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Abstract We consider the associated production of a vector
or Higgs boson with a jet in hadronic collisions. When the
transverse momentum qT of the boson-jet system is much
smaller than its invariant mass Q, the QCD perturbative
expansion is affected by large logarithmic terms that must be
resummed to all orders. We discuss the all-order resumma-
tion structure of the logarithmically enhanced contributions
up to next-to-leading logarithmic accuracy. Resummation is
performed at the differential level with respect to the kinemat-
ical variables of the boson-jet system. Soft-parton radiation
produces azimuthal correlations that are fully accounted for
in our framework. We present explicit analytical results for
the resummation coefficients up to next-to-leading order and
next-to-leading logarithmic accuracy, that include the exact
dependence on the jet radius.

The production of vector and Higgs bosons is a crucial pro-
cess at hadron colliders. It allows us to test the Standard
Model, to precisely extract its parameters and is also an
important background to new physics searches. When vector
or Higgs bosons are produced at high transverse momenta
they are accompanied by QCD jets. This kinematical region
is of particular importance for the LHC precision programme,
as the reduction in event rate can be compensated by a bet-
ter identification of the boson decay products, and by an
improved discrimination over the backgrounds.

Here we consider the situation in which the massive boson,
or more generally, the colourless system, is produced at large
transverse momentum and recoils against one or more QCD
jets. In particular, we are interested in the limit in which
the total transverse momentum of the boson and the lead-
ing jet system, qT , is much smaller than its invariant mass
Q. In this region, large logarithmic contributions due to
soft and collinear radiation occur that need be resummed
to all orders. In the case of the inclusive production of a
colourless system (i.e., when no additional high-pT jet is
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tagged) the resummation structure is fully understood [1–
3]. Indeed, transverse-momentum resummation for the pro-
duction of colourless high-mass systems has an all-order
universal (process-independent) structure [4–7]. This uni-
versality structure eventually originates from the fact that
the transverse momentum of the colourless system is pro-
duced in this case just by (soft and collinear) QCD radiation
from the initial-state colliding partons. When the colour-
less system is accompanied by a hard jet the resummation
is significantly more complicated, due to the fact that the
final state parton radiates. More generally, these compli-
cations arise in jet processes with three or more coloured
legs at leading order. These problems have been addressed
by several authors (see e.g. Refs. [8,9,11–14,16,19]). Soft-
gluon radiation is accounted for by a soft-anomalous dimen-
sion which leads to colour correlations between initial and
final state partons.1 Additionally, soft-parton radiation pro-
duces non-trivial azimuthal correlations [20]. The final-state
collinear singularity is regulated by the finite jet radius, and
the ensuing effects are described by a perturbatively com-
putable jet function. The situation is further complicated by
the existence of the so-called Non-Global Logarithms (NGL)
[21] which enter at next-to-leading logarithmic (NLL) accu-
racy. Despite these difficulties, the problem of transverse-
momentum resummation for processes that feature final-state
jets is theoretically interesting, and may lead to developments
also for fixed-order calculations, as it happened for the pro-
duction of colourless final states [22] and for heavy-quark
production [23,24].

In this Letter we present new results on transverse-
momentum resummation for boson plus jet production. We
discuss the resummation formula that controls the loga-
rithmically enhanced contributions up to NLL accuracy, by
accounting for the full kinematical dependence of the boson-

1 In the case of boson plus jet production, since the process features
just three hard partons at Born level, the colour algebra can actually be
worked out in closed form.
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jet system. We then present the explicit expressions of the
resummation coefficients up to next-to-leading order (NLO)
accuracy.

