
Eur. Phys. J. C (2022) 82:33
https://doi.org/10.1140/epjc/s10052-021-09965-1

Regular Article - Theoretical Physics

Magnetized Einstein–Maxwell-dilaton model under an external
electric field

Leila Shahkaramia

School of Physics, Damghan University, Damghan 41167-36716, Iran

Received: 11 November 2021 / Accepted: 21 December 2021 / Published online: 13 January 2022
© The Author(s) 2022

Abstract We employ an analytic solution of a magnetized
Einstein–Maxwell-dilaton gravity model whose parameters
have been determined so that its holographic dual has the
most similarity to the confining QCD-like theories. Ana-
lyzing the total potential of a quark–antiquark pair, we are
able to investigate the effect of an electric field on different
phases of the background which are the thermal AdS and
black hole phases. This is helpful for better understanding
of the confining character and the phases of the system. We
find out that the field theory dual to the black hole solution is
always deconfined, as expected. However, although the ther-
mal AdS phase generally describes the confining phase, for
quark pairs parallel to B (longitudinal case) with B > Bcritical

the response of the system mimics the deconfinement, since
there is no IR wall in the bulk and the critical field Es = 0,
as is the case for the deconfined phase. We moreover observe
that in the black hole phase with sufficiently small values of
μ and in the thermal AdS phase, for both longitudinal and
transverse cases, the magnetic field enhances the Schwinger
effect, which can be termed as the inverse magnetic cataly-
sis (IMC). This is deduced both from the decrease of criti-
cal electric fields and decreasing the height and width of the
total potential barrier the quarks are facing with. However, by
increasing μ to higher values, IMC turns into magnetic catal-
ysis, as also observed from the diagram of the Hawking–Page
phase transition temperature versus B for the background
geometry.

1 Introduction

The Schwinger effect [1] is a fascinating nonperturbative
phenomenon expected in Quantum Electrodynamics (QED),
where electron-positron pairs are created out of the vacuum
due to the presence of an external electric field. This effect is
not restricted to QED, but is a general feature of any quantum
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field theory equipped with a U (1) gauge field, e.g., quarks
and antiquarks have electric charges and hence can be pro-
duced as pairs from the QCD vacuum when the electric force
acting on the quarks overcomes the confining force between
them.

The first calculation in the context of the Schwinger effect
was done in the small field strength and small coupling
approximation in [1] resulted in an exponentially suppressed
expression for the production rate of particles, expressing
the phenomenon as a quantum tunneling process. This was
later generalized to the arbitrary coupling case [2], where one
can deduce a critical electric field strength, Ec, below which
the Schwinger effect occurs only through a tunneling pro-
cess, but as the electric field strength exceeds Ec, the pair of
charged particles are produced freely without any obstacle.
However, the existence of such a critical behavior was not
clarified by these calculations, since the value found for Ec

does not satisfy the weak-field condition.
Motivating by the existence of a similar critical behavior

in the presence of the electric field in the string theory [3,4],
people hired the AdS/CFT correspondence [5–9] and con-
firmed the critical behavior by a series of studies referred to
as the holographic Schwinger effect. Semenoff and Zarembo
[10] for the first time calculated the Schwinger pair produc-
tion by the use of AdS/CFT and found the critical electric
field. Following this work, the holographic Schwinger effect
has drawn a lot of interests where many different aspects
of the problem were put under study, by employing various
theories with different properties such as the existence of the
confinement, magnetic field, chemical potential, etc. Stud-
ies in the confining phase reveals the existence of a second
critical electric field, Es , which is the minimum value nec-
essary for the Schwinger effect to occur. There are two main
approaches for most of these investigations. One of them
[10–23] contains the interpretation of the Schwinger effect
using the DBI-action of probe branes in AdS/CFT, where
they analyze the total potential of a particle–antiparticle pair
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in the presence of electric fields using the rectangular Wil-
son loop and/or calculate the production rate by the use of the
temporal circular Wilson loop. The other approach [24–28]
concentrates on the flavor branes in holographic QCD, where
they investigate the instability imposed by the electric fields
by calculating the effective Lagrangian of the theory under
an electric field, holographically equivalent to the imaginary
part of the effective DBI-action of the flavor probe brane.

The importance of the study of the nonperturbative
Schwinger effect is twofolded. Although it has not been
observed in experiments since the minimum electric field
necessary for the effect to be detectable is out of reach of the
strongest lasers available, the Schwinger effect is a highly-
accepted realistic prediction of the quantum field theories,
promised to be accessible by the high-intensity lasers in near
future [29,30]. Hence, it deserves to be studied both theoret-
ically and experimentally, as a real phenomenon as it plays
an important role, e.g, in heavy ion collisions and magnetors
(dense neutron stars). On the other hand, the study of this
effect can be very informative for theoreticians because of its
nonperturbative nature which makes it useful for understand-
ing the vacuum structure and the critical behavior specially
in confining theories.

