
Eur. Phys. J. C (2022) 82:13
https://doi.org/10.1140/epjc/s10052-021-09966-0

Regular Article - Theoretical Physics

Helmoltz problem for the Riccati equation from an analogous
Friedmann equation

Valerio Faraoni1,a

1 Department of Physics and Astronomy, Bishop’s University, 2600 College Street, Sherbrooke, QC J1M 1Z7, Canada

Received: 30 November 2021 / Accepted: 21 December 2021 / Published online: 7 January 2022
© The Author(s) 2022

Abstract We report a solution of the inverse Lagrangian
problem for the first order Riccati differential equation by
means of an analogy with the Friedmann equation of a
suitable Friedmann–Lemaître–Robertson–Walker universe
in general relativity. This analogous universe has fine-tuned
parameters and is unphysical, but it suggests a Lagrangian
and a Hamiltonian for the Riccati equation and for the many
physical systems described by it.

1 Introduction

The inverse variational problem, or Helmoltz problem, for
a set of ordinary differential equations consists of finding a
Lagrangian such that the associated Euler–Lagrange equa-
tions reproduce the given system. Although necessary and
sufficient conditions for solving the inverse variational prob-
lem were already given by Helmoltz in 1887 [1] they are
rather involved [2,3] and, in general, determining whether
they are satisfied and finding the explicit solution is cumber-
some and may require one to solve a large system of equations
(e.g., [4,5]).

An alternative, unconventional, approach to the Helmoltz
problem is provided by analogies: if a certain differential
equation is analogous to another one ruling an analogous
system which admits a known Lagrangian or Hamiltonian
formulation, the association of a Lagrangian with the origi-
nal equation is straightforward. Of course, this approach can
only be applied to systems analogous to other systems with
known Lagrangian or Hamiltonian formulations, that is, in
exceptional cases. Here we consider the first order non-linear
Riccati equation [13,14]

du(x)

dx
+ c0 u

2(x) + c1 = 0 , (1)
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where c0,1 are constants, which describes many physical sys-
tems including, e.g., falling raindrops [21,22] or charges in
constant electric field, avalanches [15], debris slides [16],
geomagnetic fields [17], and box models of ocean basins
[18]; the Riccati equation is also related to the Schrödinger,
the Ermakov-Pinney, and other equations of fundamental
physics [19,20]. A second order equation is naturally asso-
ciated with Eq. (1): its generalizations, including systems
of non-linear oscillators, and their Lagrangian formulations
have been studied, also in relation with integrability and
superintegrability [6–9]. Here, in a different context, we solve
the Helmoltz problem of Eq. (1) by means of an analo-
gous Friedmann equation. The latter describes a suitable uni-
verse in spatially homogeneous and isotropic (or Friedmann–
Lemaître–Robertson–Walker, in short FLRW) cosmology,
for which a Lagrangian is known. In order for the analogy
to hold, one must impose a fine-tuned relation between the
parameters of the analogous cosmos (equation of state param-
eter, energy density of the cosmic fluid, cosmological con-
stant, and curvature index), hence the analogous universe is
not physically relevant per se. However, this is not an issue
here since we are not attempting to describe the real universe,
but we are interested in solving the inverse Lagrangian prob-
lem for the Riccati equation (1).

The next section discusses in detail the analogy between
Riccati and Friedmann equations; Sect. 3 exploits this anal-
ogy to solve the Helmoltz problem for the Riccati equation,
while Sect. 4 contains some concluding remarks. We adopt
the notation of Ref. [10]: the metric signature is −+++, G
is Newton’s constant, and units are used in which the speed
of light is unity.
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2 A cosmological analogy for the Riccati equation

Spatially homogeneous and isotropic cosmologies are
described by the FLRW line element

ds2 = −dt2 + a2(t)

(
dr2

1 − Kr2 + r2d�2
(2)