We consider the inclusive hard-scattering process

h1(P1) + h2(P2) → B(pB) + J (pJ ) + X, (1)

where the collision of the two hadrons h1 and h2 with
momenta P1 and P2 produces the boson B with momentum
pB accompanied by a hard jet J with momentum pJ and X
denotes the accompanying final-state radiation (which may
lead to additional softer jets). Unless otherwise stated, in the
following we will consider anti-kT jets [25] and we will use
the standard definition of the distance of two particles i and
j in rapidity y and azimuth φ

�R2
i j = (yi − y j )

2 + (φi − φ j )
2. (2)

We assume the boson B to be on shell (i.e. p2
B = m2

B) and
we denote with mJ , yJ and φJ the jet mass, rapidity and
azimuthal angle. When the invariant mass mJ of the jet is
integrated over, the kinematics of the boson-jet system is
specified by its total momentum q = pB + pJ and two
additional independent variables that we denote by �. For
instance, we can use � = {yJ , φJ }. The four vector q is
fully specified by its invariant mass Q2, rapidity y and trans-
verse momentum qT. At leading order (LO) in QCD per-
turbation theory the cross section is simply proportional to
δ(2)(qT), due to momentum conservation in the transverse
plane. At this order the process can proceed via the partonic
sub-processes

q(p1) + q̄(p2) → B(pB) + g(p3),

q(q̄)(p1) + g(p2) → B(pB) + q(q̄)(p3),

g(p1) + g(p2) → B(pB) + g(p3) (3)

where pi = zi Pi and zi (i = 1, 2) are the momentum frac-
tions carried by the incoming partons.

Beyond LO the cross section develops singular contribu-
tions as qT → 0 that need to be resummed to all orders. Up to
NLL accuracy the resummation formula for the differential
cross section reads

dσ

d2qTdQ2dy d�

= Q2

2P1 · P2

∑

(a,c)∈I
[dσ (0)

ac ]
∫

d2b
(2π)2 e

ib·qTSac(Q, b)

×
∑

a1,a2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
[H�C1C2]ac;a1a2

× fa1/h1(x1/z1, b
2
0/b

2) fa2/h2(x2/z2, b
2
0/b

2)U f
NGL, (4)

where b0 = 2−γE (γE = 0.5772... is the Euler number) and
the kinematic variables x1 and x2 are defined as

x1 = Q√
2P1 · P2

e+y x2 = Q√
2P1 · P2

e−y . (5)

The factor denoted by
[
dσ

(0)
ac

]
is the LO cross section

[
dσ (0)

ac

]
= α

p
S (Q2)

dσ̂
(0)
ac→B+jet(p1, p2; pB, p3)

Q2 d�
, (6)

and the possible flavor combinations (a, c) are I =
[(q, q̄), (q̄, q), (q, g), (g, q), (g, q̄), (q̄, g)] for a vector
boson, B = V , andI = [(g, g), (q, q̄), (q̄, q), (q, g), (g, q),

(g, q̄), (q̄, g)] for the case of a Higgs boson B = H . At LO,
the kinematics is given in terms of the Mandelstam invariants
s = 2p1 · p2, t = −2p1 · p3 and u = −2p2 · p3 and we
can choose � = {t, u}. In Eq. (6), p refers to the appropriate
power of the strong coupling: p = 1 for B = V and p = 3
for B = H .

The structure of the resummation formula in Eq. (4)
closely resembles that for the case of heavy-quark produc-
tion [26], which is characterized by a more involved colour
structure given the presence of four coloured particles at Born
level. While having a simpler colour structure, the resumma-
tion formula for processes with an identified jet introduces
new complications such as a dependence on the jet definition
and the presence of NGL [21], which in Eq. (4) is encap-
sulated in the factor U f

NGL
2 In the following we detail all

the required perturbative ingredients in Eq. (4), namely the
Sudakov form factor Sac, the [H�C1C2] coefficient and the
NGL.

We organise the computation in such a way that the
Sudakov Form factor is the same as for colour-singlet trans-
verse momentum resummation in the formalism of Refs.
[3,6], namely

Sac(Q, b) = exp

{
−
∫ Q2

b2
0/b2

dq2

q2

[
Aac(αS(q2)) ln

Q2

q2

+Bac(αS(q2))

]}
(7)

where

Aac(αS(q2)) = 1

2
[Aa(αS(q2)) + Ac(αS(q2))],

Bac(αS(q2)) = 1

2
[Ba(αS(q2)) + Bc(αS(q2))], (8)

and the coefficients Aa, Ba coincide with the customary coef-
ficients appearing in the case of the production of a colourless
system.