Although the holographic response of a confining field
theory has been extensively put under study using various
holographic theories, the studies with models that mimic the
desired QCD features are rare. Top-down models having the
important roles in these investigations are not quite appro-
priate in describing the real QCD. The phenomenological
bottom-up AdS/QCD models are better candidates since they
can be tuned to match many considerably experimental and
lattice QCD results, although they do not enjoy the validity
of the duality to the extent of the top-down models. There are
an advanced category of the bottom-up models with a better
match to real QCD, which are explicit solutions of the equa-
tions of motion, unlike the other ones and some of which also
enjoy a running coupling constant. As far as we know, the
use of such models is very rare and not enough to capture all
the aspects of the QCD-like theories in response to extreme
external electric fields (as examples of the deconfined phase,
see [23,31]).

In many important physical situations a magnetic field is
present along with an electric field, an example of which
is seen in the RHIC and LHC experiments where strong
electromagnetic fields are created at the very stage of the
heavy-ion collisions [32–35] and in spite of the rapid decay
of the magnetic field after the collision, it perhaps remains
sufficiently large till the quark–gluon plasma (QGP) forms
[36,37]. Therefore, the study of the behavior of a QCD-like
theory under the simultaneous influence of electric and mag-
netic fields can be very fruitful. Some examples of such inves-
tigations can be found in the literature [13,22,23,25,27],

which consider different aspects of the problem in different
holographic setups. In almost all of these studies, the back
reaction of the magnetic field on the background geometry is
neglected. As far as we know only in [23] the response of a
magnetized field theory in the deconfined phase to an exter-
nal electric field has been studied. Our aim in this paper is
to investigate the effect of an external constant electric field
on a magnetic field dependent confining gauge theory, dual
to the gravity solution obtained in [38]. They employed an
Einstein–Maxwell-dilaton (EMD) gravity system with two
Maxwell fields and obtained an exact solution of this system
via the potential reconstruction method (see e.g., [38–43] and
references therein), incorporating a magnetic field and a run-
ning dilaton. This complete solution, also equipped with the
finite temperature and the chemical potential, is expressed
in terms of a single scale function A(z) chosen at will and
some free parameters determined by comparing the holo-
graphic QCD results to the lattice QCD ones with vanishing
magnetic field and chemical potential. Following them we
also choose the simplest form for the scale function, i.e.,
the quadratic dependence to the holographic radial coordi-
nate. With the aid of this setup, we are able to investigate the
Schwinger effect in a confining QCD-like theory which has
the most similarity to the real QCD and influenced by a back-
ground magnetic field. We can also explore the effect of the
anisotropy induced by the magnetic field on the Schwinger
effect in different directions. Another motivation is that the
study of the critical behavior of the confining system when an
external electric field is applied could be helpful in revealing
the (de)confining property of the theory.

Next section is devoted to a short introduction of the model
and its solution, where we also briefly review the phase struc-
ture of the gravity side by studying the thermodynamics of the
system. Then, we apply an external constant electric field on
this model in Sect. 3 and study the response of the system by
analyzing the quark–antiquark potential. Finally, concluding
remarks and discussion are presented in the last section.

2 Einstein–Maxwell-dilaton system with a magnetic
field

In this section we present an introductory review of the back-
ground geometry of our interest, constructed in [38].

2.1 Background geometry

The action of the 5-dimensional EMD gravity system con-
taining two Maxwell fields in the Einstein frame is given by
[38]
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SEMD = − 1

16πG5

∫
d5x

√−g

[
R − f1(φ)

4
F2

(1)

− f2(φ)

4
F2

(2) − 1

2
∂μφ∂μφ − V (φ)

]
, (1)

where φ is the dilaton field with the potential V (φ). Also,
F(1)μν and F(2)μν are the field strength tensors, and f1(φ)

and f2(φ) are the kinetic gauge functions representing the
coupling between the gauge fields and the dilaton field. These
two gauge fields are employed to introduce the chemical
potential and a constant magnetic field to the dual theory.

Now we present the complete magnetized black brane
solution with running dilaton for the above system, obtained
in [38]. The metric in the string frame satisfying the equations
of motion with the desired boundary conditions reads

ds2
s = L2e2As

z2

[
−g(z)dt2 + dz2

g(z)
+ dx2‖

+eB
2z2

(
dx2⊥1 + dx2⊥2

)]
, (2)

where L is the AdS radius, B is the background magnetic field
in the x‖ direction and z is the holographic radial direction
running from z = 0 at the boundary to z = zh at the black
hole horizon. Moreover, choosing the warp factor of the met-
ric in the Einstein frame as e2A(z), As(z) = A(z) + 1√

6
φ(z).

This relation is found by using the dilaton transformation,

i.e., gsμν = e

√
2
3 φgμν in which g and gs denote the met-

ric in the Einstein frame and string frame, respectively. The
blackening function g(z) is as follows:

g(z) = 1 +
∫ z

0
du u3e−B2u2−3A(u)

(
K + μ̃2

2cL2 e
cu2

)
, (3)

where μ̃ = 2cμ

ecz
2
h−1

in which μ denotes the chemical potential

in the field theory side and

K = −1 + μ̃2

2cL2

∫ zh
0 du u3e−B2u2−3A(u)+cu2

∫ zh
0 du u3e−B2u2−3A(u)

, (4)

and the dilaton field is found as

φ(z) =
∫

dz
√

−2

z

(
3zA′′(z)−3zA′(z)2 + 6A′(z)+2B4z3+2B2z

)−φ0,

(5)

where φ0 is determined by demanding φ(z = 0) = 0. The
interested reader is referred to [38] to see the explicit forms
of the other functions appearing in the solution of the mag-
netized EMD system.