)
(2)

in comoving polar coordinates (t, r, ϑ, ϕ), where d�2
(2) =

dϑ2 + sin2 ϑ dϕ2 is the line element on the unit 2-sphere, K
is the curvature index normalized to 0,±1, and a(t) is the
scale factor describing the expansion history of the universe
[10,11]. We assume that the latter is filled with a perfect fluid
with energy density ρ(t) and isotropic pressure P(t) related
by the barotropic, linear, and constant equation of state

P = wρ , w = const. (3)

The evolution of the scale factor a(t) and of ρ(t) and P(t)
is ruled by the Einstein-Friedmann equations [10,11]
(
ȧ

a

)2

= 8πG

3
ρ − K

a2 + �

3
, (4)

ä

a
= −4πG

3
(ρ + 3P) + �

3
, (5)

ρ̇ + 3H (P + ρ) = 0 , (6)

where an overdot denotes differentiation with respect to the
cosmic (or “comoving”) time t and � is the cosmological
constant.

It is well-known [12,30,31] that by combining the Fried-
mann equation (4) and the acceleration Eq. (5) written in
terms of the conformal time η (defined by dt ≡ adη), one
obtains a Riccati equation (1) (a similar coordinate trans-
formation has been known for the two-body problem since
the times of Euler [32–37]). Here we pose instead the ques-
tion of whether the Friedmann equation in cosmic time can
assume the Riccati form (1). The answer is affirmative, but
this only happens when the fluid has (phantom) equation of
state parameter w = −5/3, hyperbolic spatial sections with
K = −1, and (fine-tuned) cosmological constant � �= 0, or
when w = 1/3, K = −1, and � > 0. We derive this result
in the following.

Assuming the equation of state (3), the covariant conser-
vation Eq. (6) is integrated to [10,11]

ρ(a) = ρ0

a3(w+1)
, (7)

where ρ0 > 0 is a constant. Then the Friedmann equation (4)
is recast as

ȧ = ±
√

8πG

3
ρ0a−(3w+1) − K + �

3
a2 , (8)

where the argument of the square root is necessarily non-
negative if the Friedmann equation (4) is to admit solutions.
We now ask when this argument is a perfect square: there
are three possibilities for this to happen. The first case cor-
responds to K = −1 and w = −5/3 and allows one to write
the argument of the square root as

(√
8πGρ0

3
a2

)2

+ (
√

1)2 + �

3
a2 ; (9)

then we set �a2

3 = ±2
√

1
√

8πGρ0
3 a2, which is satisfied only

by tuning the cosmological constant to one of the two values

� = ±6

√
8πGρ0

3
(10)

and then

ȧ = ±
(√

8πGρ0

3
a2 ± 1

)
, (11)

where the two ± signs are independent, i.e., there are four
possible solutions here.

The second possibility appears for K = −1, w = 1/3,
and � > 0. In this case we identify

8πGρ0

3a2 + 1 + �

3
a2 =

(√
8πGρ0

3

1

a

)2

+
(√

�

3
a

)2

+2

√
8πGρ0�

9

=
(√

8πGρ0

3

1

a
+

√
�

3
a

)2

(12)

provided that

ρ0� = 9

32πG
, (13)

and then

ȧ = ±
(√

8πGρ0

3

1

a
+ 1

2

√
3

8πGρ0
a

)
. (14)

The third possibility occurs for K = +1, w = 1/3, and
� = 9

32πGρ0
> 0, which yields the identification

8πGρ0

3a2 − 1 + �

3
a2 =

(√
8πGρ0

3

1

a

)2

+
(√

�

3
a

)2

−2

√
8πGρ0�

9

=
(√

8πGρ0

3

1

a
−

√
�

3
a

)2

, (15)
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therefore,

ȧ = ±
(√

8πGρ0

3

1

a
− 1

2

√
3

8πGρ0
a

)
. (16)

These fine-tunings between � and the initial condition
on the energy density (ρ0) are clearly unphysical and the
discussion is purely of mathematical interest unless some
physical mechanism is found that achieves the tuning, which
seems unlikely.

The differential equations for the scale factor can be solved
directly by quadratures, but here we reduce them to Riccati
equations because our goal is to solve the Helmoltz problem
for the Riccati equation.