2 In the case of the kT [27,28] and Cambridge–Achen [29,30] algorithm
additional logarithmic contributions due to the clustering are expected
[31].
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Besides the NGL contribution which will be discussed
later, the additional contributions beyond the colourless case
are embodied in the expression [(H�)C1C2], and more pre-
cisely in the factor �. This contribution starts at NLL accu-
racy and describes QCD radiation of soft non-collinear par-
tons from the underlying Born subprocess, emitted at wide
angles with respect to the direction of the initial-state partons.
In the case of production of a colourless system the factor �

is absent (i.e. � = 1).
The explicit expression of the symbolic factor

[(H�)C1C2] is

[(H�)C1C2]cc̄;a1a2

= (H�)cc̄ Cc a1(z1;αS(b2
0/b

2)) Cc̄ a2(z2;αS(b2
0/b

2))

(9)

for the qq̄ annihilation channel (c = q, q̄),

[(H�)C1C2]cg;a1a2
= (H�)cg;μν

Cc a1(z1; p1, p2,b;αS(b2
0/b

2))

Cμν
g a2

(z2; p1, p2,b;αS(b2
0/b

2)) (10)

for the quark-gluon channel (c = q, q̄), and

[(H�)C1C2]gg;a1a2
= (H�)gg;μ1 ν1,μ2 ν2

Cμ1 ν1
g a1

(z1; p1, p2,b;αS(b2
0/b

2))

Cμ2 ν2
g a2

(z2; p1, p2,b;αS(b2
0/b

2)) (11)

for the gluon fusion channel. The functions Cca and Cμν
ga are

the universal collinear function of colour-singlet transverse
momentum resummation [6,32].

The factors (H�) in Eqs. (9)–(11) depend on b, Q and
on the kinematical variables of the underlying Born partonic
process (this dependence is not explicitly denoted in Eqs. (9)
and (11)). Furthermore, they contain the dependence on the
jet definition.

As in Ref [26], the shorthand notation (H�) refers to the
contribution of the factors H and �, which contains a non-
trivial dependence on the colour structure of the underlying
partonic process. Explicitly, we have

(H�)cc̄

= 〈M̃cc̄→B+jet | � |M̃cc̄→B+jet 〉
α
p
S (Q2) |M(0)

cc̄→B+jet(p1, p2; pB , p3)|2
, (c = q, q̄), (12)

(H�)cg;μν

= 〈M̃ν′
cg→B+jet | � |M̃μ′

cg→B+jet 〉 dμ′μ dν′ν

α
p
S (Q2) |M(0)

cg→B+jet(p1, p2; pB , p3)|2
(c = q, q̄),

(13)

(H�)gg;μ1 ν1,μ2 ν2

= 〈M̃ν′
1ν′

2
gg→B+jet | � |M̃μ′

1μ′
2

gg→B+jet 〉 dμ′
1μ1

dν′
1ν1

dμ′
2μ2

dν′
2ν2

α
p
S (Q2) |M(0)

gg→B+jet(p1, p2; pB , p3)|2
(14)

where we use the colour space formalism of Ref. [33] and
we denote by |M 〉 the colour vector representing the scatter-
ing amplitude in colour space. The ‘hard-virtual’ amplitude
M̃cd→B+jet is directly related to the infrared-finite part of
the all-order (virtual) scattering amplitudeMcd→B+jet of the

underlying partonic process, andM(0)
cd→B+jet is the tree-level

(LO) contribution. |M(0)
cd→B+jet|2 is the squared amplitude

summed over the colours and spins of all involved partons.
The relation between M and M̃ is given below in Eq. (16).
Finally, d μν = d μν(p1, p2) is the gluon polarization tensor,

d μν(p1, p2) = − gμν + pμ
1 pν

2 + pμ
2 pν

1

p1 · p2
, (15)

which projects onto the Lorentz indices in the transverse
plane. The soft-parton factor � depends on colour matrices,
and it acts as a colour space operator in Eqs. (12)–(14). We
note that by introducing a colour space operator H via the
definition α

p
S |M(0)|2 H = |M̃ 〉 〈M̃| the shorthand nota-

tion (H�) is equivalent to (H�) = Tr [H�], where ‘Tr’
denotes the colour space trace of the colour operator H�.
As in colour-singlet production, all the process dependence
is contained in the hard factor H, which is independent of the
impact parameter b. The auxiliary virtual amplitude defined
in Eqs. (12)–(14) is related to the all-order renormalised vir-
tual amplitude by the following factorization formula