The above equations express an infinite family of black
hole solutions of the Einstein–Maxwell-dilaton gravity sys-
tem, Eq. (1), for different forms of the scale factor A(z). We
can have a complete self-consistent solution once the func-
tion A(z) is fixed. It is worth mentioning that the physical
behavior of the dual field theory is determined by the exact
form of the scale function A(z) and even a slight deformation
of the form factor can lead to considerable alterations in the
physical features of the boundary gauge theory. An example
is found in [44] where they show how the confining behavior
of the field theory alters by a small deformation of A(z).

Here, following [38] we choose a simple form for the scale
factor as A(z) = −az2. Therefore, the scalar field takes the
following analytic form:

φ(z) = 9a − B2

√
6a2 − B4

× log

(√
6a2z2 + 9a − B4z2 − B2 + z

√
6a2 − B4

√
9a − B2

)

+z
√

6a2z2 + 9a − B2
(
B2z2 + 1

)
. (6)

For our purposes there is no need to write the explicit forms of
the other functions. The dilaton field should be real-valued
in the whole z-interval and from Eq. (6) one simply learns
that this condition is satisfied only for B4 � B4

c = 6a2.
Fortunately, the same condition guarantees that the potential
of the dilaton is bounded from above. There are no other
restrictions for choosing the values of the parameters.

The solution presented here has two free parameters c
and a which are determined by matching to physical and
lattice QCD results at B = 0, as c = 1.16 GeV2 and a =
0.15 GeV2. Therefore, Bc � 0.61 GeV.

2.2 Phase structure of the background

Here, we present a short survey of the thermodynamics of the
introduced background and argue the possible phase transi-
tions as the parameters change.

The black hole temperature and entropy of the system can
be simply obtained as

T = − z3
he

−3A(zh)−B2z2
h

4π

(
K + μ̃2

2cL2 e
cz2

h

)
, (7)

and

S = eB
2z2

h+3A(zh)

4z3
h

. (8)

Now, using the first law of thermodynamics in grand canon-
ical ensemble, the free energy can be computed from dF =
−SdT as follows:
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Fig. 1 Left and right graphs show the Hawking temperature as a function of the horizon position and the free energy as a function of the temperature,
respectively, for various values of the magnetic field and μ = 0

Fig. 2 The temperature of the Hawking–Page phase transition versus
B for various values of μ

F =
∫ ∞

zh
S(zh)T

′(zh)dzh, (9)

where the prime sign refers to the derivative with respect to
zh .

To see the behavior of these quantities at vanishing chem-
ical potential, the graphs of the temperature versus the hori-
zon radius and the free energy versus the temperature have
been drawn in the left and right panels of Fig. 1, respectively.
Notice that in all the graphs, the values are in units GeV
which are not mentioned for the brevity of the notation. In
all the cases the temperature has a global minimum, Tmin,
at some horizon radius, zh,min. For temperatures below Tmin

there exists no black hole solution. However, for any value of
T > Tmin, we are faced with two black hole solutions. The
black hole solution with zh > zh,min is unstable, for which
the temperature increases as the black hole shrinks. To reveal
the stable/unstable nature of the solutions, one should study
the free energy of the background as a function of the tem-
perature (the right panel in Fig. 1). As can be seen, the free
energy graph intersects the horizontal axis at some value of

the temperature, THP, which is higher than Tmin as shown in
the zoomed box of the left panel in Fig. 1 for B = 0 as an
example. In fact, for a given set of parameters of the system,
i.e., μ and B, only the large black hole solutions relating to
zh < zh,HP are stable, for which the free energy is less than
the small black hole solutions. Therefore, a Hawking–Page
phase transition happens at THP, i.e., the stable solution for
T > THP is the large black hole solution with the horizon
zh < zh,HP and negative free energy and the stable solution
for T < THP is the thermal AdS solution with zh → ∞ and
zero free energy.

Figure 2 shows the behavior of the critical temperature THP

as the magnetic field enhances, for some values of μ. While
the decrease of THP with B is obviously observed for suffi-
ciently small values of the chemical potential, this behavior
is reversed for higher values of μ, that is by increasing μ the
inverse magnetic catalysis (IMC) turns into magnetic catal-
ysis (MC). This result is compatible with the observation of
IMC in the lattice simulations at vanishing μ and extends
it to finite but small values of μ which can also be checked
on the lattice. However, the MC seen at higher values of μ

is beyond the lattice calculations power. Nevertheless, this
result can be served as a confirmation of the observation of
[45] found using a holographic study with a different model
and in the chiral transition level.

It is worth noticing that the above mentioned behavior is
the common behavior of the solutions of our system regard-
less of the values of the physical parameters μ and B. Choos-
ing other values for the free parameters of the system (c and
a), and/or other forms for the scale factor A(z), however, may
lead to different solutions with different phase structures,
for example the large/small black hole phase transition/cross
over could appear, where a thermodynamically stable black
hole solution exists at any given temperature of the system
[41–43]. However, for the gravity of our interest one observes
that there always exists a Hawking–Page phase transition
where a large black hole solution suddenly turns to a thermal
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AdS solution, for any given values of μ and B, at least in the
permitted range. The interested reader is referred to [38,44]
to see the discussion of the phase transition in this setup in
detail.

