considered, HS(DD2) equation is visibly much stiffer
than FSU. The addition of hyperons/quarks to nucleonic EoS
has made them softer. Also, FSUQ is softer than BHB�φ.

In GR a static, spherically symmetric, non-rotating, hydro-
dynamic equilibrium configurations are obtained by solving
the TOV equations (Eq. 2) with the appropriate boundary
conditions for pressure and mass at the center and at the sur-
face for each EoS, with the integration performed from the
center to the surface of the NS. In Fig. 1b, the GR mass vs
radius for HS(DD2), BHB�φ, FSU, and FSUQ are plotted.
The maximum masses for each of them are listed in Table 1.
The portion of the curves, where dM

dρc
< 0 is gravitationally

unstable. The black horizontal line represents the maximum
mass constraint from the observation of 2M� and the grey
band represents the error of the measurement. It can be seen
that these four EoS satisfy the maximum mass constraint.
The addition of hyperons to HS(DD2) EoS reduced the max-
imum mass from 2.42M� to 2.09M�. The addition of quarks
to FSU EoS reduced the maximum mass from 2.06M� to
2.00M�. However, the radius corresponding to maximum
mass of all these EoS are within 11.4–11.9 km, which is well
within the NICER results.

In f (R), we are studying the comparison of perturbative
and non-perturbative approaches. In perturbative approach,
we derive the TOV equations based on the assumption that the
effects are just the higher order corrections to GR. The mod-
ified TOV equations thus obtained are solved numerically
with boundary conditions for pressure and mass at the center
and at the surface for each EoS. The Schwarzschild exte-
rior solution is imposed, which is akin to freezing the scalar
degree of freedom outside the star. In the non-perturbative
approach, the interior and exterior equations are solved self-
consistently and non-perturbatively.

In Fig. 2a, the mass vs radius for HS(DD2) EoS is plot-
ted both for perturbative approach (dashed lines) and non-
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(a) (b)

Fig. 1 a Pressure vs energy density curve of the EoS under study. b GR MR curves of EoS

Table 1 Maximum mass and corresponding radius of the NS for a = 0 (GR); a = 50 for non-perturbative (NP) f (R) and a = 0.2 for perturbative
(P) f (R)

EoS GR NP f(R) P f(R)

Mmax Radius Mmax Radius Mmax Radius
M� km M� km M� km

DD2 2.42 11.85 2.66 13.06 1.99 10.32

BHB�φ 2.09 11.51 2.34 12.53 1.99 9.91

FSU 2.07 11.66 2.31 12.59 1.67 10.11

FSUQ 2.00 11.44 2.24 12.41 1.61 9.91

perturbative approach (dotted lines). The maximum mass in
the perturbative approach decreases as the value of the free
parameter a increases. For values of a greater than 0.2, the
maximum mass reduces below the observational limit. The
maximum mass in the non-perturbative approach, however,
increases with increase in the parameter a with a marginal
increase in radius. In this approach, we have considered val-
ues of a up to 100 which is at the upper limit in sensitivity of
the current gravitational wave detectors. In Fig. 2b, the mass
vs radius for BHB�φ EoS is plotted both for perturbative
approach (dashed lines) and non-perturbative approach (dot-
ted lines). The maximum mass in the perturbative approach
decreases as we increase the free parameter a, and reaches
well below the observational limit even for a increase in a of
0.1. The maximum mass in the non-perturbative approach,
however, increases with increase in the parameter a and stays
above the observational constraint with a marginal increase
in radius.

In Fig. 3a, the mass vs radius for FSU EoS is plotted
both for both perturbative (dashed lines) and non-perturbative

(dotted lines) approaches. In the perturbative approach, we
see that as we increase value of the free parameter a, the
maximum mass decreases. For value of a = 0.1, the max-
imum mass reduces well below the observational limit. In
the non-perturbative approach, however, the maximum mass
stays above the observational constraint for all values of a up
to 100. In Fig. 3b, the mass vs radius for FSUQ EoS is plot-
ted both for perturbative (dashed lines) and non-perturbative
(dotted lines) approaches. The maximum mass in the pertur-
bative approach falls well below the observational limit even
for a increase in a of 0.1. The maximum mass in the non-
perturbative approach, however, increases with increase in
the parameter a and stays above the observational constraint
with a slight increase in radius of NS.

In Fig. 4a, the variation in compactness with respect to
change in a is plotted for the non-perturbative approach. We
see that the for any given a, the compactness of the NS is
correlated with the stiffness of the EoS, with the stiffest of
the EoS, HS(DD2), having the highest compactness and the
softest of the EoS, (FSUQ), having lowest compactness. The
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(a) (b)

Fig. 2 a MR curves of EoS DD2 obtained using both perturbative (dashed lines) and non-perturbative (dotted lines) methods. b MR curves of EoS
BHB�φ obtained using both perturbative (dashed lines) and non-perturbative (dotted lines) methods

(a) (b)

Fig. 3 a MR curves of EoS FSU obtained using both perturbative (dashed lines) and non-perturbative (dotted lines) methods. b MR curves of EoS
FSUQ obtained using both perturbative (dashed lines) and non-perturbative (dotted lines) methods
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(a) (b)

Fig. 4 a Compactness of NS for different EoS using non-perturbative method. b Compactness of NS for different EoS using perturbative method

(a) (b)

Fig. 5 a Compactness normalized with respect to the GR compactness for non-perturbative method. b Compactness normalized with respect to
the GR compactness for perturbative method

addition of hyperons and quarks to the nucleonic EoS reduces
the compactness of NS. Initially, as the value of a increases,
the compactness decreases and then increases steadily. In
Fig. 4b, compactness vs a is plotted for the perturbative
approach. We see that the stiffness of the EoS is correlated
with the compactness of the NS. However, the overall com-
pactness of the NS is less than that of the non-perturbative
approach and as the value of a increases, the compactness
decreases.