∣∣M̃cd→B+jet
〉 =
[
1 − Ĩcd→B+jet

] ∣∣Mcd→B+jet
〉
, (16)

where the subtraction operator Ĩcd→B+jet can be computed
order-by-order in perturbation theory

Ĩcd→B+jet = αS

2π
Ĩ(1)
cd→B+jet +

∑

n>1

( αS

2π

)n
Ĩ(n)
cd→B+jet. (17)

The soft-parton factor � depends on the impact parameter
b, on Q, on the kinematics of the Born partonic subprocess
and on the jet radius R. To explicitly denote the kinematical
dependence, we introduce the azimuthal angle φJb between
the jet and the direction of b. The all-order structure of � is

�(b, Q; t/u, φJb)

= V†(b, Q, t/u, R)

D(αS(b2
0/b

2), t/u, R;φJb)V(b, Q, t/u, R). (18)

The evolution operator V, which resums logarithmic contri-
butions αn

S(Q2) lnk Q2b2 with k ≤ n which originate from
wide-angle soft radiation, is obtained through the anti path-
ordered exponential of the integral of the soft anomalous
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dimension �

V(b, Q, t/u, R)

= Pq exp

{
−
∫ Q2

b2
0/b2

dq2

q2 �(αS(q2), t/u, R)

}
. (19)

The anomalous dimension � and the colour operatorD admit
the perturbative expansions

�(αS, t/u, R)

= αS

π
�(1)(t/u, R) +

∑

n>1

(αS

π

)n
�(n)(t/u, R) (20)

and

D(αS, t/u, R;φJb)

= 1 + αS

π
D(1)(R;φJb)

+
∑

n>1

(αS

π

)n
D(n)(t/u, R;φJb). (21)

In particular, we observe that �, and hence V, do not depend
on azimuthal angles. In contrast, the operator D carries the
dependence on φJb and it is defined such that it fulfills
the all-order relation 〈D〉 = 1, see Ref. [26], where 〈 · 〉
denotes the azimuthal average. In particular, this implies that〈
D(n)

〉 = 0 for n ≥ 1. By performing the inverse Fourier
transformation from b space to qT space, the qT cross sec-
tion acquires an explicit dependence on φJ −φq (where φq is
the azimuthal angle of qT). This means that the resummation
formula (4) leads to qT -dependent azimuthal correlations of
the produced B+ jet system at small-qT as observed in Refs.
[16,19,20].

The starting point for the computation of the first order
resummation coefficients is the NLO eikonal current associ-
ated to the emission of a soft gluon off the two initial state
partons, carrying momenta p1 and p2, and the final-state par-
ton, carrying momentum p3,

J2({pi }, k; R)

=
(
T1 · T2

p1 · p2

p1 · k p2 · k + T1 · T3
p1 · p3

p1 · k p3 · k
+T2 · T3

p2 · p3

p2 · k p3 · k
)


(R2
3k > R2), (22)

where k is the momentum of the radiated gluon. The theta
function removes the contribution of soft radiation clustered
within the jet cone, thereby acting as a physical regulator
of the final-state collinear singularity. We observe that the
full eikonal current in Eq. (22) includes, besides the genuine
contribution of soft radiation at wide angles we are interested
in, also soft and collinear radiation from the initial state par-
tons. The latter contributions are already accounted for in
our resummation formalism. Therefore, we introduce a sub-
tracted current J2

sub by removing the contribution from initial-
state radiation which, by definition, extends to the full phase

space:

J2
sub({pi }, k; R)

= J2 −
∑

i=1,2

(
−T2

i
p1 · p2

pi · k (p1 + p2) · k
)

×
(

(R2

3k > R2) + 
(R2
3k < R2)

)

=
[
T1 · T3

(
p1 · p3

p1 · k p3 · k − p1 · p2

p1 · k (p1 + p2) · k
)


(R2
3k > R2)

+ T2
1

p1 · p2

p1 · k (p1 + p2) · k
(R2
3k < R2)

]
+
[

1 ↔ 2

]
.