In [38] they have also calculated the potential energy of
a quark–antiquark pair placed at a fixed distance from each
other in the field theory. This quantity can be read off from the
expectation value of a temporal Wilson loop on a rectangular
path with a spatial direction along the separation of the quark–
antiquark pair. It is well known that the potential of such a
pair is holographically translated to the extremized on-shell
Nambu–Goto (NG) action of an open string in the bulk, hang-
ing from the boundary. When the system is in the confined
phase, quark and antiquark are connected with an open string
in the U-shape configuration, in the gravity side. In the gauge
theory side the distance between the quark and antiquark can
be increased at will while they are bound to each other and
this can be interpreted by a linearly increasing potential. The
linear behavior of the quark potential at large distances indi-
cates the confinement of the theory. Therefore, the heavy
quark potential is one of the most important observables rel-
evant to the confinement. For bottom-up holographic theories
this is realized by the presence of a wall in the bulk. The tip of
an open string hung from the boundary cannot go beyond the
wall and as the distance between the quarks is increased, the
corresponding string just lay on the wall. Disappearance of
the dynamical wall by changing the parameters of the theory
is interpreted as transition to the deconfined phase.

On the other hand, it is commonly believed that the
Hawking–Page phase transition in the gravity side can be
translated as the confinement/deconfinement phase transition
of the QCD. In some holographic theories these two kinds of
phase transitions may not coincide. In the system of our inter-
est, by enhancing the value of the magnetic field to values
higher than Bc � 0.37 GeV the dynamical wall disappears,
while the background always exhibits the Hawking–Page
phase transition at least till we are working in the accepted
physical range of the magnetic field. In such cases it is cru-
cial to realize which one of these transitions corresponds to
the confinement/deconfinement phase transition in the gauge
theory side. In the following sections we investigate the crit-
ical behavior of the theory when subjected to an external
electric field. Beside being an important problem per se, this
critical behavior can also be considered as a key to identify
the confinement of the system.

3 Holographic Schwinger effect

In order to investigate the effect of a fixed external electric
field E on the system of our interest, we calculate the total
potential of a quark–antiquark pair under the influence of
E . The anisotropy induced by the presence of the magnetic

field enables us to analyze the Schwinger effect in anisotropic
cases. The study of the anisotropy influence is important in
realistic situations such as the anisotropic media produced
by heavy ion collisions in which there are two types of the
anisotropy caused by the collision itself and by the magnetic
field appeared during the collision. In our present setup we
are able to investigate the effect of the anisotropy caused by
the second source. From this point of view, in what follows,
we study the longitudinal (transverse) case where the electric
field and the q-q̄ pair are oriented parallel (perpendicular) to
the magnetic field direction.

The total potential can be obtained by adding the energy
of the interaction with the electric field to the sum of the
potential and static energy of the quark–antiquark pair. As
argued in the previous section, the energy of a q-q̄ pair of
infinite masses is holographically obtained through the on-
shell NG action of an open string with a world-sheet bounded
on the AdS boundary by a temporal rectangular Wilson loop
with dimensions l and T , where the time T is supposed to
be much larger than the fixed distance l between the q and q̄.
Following the prescription of [10], to avoid the suppression
of the pair production due to considering the quarks of infinite
masses, we put a probe D3-brane in an intermediate position
z0 of the bulk and the string endpoints are attached to this
brane instead of the AdS boundary.

Parametrizing the string coordinates as t = τ , x‖ = σ

(x⊥1 = σ ) for the longitudinal (transverse) case, z = z(σ ),
and keeping the other spatial coordinates fixed, the induced
metric on the string world-sheet is obtained as

ds2
s,ind = L2e2As (z)

z2

[
−g(z)dτ 2 +

(
f‖,⊥(z) + z′2

g(z)

)
dσ 2

]
, (10)

in which f‖ = 1 and f⊥ = eB
2z2

for σ = x‖ and σ = x⊥,
respectively. Then, by substituting the determinant of this
metric into the NG action and obtaining the conserved quan-
tity, the separation length between the quark and antiquark
is given by

l‖,⊥ = 2
∫ zc

z0

dz

√
f‖,⊥(zc)g(zc)e2As (zc)z2

f‖,⊥(z)g(z)e2As(z)z2
c

√
h‖,⊥(z)

, (11)

where zc = z(0) is the position of the tip of the open string
in the bulk, at which z′ = 0, and

h‖,⊥(z) = 1 − f‖,⊥(zc)g(zc)e4As (zc)z4

f‖,⊥(z)g(z)e4As(z)z4
c

. (12)

Moreover, the total potential is derived as follows:

V ‖,⊥
total(l‖,⊥) = 2TF L

2
∫ zc

z0

dz
e2As (z)

z2
√
h‖,⊥(z)

− E l‖,⊥, (13)
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where TF is the string tension.