2.1 � = ±4
√

6πGρ0

In the first case, we have the equation

ȧ = ±
(√

8πG

3
ρ0 a

2 ± 1

)
, (17)

where the two ± signs are independent, i.e., there are four
equations. Consider first the two possibilities resulting from
the equation

ȧ = ±
√

8πG

3
ρ0 a

2 + 1 , (18)

which is of the Riccati form (1) with

c0 = ∓
√

8πG

3
ρ0 , (19)

c1 = −1 . (20)

This Riccati equation is solved by setting [13,14]

a(t) ≡ 1

c0

v̇

v
, (21)

which yields

v̈ + c0 c1v = 0 . (22)

We discuss separately the two possibilities corresponding to
upper and lower sign for c0.

2.1.1 Upper sign

By choosing the upper sign we have a positive (and fine-
tuned) cosmological constant �, c0 c1 > 0, and the solu-
tion of the resulting harmonic oscillator Eq. (22) is v(t) =
A sin

(√
c0 c1 t

) + B cos
(√

c0 c1 t
)

where A and B are inte-
gration constants, yielding

a(t) =
√
c1

c0

B sin
(√

c0 c1 t
) − A cos

(√
c0 c1 t

)
A sin

(√
c0 c1 t

) + B cos
(√

c0 c1 t
) , (23)

where a(t) must be non-negative. Although there are two
arbitrary integration constants A and B for Eq. (22), in prac-
tice there is only one arbitrary initial condition A/B or B/A,
corresponding to the fact that the equivalent Riccati equa-
tion is of first order. Special initial conditions give particular
solutions.

• A = 0, B �= 0
In this case the solution (23) becomes

a(t) =
(

3

8πGρ0

)1/4

tan

[(
8πGρ0

3

)1/4

t

]
(24)

in the range

0 ≤ t <
π

2

(
3

8πGρ0

)1/4

≡ t∗ , (25)

which represents a universe starting at a Big Bang and
ending in a Big Rip (a → +∞) at a finite future t∗. Here
we denote as “Big Bang” a zero of the scale factor a(t) →
0, but this word does not have the usual textbook meaning
in the sense that the derivative ȧ, the energy density ρ, and
the pressure P do not diverge at this “Big Bang”. Here the
singularity is “soft” in the sense that ȧ(0) is finite (but the
Hubble function H(t) ≡ ȧ/a still diverges). Likewise,
the Big Rip singularity is not an inverse power-law, as
it would happen if only the phantom fluid were present
[28,29], but has an unusual tangent-like divergence.

• A �= 0, B = 0
The solution (23) becomes

a(t) = −
(

3

8πGρ0

)1/4

cot

[(
8πGρ0

3

)1/4

t

]
(26)

in the range

t∗ < t < 2t∗ ; (27)

there are again a Big Bang (in the sense that a = 0 at
t = t∗) and a Big Rip where a → +∞ as t → 2t∗.

• A = B �= 0
In this case the solution (23) takes the form

a(t) = −
(

3

8πGρ0

)1/4 cos

[
2

(
8πGρ0

3

)1/4
t

]

1 + sin

[
2

(
8πGρ0

3

)1/4
t

] (28)

in the range

t∗
2

< t <
3t∗
2

. (29)
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Again, the solution begins in a “soft” Big Bang (in the
sense that a(t) → 0) and ends in a Big Rip singularity
a → +∞.

2.1.2 Lower sign

In this case � < 0, c0 > 0, c1 < 0, and v(t) = Ae
√
c0|c1| t +

Be−√
c0|c1| t (with A, B integration constants), yielding

a(t) =
√

|c1|
c0

Ae
√
c0|c1| t − Be−√

c0|c1| t

Ae
√
c0|c1| t + Be−√

c0|c1| t . (30)

Contrary to the previous situation (upper sign in Eq. (22)),
for A = 0, B �= 0 the scale factor is negative, therefore we
discard this possibility and we assume that A �= 0. Special
initial conditions include the following.