(23)

The resulting subtracted current J2
sub is regular in all collinear

limits and has a simple interpretation: it captures the soft wide
angle emission between initial-final state dipole configura-
tions. The term on the third line, proportional to the initial
state Casimir, is the leftover of the subtracted contributions in
the region inside the jet cone, and therefore far away from the
initial state collinear regions where it is enhanced. Moreover,
since it does not develop a collinear singularity in the prox-
imity of the jet direction, this contribution smoothly vanishes
when the jet radius R approaches zero and hence is power
suppressed in R.

On the other hand, the eikonal term on the second line,
proportional to T1 · T3, may develop a final-state collinear
divergence which is regularised by the jet radius, thus lead-
ing to a logarithmically enhanced behavior in R. This occurs
for soft configurations that are both wide-angle and collinear
to the jet direction. We can further single out these contri-
butions from the pure soft wide-angle emission by rewriting
the subtracted current as follows

J2
sub({pi }, k; R)

=
[
T1 · T3

(
p1 · p3

p1 · k p3 · k − p1 · p2

p1 · k (p1
p2·p3
p1·p3

+ p2) · k
+ p1 · p2

p1 · k (p1
p2·p3
p1·p3

+ p2) · k

− p1 · p2

p1 · k (p1 + p2) · k
)


(R2
3k > R2)

+ T2
1

p1 · p2

p1 · k (p1 + p2) · k
(R2
3k < R2)

]
+
[

1 ↔ 2

]

=
[
T1 · T3

(
p1 · p3

p1 · k p3 · k
− p1 · p2

p1 · k (p1
p2·p3
p1·p3

+ p2) · k
)


(R2
3k > R2)

+ T2
1

(
p1 · p2

p1 · k (p1 + p2) · k
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− p1 · p2

p1 · k (p1
p2·p3
p1·p3

+ p2) · k
)

+ T2
1

p1 · p2

p1 · k (p1
p2·p3
p1·p3

+ p2) · k
(R2
3k < R2)

]

+
[

1 ↔ 2

]
(24)

where we have used colour conservation,
∑

i=1,3 Ti = 0. In
the last expression of Eq. (24), the first term is due to soft-
gluon radiation collinear to the jet direction, while the second
term corresponds to soft wide-angle initial-state radiation
which is insensitive to the jet, and is integrated in the whole
phase space. The third term is a remainder in the region inside
the jet cone that is power suppressed in the R → 0 limit.

It follows that the resummation coefficients in b space can
be directly extracted from the following dimensionally reg-
ularised integral in d = 4 − 2ε dimensions of the subtracted
current

J̃sub(b, t/u; R)

= μ2ε

∫
ddkδ+(k2)eib·k⊥J2

sub({pi }, k; R)

= 1

4

(
μ2b2

4

)ε

�(1 − ε)22−2ε

(
4

ε
�(1)(t/u; R)

−2R(1)(b̂, t/u; R) + . . .
)

, (25)

where b and b̂ are the modulus and direction of the impact
parameter vectorb, respectively, and the dots stand for higher
order terms in the epsilon expansion which contribute beyond
the NLL level.

The calculation of the above integral is rather involved
when retaining the exact dependence on the jet radius. The
result can be expressed in terms of one-fold integrals whose
expressions are given in the Appendix. In the following we
present the structure of the resummation coefficients in terms
of such integrals and we report their explicit expressions in
the small-R limit, which is useful for the comparison with
available results in the literature.

The first order coefficient of the anomalous dimension �

reads

�(1)(t/u, R)

= 1

4

[
(T1 · T3 + T2 · T3)Aout(R)

+
(
T2

1 − T2
2

)
ln

t

u
− 1

2

(
T2

1 + T2
2

)
R2
]

= −1

4

[
(T1 · T3 + T2 · T3) ln

1

R2 −
(
T2

1 − T2
2

)
ln

t

u

]

+O(R), (26)

where the function Aout(R) is given in Eq. (47). The first
order coefficient D(1), which is responsible for the qT -

dependent azimuthal correlations at small qT , is obtained
as

D(1) = R(1) −
〈
R(1)