3.1 Critical electric fields

Previous studies of the holographic Schwinger effect have
demonstrated that there exist two critical electric fields
labeled as Es and Ec, for a general field theory with grav-
ity dual. Below Es no pair production happens, even for the
massless particles, since the electric force cannot compen-
sate the confining force between particles. As the electric
field reaches this value, the charged particles begin producing
from the vacuum. This critical behavior is restricted to con-
fining phase and Es = 0 for a deconfined theory, i.e., at least
the zero-mass particle–antiparticle pairs can be produced by
applying any nonzero external electric field. Between Es and
Ec the Schwinger effect occurs through a quantum tunneling
process. Above Ec which depends on the mass of the parti-
cles, the pairs can be created catastrophically and the vacuum
would decay.

The value of Ec can be obtained from the DBI action of a
D3-brane located at z0 in the bulk, which is written as

SD3 = −TD3

∫
d4x

√
− det

(
gμν + Fμν

)
, (14)

where TD3 is the D3-brane tension. In our system this action
for the longitudinal and transverse cases is respectively given
by

S‖
D3 = −TD3

∫
d4x

L2e2As (z0)+B2z2
0

z2
0

×
√√√√

(
e2As (z0)L2

z2
0

)2

g(z0) − E2

T 2
F

, (15)

and

S⊥
D3 = −TD3

∫
d4x

L2e2As (z0)

z2
0

×
√√√√

(
e2As (z0)L2

z2
0

)2

g(z0)e2B2z2
0 − E2

T 2
F

eB
2z2

0 . (16)

The action is real provided E � Ec, where

E‖,⊥
c = TF

e2As (z0)L2

z2
0

√
g(z0) f‖,⊥(z0). (17)

This critical field can also be found using the total potential
relation (13). As one knows, Ec is the critical value of the
electric field, at which the total potential barrier vanishes,
i.e., at Ec the slope of the total potential tends to zero when
the separation length of q and q̄ approaches zero. To obtain

Ec by virtue of this condition, it is helpful to rewrite Eqs. (11)
and (13) in terms of dimensionless parameters y ≡ z

zc
and

b ≡ zc
z0

. Then, similar to [22] we calculate the derivative of
the total potential with respect to the separation length l by
the use of the chain rule and simply find its limit at l → 0 or
equivalently b → 1. The resulting Ec from this calculation
is the same as Eq. (17).

The other critical electric field, Es , which is only present
in the confined phase, can be obtained in a similar way using
the potential analysis. The potential barrier goes to infinity
for E � Es . In other words, at E = Es the total potential
goes to a constant value as the separation length l goes to
infinity or equivalently zc → zw, where zw is the position
of the IR cutoff in the bulk. Notice that in our case a closed
form for Es cannot be found using this condition, although it
can be found numerically. However, we can find Es through
comparison of our metric with the general one in [12] where
the formulae of the critical electric fields Ec and Es have
been obtained as universal properties of general confining
backgrounds. This leads to Eq. (17) for Ec and the formula
of Es is derived as

E‖,⊥
s = TF

e2As (zw)L2

z2
w

√
g(zw) f‖,⊥(zw), (18)

which is nonzero only when zw has a finite value. This rela-
tion goes to zero as zw goes to infinity, characterizing the
deconfined phase. For a holographic confined theory with
the IR cutoff zw, the radial position is restricted to the inter-
val [0, zw) (or [z0, zw) in the case of finite-mass quarks). As
explained in [22] in detail, the value of zw can be obtained
by using the positivity condition of the function h(z) pre-
sented in Eq. (12), which ensures that the distance in Eq. (11)
remains real in the whole integral range. In this way we find
the upper bound zw for zc, i.e., the maximum value that the
tip of an open string attached to the D3-brane can reach in
the bulk is zw. As illustrated there, in practice zw is found
simply by extremizing the function h(z).

Here we explain another interesting and easy way to find
the IR wall position. As we know the Schwinger effect does
not occur when the electric field is weaker than Es , i.e.,
the minimum value of the effective string tension which is
reached at the IR cut-off. Hence, for our purpose, we can use
the relation of Es as a function of z as

E‖,⊥
critical(z) = TF

e2As (z)L2

z2

√
g(z) f‖,⊥(z). (19)

It is easy to see that Ecritical(z0) = Ec and Ecritical(zw) = Es .
Since Es is the absolute minimum value of the above function
or the minimum value of the effective string tension, one
concludes that zw can be easily found via minimizing the
function Ecritical(z) with respect to z.
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Fig. 3 Left (right) graph shows the position of the IR wall (the critical electric field Es ) as a function of the magnitude of the magnetic field for
both cases with the electric field parallel and perpendicular to the magnetic field direction

Now, we investigate the critical behavior of our system
under the effect of the electric field E by depicting some
graphs, through which we can also study the possible phases
of our field theory. Notice that in all the graphs throughout
the paper the critical electric fields and the total potential are
rescaled with TF L2. As mentioned before, the study of the
thermodynamics shows two phases for our employed geom-
etry in the gravity side: the thermal AdS phase and the black
hole phase. We now pursue the confinement and deconfine-
ment phases of the field theory side considering the relations
of the critical electric fields in any of the above mentioned
phases.