• A �= 0, B = 0
In this case the solution is the static universe with

a(t) =
√

|c1|
c0

=
(

3

8πGρ0

)1/4

≡ a∗ (31)

resulting from the balance of the negative cosmological
constant with the repulsive phantom fluid and the cur-
vature term in the Friedmann equation (4). The general
solution (30) with A �= 0 asymptotes to a∗ at late times
t → +∞, irrespective of the value of this integration
constant, therefore the solution a(t) ≡ a∗ is stable with
respect to homogeneous perturbations and is a late-time
attractor in the phase space of the solutions.

• A = B �= 0
With this choice of initial conditions, the scale factor is

a(t) =
√

|c1|
c0

tanh
(√|c1|c0 t

)

= a∗ tanh

[(
8πGρ0

3

)1/4

t

]
. (32)

This universe begins from a Big Bang (again, in the sense
a → 0) at t = 0 and evolves for an infinite time, with
the scale factor asymptoting to a∗ as t → +∞. In this
case a(t) is analogous to the speed of a raindrop falling
vertically from rest in a constant gravitational field and
reaching terminal speed [21,22], as a(t) 
 a∗ when t →
+∞.

• A = −B �= 0
In this case, the scale factor

a(t) =
(

3

8πGρ0

)1/4

coth

[(
8πGρ0

3

)1/4

t

]
(33)

corresponds to the unusual contracting branch of a pole of
the scale factor a(t), where the universe begins from infinite
size at t = 0 and decreases monotonically, asymptoting to the
constant value a∗ as t → +∞. Again, the static universe (31)
is a late-time attractor in phase space.

2.1.3 The remaining sign possibilities

In this case we have

ȧ = ±
(√

8πGρ0

3
a2 − 1

)
, (34)

which has the solution

a(t) = ±
(

3

8πGρ0

)1/4

arctan

[(
8πGρ0

3

)1/4

(t − t0)

]

(35)

where the range of t is chosen so that a(t) is non-negative.

2.2 ρ0� = 9/(32πG)

We have two possibilities corresponding to this fine-tuned
choice of ρ0. In the first case, Eq. (8) assumes the form

ȧ = ±
(√

A

a
+ a

2
√
A

)
, (36)

where A ≡ √
8πGρ0/3. This is is not a Riccati equation and

is readily integrated, giving the solution

a(±)(t) =
√

e
± (t−t0)√

A − 2A , (37)

where t0 is an integration constant.
In the second case, Eq. (8) becomes

ȧ = ±
(√

A

a
− a

2
√
A

)
, (38)

which admits the solutions

a(±)(t) =
√

2A − e
∓ (t−t0)√

A . (39)

3 Solving the inverse Lagrangian problem for the
Riccati equation

We only need one of the cosmological solutions to find a
Lagrangian for the Riccati equation (1). Based on the cos-
mological analogy illustrated in the previous section, focus
on the case in which the Riccati equation (1) is the same as
the Friedmann equation for a FLRW universe permeated by
a perfect phantom fluid with P = −5ρ/3, K = −1 = −c2

1,
and � = 6 c0 c1. This cosmic analogy inspires an uncon-
ventional solution of the inverse Lagrangian (or Helmoltz)
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problem of finding a Lagrangian and a Hamiltonian for the
Riccati equation (1). The standard Lagrangian for FLRW
cosmology1 [23–27]

L (a, ȧ) = aȧ2 + 8πG

3
a3ρ − Ka + �

3
a2 (40)

suggests to use

L1 (u, u̇) = uu̇2 + c2
0u

5 + c2
1u + 2 c0 c1u

2 (41)

as a Lagrangian for the Riccati equation. The corresponding
Hamiltonian is

H1 = u̇
∂L1

∂ u̇
− L1 = uu̇2 − c2

0u
5 − c2

1u − 2 c0 c1u
2 . (42)