〉
. (27)

Its explicit expression reads

D(1)(R, φJb)

= −1

2
(T1 · T3 + T2 · T3)

[Bout(φJb, R) − Bout(R)
]

− 1

2

(
T2

1 + T2
2

)
R2 [Bin(φJb, R) − Bin(R)

]

= −1

2
(T1 · T3 + T2 · T3)

[
− 1

2
ln2
(

4 cos2 φJb

R2

)
+ π2

6

+ 1

2
ln2 R2 + iπ sign

(π

2
− φJb

)

× ln

(
4 cos2 φJb

R2

)]
+ O(R), (28)

where the functions Bin(φJb, R), Bout(φJb, R), Bin(R) and
Bout(R) are given in Eqs. (57), (60), (45) and (47), respec-
tively.

Finally, we give the expression for the first order coeffi-
cient of the subtraction operator in Eq. (17)

Ĩ(1)
cd→B+jet

(
ε,

Q2

μ2
R

; t/u, R

)

= −1

2

(
Q2

μ2
R

)−ε {(
1

ε2 + iπ
1

ε
− π2

12

)
(T2

1 + T2
2) + 2

ε
γc

−4

ε
�(1)(t/u, R) + F(1)(R) + J (1)

f (ε, R)

}
, (29)

where f is the flavour (quark or gluon) of the final state
jet and is determined by the initial state partons combina-
tion cd. The additional coefficient F(1), which is an operator
in colour space, originates from the subtracted soft current
in Eqs. (24)–(25) upon averaging over the azimuth, and it
explicitly reads3

F(1)(R) = −2
〈
R(1)

〉
(R) = −(T1 · T3 + T2 · T3)Bout(R)

− (T2
1 + T2

2)R
2 Bin(R)

= (T1 · T3 + T2 · T3)
1

2
ln2 R2 + O(R). (30)

Configurations characterised by two unresolved final state
collinear partons, which are clustered into a single jet, do

3 We note that our result differs by a constant π2/6 term from that of
Ref. [34], which is obtained by using a small virtuality to regularise
the final-state collinear singularity. In our work we do not rely on this
approximation, and therefore this term is absent, in agreement with what
also observed in Ref. [18] in the context of deep inelastic scattering.

123



27 Page 6 of 10 Eur. Phys. J. C (2022) 82 :27

not contribute to logarithmically enhanced terms at small
qT , so they are not included in the singular part of the cross
section that is resummed to all-orders. On the other hand,
they enter the constant term at qT = 0. Their contribution
to Eq. (29) is encoded in the 1-loop jet function J (1)

f (ε, R)

( f = q, g), which is the same for the whole family of kT jet
algorithms. We observe that a calculation of the jet function
which retains the exact dependence on the jet radius goes
beyond the collinear approximation. At the NLO level, it
is certainly possible to perform a numerical evaluation by
using a suitable scheme for the subtraction of the collinear
singularities. This is beyond the scope of this work. For the
sake of completeness, we provide the expression of the 1-loop
jet functions neglecting power corrections in the jet radius R
[35,36]

J (1)
g (ε, R)

= CA

ε2 + 1

ε

(
2β0 + CA ln

Q2

p2
T,J R

2

)

+ 1

2
CA ln2 Q2

p2
T,J R

2
+ 2β0 ln

Q2

p2
T,J R

2

+ CA

(
67

9
− 2

3
π2
)

− 23

18
nF (31a)

J (1)
q (ε, R)

= CF

{
1

ε2 + 1

ε

(
3

2
+ ln

Q2

p2
T,J R

2

)
+ 1

2
ln2 Q2

p2
T,J R

2

+ 3

2
ln

Q2

p2
T,J R

2
+ 13

2
− 2

3
π2
}
, (31b)

where pT,J is the jet transverse momentum (with sp2
T,J =

ut), β0 = (11CA − 2nF )/12 and nF is the number of active
flavours. The results in Eqs. (31a) and (31b) can be easily
obtained by integrating the d-dimensional Altarelli–Parisi
splitting functions over the collinear phase space.