In Fig. 5a, the compactness of the NS obtained in f (R) is
normalized to the compactness of the NS obtained in GR. In
non-perturbative approach, we see that for a < 10 the com-
pactness reduces and then increases steadily. It is interesting
to note that softer EoS NS are more compact in f (R) com-
pared to GR. The addition of quarks/hyperons increases the
compactness with respect to GR as a increases. In the pertur-
bative approach, the compactness decreases as a increases.
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Fig. 6 |�max | as a function of a for all EoSs in f (R)

Compactness of softer EoS is less than the compactness of
stiffer EoS.

For all the cases considered here with respect to different
values of a in f (R) model for the various EoS, the maximum
allowed deviation from the GR prediction is constrained by
the requirement that the solutions hold their perturbative
validity. To be within the perturbative regime it is impor-
tant that the first order corrections to the metric are small.
This can be measured with

|�| =
∣
∣
∣
∣
A f (R)(r)

AGR(r)
− 1

∣
∣
∣
∣ (10)

where A f (R)(r) and AGR(r) are the rr component of the
metric defined for f (R) and GR, respectively. This quantity
is a function of radius of each star and depends on the EoS.
It has a maximum value near the core of the star, where the
density and the curvature is large. As we need the entire
solution to be perturbatively close to the GR, we evaluate
� at its maximum. The necessary condition for perturbative
validity is that the maximum ratio |�max | < 1.

Figure 6 shows |�max | as a function of parameter a for
the EoS in f (R) gravity model. This figure demonstrates
that NS in the f (R) gravity model can certainly be treated
perturbatively as long as the magnitude of a is in the range
0 < a < 0.2.

5 Conclusion

Neutron Stars are the densest stellar object where matter is in
extremely high gravitational field regimes, hence are impor-
tant tools to test alternative theories of gravity. The study
of NS is important in relativistic astrophysics as they are
key to understand the final stages of stellar evolution. NS
in the background of modified theories of gravity undergoes
correction in the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions of stellar hydrostatic equilibrium. This change has a

huge impact on the observational properties of the NS. The
uncertainty in the equation of state of matter at immensely
high-density core of NS along with the new parameters of
the modified theory of gravity under consideration provides
a completely new phenomenology for the typical predictions
of stable stellar structure models, such as maximum masses
and mass–radius relations. One can then tally these with the
astrophysical observations to constrain the modified gravity
model for its viability.

In this paper, we analyze the NS solutions with realistic
EoS following two approaches namely, perturbative and non-
perturbative f (R) gravity. For this, we choose EoSs, that are
generated in the framework of relativistic mean field models.
The NS core under these EOSs, contains the strange particles
in the form of � hyperons and quarks as well as nucleons
and leptons. With these EOSs, the mass–radius profiles for
static NSs, calculated in GR by solving the TOV equations
lie well within the observational limits.

Obtaining the TOV equations from the fourth order field
equation is difficult. Commonly two methods are used to
solve these equation in case of f (R) gravity, the pertu-
bative method, where f (R) theories are considered as a
perturbation to GR and the non pertubative method. We
use both these methods in R2 gravity and try to figure
out which method is more suited to investigate the strong
field regime. Our numerical integration using nuclear EoSs
(DD2, FSUGarnet) and strange EoSs(BHB�φ, FSUQ),
constraints the extra degree of freedom parameter a that arise
in in f (R) = R+aR2 gravity. It is to be noted that for a = 0
the maximum mass tends to the corresponding value in GR
for the EoS.

For the case of non-perturbative method, a wide range of
parameter a is considered. We notice that, for all a more mas-
sive the star, more is its compactness. Once the maximum
possible mass is attained, the star configuration becomes
unstable. The maximum mass of NS is always greater than
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in case of GR and is larger for large values of a. The radius
of the NS too increases marginally with increase in a. This
trend is same for both nuclear and strange EoSs, however,
the strange EoSs NS are more compact in f (R) compared
to GR. Although, for nonzero values of a the deviation from
GR can be large, they are still admissible, as they satisfy the
observational bound of 2M� limit. This is why the present
observations of the NS masses and radii can not alone put
constraints on the value of the parameter a. We can there-
fore conclude that f (R) theory of gravity can brings about
remarkable change in the properties of NS. Also, f (R) can
admit the EoSs which otherwise do not satisfy the observa-
tional limit of 2M� in GR.

The perturbative approach in f (R) = R + aR2 can be
used only when the range of a is 0 < a < 0.2. In this limit,
except for EoS DD2 none other EoSs considered satisfy the
observational limit of maximum mass (2M�). This approach
therefore doesn’t seem to work in the strong field limit and
does not satisfy the astrophysical observations of NS. The
main reason behind it is we do not consider the nonlinear
terms which might appear in the strong field regime with
repercussions on the structure and the properties of the Neu-
tron Stars. Many variable modified gravity models have been
studied in literature using the perturbative approach [31–33],
where negative values of the free parameter is considered
to fit the observations. However illustrative studies in Ref.
[34,35] show that a viable gravity with negative free param-
eter is not feasible due to presence of ghost and tachyonic
instabilities.
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