Since this Hamiltonian does not depend explicitly on time it
is conserved, yielding the Beltrami identity H1 = const. To
actually reproduce the Riccati equation, one must choose this
constant to be zero, according to the fact that the dynamics of
general relativity is constrained [10]. In cosmology, this fact
is reflected in the fact that the Friedmann equation is a first
order constraint, not a full (second order) equation of motion,
and the vanishing of H1 enforces precisely this constraint
(“Hamiltonian constraint”) [10,11]. Setting H1 = 0 yields

u̇ = ±
(
c0 u

2 + c1

)
. (43)

Choosing the lower sign reproduces the Riccati equation (1),
while choosing the upper sign reproduces the same equation
with the exchange (c0, c1) → (−c0,−c1). Since c0,1 are
arbitrary non-zero coefficients, this sign change is immate-
rial.

In actual fact, one can use the simpler Lagrangian

L2 (u, u̇) = u̇2 + c2
0u

4 + c2
1 + 2 c0 c1u (44)

and the associated Hamiltonian

H2 = u̇2 − c2
0u

4 − c2
1 − 2 c0 c1u . (45)

Again, setting H2 = 0 reproduces the Riccati equation (1).
The equation H2 = 0 lends itself to a new analogy with

point particle mechanics;2 it can be seen as the energy conser-
vation equation for a particle of unit mass in one-dimensional
motion along the u-axis in the potential energy

V (u) = −c0 u
(c0

2
u3 + c1

)
(46)

1 The Lagrangian can also be obtained by using the lapse function (one
obtains the Friedmann equation by varying the action with respect to
the lapse function).
2 The Hamiltonian H1 lends itself to an analogy with the one-
dimensional motion of a particle with mass dependent on the position,
which is not as compelling, and this is the reason why we switch to the
Lagrangian L2 instead of using L1 in this mechanical analogy.

and with kinetic energy u̇2/2. This energy conservation equa-
tion is

u̇2

2
+ V (u) = E = c2

1

2
(47)

for the special value of the total mechanical energy E =
c2

1/2 > 0.
Consider first the case c0 c1 > 0: then the potential V (u)

has an absolute maximum

Vmax = 3 c2/3
0 c4/3

1

27/3 > 0 (48)

at umax = ∓
∣∣∣ c1

2 c0

∣∣∣1/3
< 0 (the sign of umax depends on

the signs of c0 and c1). The motion is always unbounded:
there are no turning points if Vmax ≤ E , corresponding to
c0
c1

≤ 4√
27

, and there are two turning points otherwise. The
same conclusion is reached for c0 c1 < 0.

4 Concluding remarks

The Riccati equation describes several physical systems, for
example the vertical speed v(t) of a falling raindrop subject
to gravity and friction quadratic in the velocity (e.g., [21,22]).
Let g be the constant acceleration of gravity and consider a
vertical axis pointing downwards, then Newton’s second law
is

m
dv

dt
= mg − α v2 , (49)

wherem is the mass of the drop and α is a friction coefficient.
The functionv(t) satisfies the Riccati equation v̇+ α

m v2−g =
0, and one would naively think that it is sufficient to write
down the Lagrangian for this particle to obtain the Lagrangian
for the Riccati equation, but including quadratic (or, in gen-
eral, non-linear) friction in the Lagrangian formalism is not so
easy [38]. Indeed, the Riccati Lagrangians L1 or L2 provided
by Eqs. (41) and (44) solve this problem of physical interest,
as well as that of the many physical systems described by
Eq. (1), even though the analogous universe is essentially of
no relevance for physical cosmology. The Friedmann equa-
tion describing this universe is formally a Riccati equation,
but this cosmos is unphysical because its parameters must
be tuned in order for the analogy to hold (the cases studied
are the only ones for which the Friedmann equation in cos-
mic time assumes the Riccati form (1)). This is not an issue
here since our goal is not to describe the real universe with a
Riccati equation (which is usually done by rewriting a com-
bination of the Friedmann equation and of the acceleration
equation in conformal time [12,30,31]), but rather to solve
the Helmoltz problem for Eq. (1). The explicit Lagrangian
and Hamiltonian for the Riccati equation are very simple, but
one could not guess them without the analogy.
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