We note that, with the expressions in Eqs. (31a) and (31b),
strictly speaking, the cancellation of the poles in Eq. (29) is
achieved only in the small-R limit. Conversely, the computa-
tion of the exact R dependence in �(1)(t/u, R) allows us to
obtain the exact coefficient of the 1/ε pole in the jet function.
We also note that the dependence on ln2 R cancels out, as it
should, in Eq. (29).

Finally we discuss the contribution encoded in the U f
NGL.

Recently, a significant effort has been devoted to the under-
standing of NGL (see e.g. Refs. [37–40]). In our case the
NGL contribution starts to contribute at α2

SL
2 relatively to

the Born level, and the factor U f
NGL can be parametrised as

U f
NGL ∼ exp

{
− CAC f λ

2 f (λ, R)
}

λ = αS(Q2)

2π
ln

Qb

b0

(32)

where the function f (λ, R) is not known in closed form and,
moreover, depends on the jet algorithm.4 In the case of cone-
based and anti-kT algorithms we can write [16,31]

f (λ, R) f0(R) + O(λ) with f0(R) = π2

3
+ O(R2)

(33)

where the coefficient π2/3 is the same appearing in Das-
gupta and Salam’s result [21]. In the case of the kT [27,28]
and Cambridge–Achen [29,30] algorithm the coefficient is
different [31].

In this Letter we have discussed transverse-momentum
resummation for the production of a vector or Higgs boson
accompanied by a hard jet in hadronic collisions. Barring
the effects of NGL, the structure of the resummation for-
mula can be organised in a similar way as for the case of
heavy-quark production. Collinear radiation in the jet cone
produces a perturbatively computable jet function while soft
wide-angle radiation leads to additional effects that can be
evaluated by integrating a suitably subtracted soft current. We
have computed the NLO resummation coefficients by keep-
ing the exact dependence of the jet radius R, and retaining
the azimuthal dependence. Our results are relevant to carry
out transverse-momentum resummation for a wide class of
processes in which a colourless system is accompanyed by a
hard jet. Moreover, they may have an impact in extensions of
the qT -subtraction formalism [22] to this class of processes.
More details on our computation and additional results will
be presented elsewhere.
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A Explicit evaluation of b-space integrals

In this Appendix we report the explicit results for the soft
integrals in b-space required for the calculation of the resum-
mation coefficients �(1) and D(1) as reported in Eqs. (26) and
(28). We parametrize the kinematics for the generic LO pro-
cess

a(p1) + c(p2) → B(pB) + d(p3),

in the partonic centre of mass frame as

p1 =
√
s

2
(1, 0, 0, 1) ,

p2 =
√
s

2
(1, 0, 0,−1) ,

p3 = pT (cosh y, 1, 0, sinh y) . (34)

In order to carry out the integral in Eq. (25) there are three
independent eikonal kernels to be considered, which can be
read from Eq. (24):

Sout
13,2({pi }, k; R)

=
⎛

⎝ pi · p3

p1 · kp3 · k − p1 · p2

p1 · k
(
p1

p2·p3
p1·p3

+ p2

)
· k

⎞

⎠
(R3k > R2),

(35a)

Sin
12,3({pi }, k; R)

= p1 · p2

p1 · k
(
p1

p2·p3
p1·p3

+ p2

)
· k


(R3k < R2), (35b)

Skin
12,3({pi }, k)
= p1 · p2

p1 · k(p1 + p2) · k − p1 · p2

p1 · k
(
p1

p2·p3
p1·p3

+ p2

)
· k

, (35c)

where k is the momentum of the soft gluon, which we
parametrize as

k = kT (cosh η, cos ϕ, sin ϕ, sinh η).

All the other kernels are obtained by applying the replace-
ment rule 1 ↔ 2. The soft integrals we need to compute have
the general structure

Iκ(b, φ3b) = μ4−d
∫

ddkδ+(k2)eib·k⊥ Sκ({pi }, k; R). (36)

with Sκ ∈ {Sout
13,2, S

in
12,3, S

kin
12,3} and μ the mass scale intro-

duced by the dimensional regularisation. In general, the inte-
grals Iκ depend on the impact parameter vector b, which we
parametrize in terms of its modulus b and the angle φ3b that

b forms with the projection of p3 onto the transverse plane.
In the following, we first present azimutally averaged results
and then those with the full angular dependence.