In the thermal AdS phase where no black hole is present,
Eqs. (17) and (18) are both independent of the parameters μ

and zh . In this case g(z) = 1 meaning zh → ∞. Figure 3
depicts the critical electric field Es as a function of B, for both
longitudinal and transverse cases where the electric field and
q-q̄ pair are parallel and perpendicular to the magnetic field
direction, respectively. The position of the IR cutoff zw is
also presented in the left graph of this figure. As can be seen,
while in the transverse case (red curves), for each physically
accepted B, there exists an IR cutoff and consequently a finite
Es , in the longitudinal case (blue curves) Es suddenly jumps
to zero at Bcritical � 0.36118 GeV. This means that the quarks
do not feel the confining force in the direction of the magnetic
field with the magnitude greater than the mentioned value.
E‖
s decreases with B, however, E⊥

s increases for small values
of B and then start decreasing by further increase of B. The
behavior of Ec as a function of B is depicted in Fig. 4 for the
longitudinal and transverse cases, showing the decrease of
Ec with the increase of B.

We now turn to consider the critical electric fields in the
black hole phase. As expected, in this case there is no IR
wall in the bulk, reflecting the deconfinement in the field
theory side and consequently Es = 0. The critical electric
field Ec is displayed in the left panel of Fig. 5 for μ = 0, 1

Fig. 4 Critical electric field Ec as a function of the magnetic field for
the cases with parallel and perpendicular electric fields in the thermal
AdS phase

(solid and dashed lines, respectively) for both longitudinal
and transverse cases (blue and red lines, respectively) at
B = 0.55 GeV and T = 0.27 GeV. The right panel of
this figure shows Ec versus μ at B = 0.55 GeV and the tem-
perature is chosen to be T = 0.17 GeV and T = 0.27 GeV
for the solid and dashed lines, respectively. As can be seen,
both B and μ reduce the critical field Ec. Another important
result here is that while the increase of B induces anisotropy,
μ works in the opposite direction and reduces the effect of
the anisotropy induced by the presence of the magnetic field.
From the right panel we furthermore infer that the increase of
the temperature reduces the critical field Ec and also favors
the Schwinger effect, as expected. The higher the tempera-
ture, the less the chemical potential at which Ec vanishes and
the vacuum starts decaying.

We should stress an interesting point here. Although Ec

decreases by increasing the magnetic field for low values of
the chemical potential, the situation changes as μ increases
enough (Fig. 6). This result reminds us of the alternation of
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µ

Fig. 5 Left graph: Ec versus B in the longitudinal and transverse cases,
for μ = 0 (solid lines) and μ = 1 (dashed lines). Right graph: Ec versus
μ in the longitudinal and transverse cases at B = 0.55. All the graphs
are in the black hole phase of the gravity corresponding to the decon-

fined phase of the field theory with the temperature T = 0.27 for the
left graph, and T = 0.17 and T = 0.27 for the solid and dashed lines,
respectively, in the right graph

Fig. 6 Ec versus B in the longitudinal and transverse cases, for μ = 2.
These graphs are in the black hole phase of the gravity corresponding to
the deconfined phase of the field theory with the temperature T = 0.15

the inverse magnetic catalysis to magnetic catalysis by going
to the higher values of μ as seen in Fig. 2.

3.2 Potential analysis

We now turn our attention to the analysis of the total poten-
tial of q–q̄ under the influence of the external electric field,
evaluated in Eq. (13). We consider the Schwinger effect in
different phases of the background, separately.

Thermal AdS phase

Let us first focus on the separation length of the quark–
antiquark pair, given in Eq. (11) and analyze it in different
situations.

Before proceeding to explain the results, notice that in
some of the following graphs we use the parameter a. Here
a = z0

zc
is the inverse of the position that the tip of the open

string can reach in the bulk, rescaled with respect to z0. The
farthest point attainable by the turning point of the open string
is zc = zIR. In the thermal AdS phase for the cases where
there exists an IR wall cutting off the radial position at a finite
value zw, that is for a pair of quarks in a direction transverse
to the magnetic field (with physically acceptable value) and
a pair of quarks in the same direction as the magnetic field
with the value B � Bcritical, we have zIR = zw. However, for
the longitudinal case with B > Bcritical, where suddenly the
IR wall disappears, zIR → ∞. In the black hole phase of the
background, there always exists a horizon at a finite radial
position zh in both longitudinal and transverse cases and for
the whole range of the parameters μ and B, and consequently
zIR = zh .

Figure 7 shows the distance between the quark and anti-
quark as a function of the parameter a. In the left panel we
display the separation length for various values of the mag-
netic field, obeying the condition B � Bcritical. At B = 0,
the absence of a preferred direction results in the equality of
l‖ and l⊥, depicted by the solid blue line. Moreover, the other
solid (dashed) lines refer to the sample longitudinal (trans-
verse) cases. As can be simply observed, in all cases the tip of
the string cannot exceed a minimum value of a (amin = z0

zw
) at

which the distance between the quarks asymptotes the infin-
ity and the string lies on the IR wall, which is a characteristic
of confining theories. In the right panel, the blue (red) line
shows l⊥ (l‖) for a magnetic field greater than Bcritical. While
the behavior of l⊥ indicates the confinement, the existence of
a maximum value for l‖ confirms the deconfinement of the
field theory in the longitudinal direction, as expected accord-
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Fig. 7 The separation length of q–q̄ pair versus a for various values of the magnetic field in the thermal AdS phase

ing to the discussion of the previous section. In general, there
are three possible string configurations: two U–shape con-
nected configurations and one disconnected solution where
two open strings stretch from the UV boundary (in our case
the D3-brane at z0) to zIR which goes to infinity in the present
case. At B > Bcritical, for l‖ � lmax‖ the stable solution (with
lower energy) is the U–shape configuration for which the
turning point of the string is closer to the boundary (lower
zc or higher a), represented by the solid red line in the right
panel of Fig. 7. For l‖ > lmax‖ the favored solution is the dis-
connected one indicating the detachment of the q and q̄ in
the field theory side.

Let us now focus on the analysis of the total potential in
the thermal AdS phase of the background. As the plot in the
left panel of Fig. 8 shows for the total potential at B = 0 ver-
sus l, the potential barrier varies as the electric field varies. At
E = Es the potential barrier becomes constant as the distance
between the quarks tends to infinity. For higher values of the
electric field the barrier decreases and becomes finite so that
the quarks can be liberated through a tunneling process. At
E = Ec the barrier vanishes completely for quarks of mass
m. Therefore, for E > Ec the vacuum decays catastrophi-
cally. This figure confirms the previous results reported for
the Schwinger effect studied by the potential analysis. The
right graph of this figure compares the total potential without
magnetic field, and with magnetic field for longitudinal and
transverse cases at a sample electric field E = 4.6 GeV2.
The graphs of both longitudinal and transverse cases show a
decrease in the height and width of the potential barrier. Since
the Schwinger effect happens through a tunneling process,
this behavior means that the quarks can be freed more easily
in the presence of the magnetic field. However, Notice that
in the longitudinal case the quarks are faced with a smaller
barrier. Therefore, the application of the magnetic field in the
same direction as the electric field has more impact on the
enhancement of the Schwinger effect.

Black hole phase

Now we report the results for the black hole phase which
are illustrated briefly through Figs. 9, 10, 11 and 12. The left
and right panels of Fig. 9 depict respectively the separation
length of the quark and antiquark versus the parameter a and
the total potential versus l, at μ = 0, T = 0.27 GeV, and
for various values of the magnetic field with different ori-
entations with respect to the direction of the separation of
the quarks. As it is apparent from the left graph, the pair of
the quarks becomes free at a finite value of a or equivalently
a finite horizon position zh . Such a behavior confirms the
deconfining character of the field theory, as expected for the
black hole phase according to our previous discussion. We
can also see from this graph that the presence of the magnetic
field reduces the lmax at which the quarks become liberated,
regardless of its orientation. Hence, one expects that the pres-
ence of the magnetic field helps the quarks to be freed easier.

In the right panel of Fig. 9 we compare the total potential
for three cases, i.e., in the absence of the magnetic field B =
0, in the presence of the magnetic field with the electric field
parallel and perpendicular to the magnetic field direction.
In all these cases μ = 0 and T = 0.27 GeV, and we have
chosen the sample electric field E = 4.6 GeV2. As expected,
the presence of the magnetic field enhances the Schwinger
effect by reducing the potential barrier that the quarks are
faced with. This effect is more evident when the magnetic
and electric fields are applied at the same direction.

Figure 10 considers the effect of changing the chemical
potential while the magnetic field is turned off. According to
these graphs, the effect of the chemical potential is qualita-
tively similar to the magnetic field, i.e., it works in favor of
the pair production from the vacuum. To explore the effect
of simultaneous presence of μ and B, we can consider the
graph in Fig. 11 where we show the total potential as a func-
tion of l for μ = 0, 1 and B = 0, 0.3 GeV at T = 0.27 GeV.
The electric field is chosen to be E = 4.6 GeV2. In the
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Fig. 8 The Total potential versus the separation length in the thermal AdS phase. Left panel shows the potentials for various values of the electric
field at B = 0 and right panel considers the effect of the magnetic field on the potential at E = 4.6 in both longitudinal and transverse cases

Fig. 9 Left and right panel, respectively, depict the separation length of q-q̄ pair versus a and the total potential versus l with μ = 0, in the presence
and absence of the magnetic field, in the black hole phase at T = 0.27

Fig. 10 Left and right panel, respectively, show the separation length of q-q̄ pair versus a and the total potential versus l for various values of the
chemical potential in the black hole phase at T = 0.27 and B = 0
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1,B

Fig. 11 The total potential versus l for various values of the chemi-
cal potential in the black hole phase at T = 0.27. Solid and dashed
lines refer to longitudinal and transverse directions of the electric field,
respectively

0.9
2

Fig. 12 The total potential versus l in the black hole phase at T = 0.15
for a system with μ = 2. The electric field is chosen to be E = 0.9

presence of B, the cases with the electric field parallel and
perpendicular to the direction of B are displayed with solid
and dashed lines, respectively. One can see that both μ and
B simplify the creation of the real quarks from the vacuum,
as they both decrease the height and width of the potential
barrier. We moreover see that the chemical potential reduces
the anisotropy induced by the magnetic field, consistent with
the result found by the study of the critical electric field Ec.
From Fig. 12 we can deduce that at high enough values of μ

the increase of B would no longer leads to the decrease of
the height and width of the potential barrier. Instead, at these
values of μ the magnetic field reduces the Schwinger effect,
which is consistent with the result seen in Fig. 6 showing the
increase of the critical behavior Ec by the magnetic field at
high enough μ. In the next section we summarize our study
and present a discussion about the results.

4 Summary and conclusion

Most of the holographic Schwinger effect studies have been
done through top-down holographic models or bottom-up
theories which are not the solution of the Einstein equation
while choosing a self-contained model with the most similar-
ity to the real QCD is very important to obtain results compa-
rable with the experimental situations and/or gain knowledge
about the theory itself. To that purpose, we have employed a
bottom-up holographic model which is an analytic solution
of the equations of motion, derived and explained in [38] to
investigate the effect of a finite external electric field on a
confining QCD-like theory. This model called the magne-
tized EMD model contains the chemical potential, a running
dilaton and a background magnetic field responsible for the
anisotropy in different spatial directions. The scale factor of
the ansatz metric has been chosen to be quadratic with one
free parameter which along with other free parameters of
the gravity solution is determined by comparison with some
experimental and lattice simulation results. This choice leads
to an analytic solution with a Hawking–Page phase transition
for any given values of μ and B; there is a black hole solu-
tion in the gravity side corresponding to the field theory with
a temperature higher than THP and a thermal AdS solution
corresponding to lower temperatures. We have furthermore
realized that by increasing μ to sufficiently large values the
inverse magnetic catalysis observed for zero or small μ turns
into magnetic catalysis. By investigating the behavior of the
theory under the influence of an electric field we could elab-
orate more on the confinement of the field theory side at each
phase of the gravity solution.

Applying the total potential analysis, we have been able
to calculate the critical electric field Es , the threshold value
for starting the Schwinger effect, and Ec above which the
creation of the particles occurs catastrophically and without
any obstacle. We have examined the behavior of these critical
fields along with the separation length of the quark–antiquark
pair and the total potential in two phases of the background
gravity as the physical parameters change. Here we report
the main results.

It has been realized that in the thermal AdS background,
not for all the values of the magnetic field is there a criti-
cal electric field Es . Since the existence of a nonzero value
for Es is a characteristic of the confinement, the thermal
AdS background does not always correspond to the confin-
ing phase, and according to the calculations, the behavior of
the dual field theory, instead, mimics the deconfinement for
B > Bcritical, when the electric and magnetic fields are at the
same direction (the longitudinal case). This conclusion has
been also observed in the behavior of the separation length
as a function of the position of the string turning point. In
the thermal AdS background the critical electric fields, the
separation length and the total potential expression do not
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depend on μ, meaning that the value of μ does not affect the
pair production. However, we have learned that the magnetic
field facilitates the Schwinger effect, in most of the cases.
E‖
s decreases with B. E⊥

s first increases with B, then by
further increasing B it decreases. Ec for both longitudinal
and transverse directions decreases with B. Furthermore, the
enhancement of B reduces the height and width of the poten-
tial barrier the quarks are facing with, indicating more chance
for the production of the quarks. A similar effect of the mag-
netic field has been observed for zero or sufficiently small
values of the chemical potential, in the black hole phase. The
magnetic field works in favor of the Schwinger effect for both
longitudinal and transverse cases, which is resulted from both
Ec and the total potential barrier. The field theory dual to this
phase is always deconfined, and thereupon Es = 0. However,
for high enough values of μ the inverse magnetic catalysis
(decrease of Ec with B) turns into the magnetic catalysis.
We have moreover found that the chemical potential works
in favor of the Schwinger effect and also reduces the distinc-
tion between the graphs for the two directions, caused by the
anisotropy induced by B. Our calculations have also shown
that the effect of B on the production of the quarks aligned
parallel to B is more than those perpendicular to B. This
has been observed both in the critical electric fields and the
total potential barrier and in both phases. The results found
here for the effect of B on the Schwinger effect are at least
qualitatively consistent with the ones found in [23] for the
weak magnetic field solutions. Our calculations have shown
that one could find a higher chance of producing quarks by
applying magnetic fields in most of the cases, meaning that
the magnetic field can be used to make this elusive effect
more observable.

In [23] they consider a magnetized Einstein–Maxwell
model dual to the deconfined phase of a field theory with a
background constant magnetic field. Therefore, it takes into
account the back reaction of the magnetic field on the geome-
try as is the case with our theory. However, our findings have
considerable differences with those obtained in works such
as [13,14,22,27] where they study the Schwinger effect in
the presence of an external magnetic field with no back reac-
tion on the theory, using the analysis of the total potential
of a quark pair and/or the calculation of the production rate
from the circular Wilson loop, and the study of the stabil-
ity induced by the electromagnetic field using the imaginary
part of the effective DBI-action of a probe D7-brane in the
gravity side, respectively. The models used in these studies
are either top-down models or bottom-up models whose their
metric is not a solution of the equations of motion. In most of
the situations, e.g., when the electric and magnetic fields are
perpendicular to each other for both approaches and in the
parallel case for the potential approach, the magnetic field
does not enhance the chance of the pair production, unlike
the case we studied. An interesting direction worth follow-

ing in future works is to find the source of this contradiction,
which can be sought either from the back reaction effect of
the field or from the type of model used.

As we mentioned, by choosing a different function for the
scale factor of the ansatz metric, the phase structure of the
background could be different. Therefore, it could have inter-
esting consequences to compare the possible phases when
different scale factors are chosen, by which we can search
for the most similar holographic confining model to real QCD
and also study the response of such a theory to electromag-
netic fields.
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