A.1 Azimutally averaged integrals

We separate the longitudinal component of the soft momen-
tum k and express it in terms of the rapidity difference
x = η − y

Iκ = μ4−d

2

∫
dd−2k⊥

eib·k⊥

k2⊥

∫ +∞

−∞
dx(k2⊥Sκ)

= (μb)4−d

2

∫
dd−2k⊥

ei b̂·k⊥

k2⊥

∫ +∞

−∞
dx Ŝk, (37)

where in the last step we rescale k⊥ by the modulus of the
impact parameter b, and we denote with k2⊥ the norm of k⊥.
We notice that the quantity Ŝκ ≡ (k2⊥Sκ) is independent of k⊥
while it generally carries a dependence on the angle between
k⊥ and p3.

We take the d-dimensional azimuthal average over the
impact parameter

〈Iκ 〉 = (μb)4−d

2

∫
dd−2k⊥k−2

⊥
∫ +∞

−∞
dx Ŝκ

〈
ei b̂·k⊥

〉
(38)

where
〈
ei b̂·k⊥

〉
= 1

B
( 1

2 , 1
2 − ε

)
∫ π

0
dφ sin−2ε φeik⊥ cos φ

= 2−ε�(1 − ε)kε⊥ J−ε(k⊥). (39)

The resulting integral has a simpler structure

〈Iκ 〉 = (μb)2ε2−1−ε�(1 − ε)1−2ε

×
∫ +∞

0
dk⊥k−1−ε

⊥ J−ε(k⊥)

×
∫ π

0
dϕ sin−2ε ϕ

∫ +∞

−∞
dx Ŝκ (x, ϕ; R),

(40)

where ϕ is the angle between k⊥ and p3, and n =
2πn/2/�(n/2) is the solid angle in n dimensions. We can
evaluate the integral in k⊥ as the soft kernel Ŝκ does not
depend on this variable, leading to the following master for-
mula for the averaged soft integrals

〈Iκ 〉 = N
(

−1

ε

)
B−1

(
1

2
,

1

2
− ε

)∫ π

0
dϕ sin−2ε

×ϕ

∫ +∞

−∞
dx Ŝκ (x, ϕ; R) (41)

where the normalization factor is

N = 1

4

(
μb

2

)2ε

�(1 − ε)22−2ε . (42)
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In the following, we list our results for the relevant soft
kernels. For the integrals which depend on the jet radius R,
we give the exact result in terms of a 1-fold integral and its
expansion in the small-R limit.

• unconstrained kernel Sκ = Skin
12,3

〈I12〉 = − 〈I21〉
= N

(
−1

ε

)
B−1

(
1

2
,

1

2
− ε

)∫ π

0
dϕ sin−2ε

× ϕ

∫ +∞

−∞
dx (tanh(x + y) − tanh x)

= N
(

−1

ε

)
2y = N

(
1

ε
ln

t

u

)
; (43)

• inside the jet, Sκ = Sin
12,3

〈
I in
12,3

〉
=
〈
I in
21,3

〉

= N
(

−1

ε

)
B−1

(
1

2
,

1

2
− ε

)∫ π

0
dϕ sin−2ε ϕ

×
∫ +∞

−∞
dx (1 + tanh x) 
(R2 − x2 − ϕ2)

= N
(

−1

ε

)
B−1

(
1

2
,

1

2
− ε

)
2R2

∫ 1

0
dϕ sin−2ε(Rϕ)

√
1 − φ2

= N R2
[
− 1

2ε
+ Bin(R) + O(ε)

]

= N R2
[
− 1

2ε
+
(

ln R − 1

2
− R2

24
+ O(R4)

)
+ O(ε)

]
,

(44)

where the function Bin(R) is given by

Bin(R) = − 1

π

∫ 1

0
dϕ2

√
1 − ϕ2[−2 ln(2 sin Rϕ)]. (45)

We notice that
〈
I in
12,3

〉
is a pure power correction in the

jet radius R;
• outside the jet, Sκ = Sout

13,2

〈
I out
13,2

〉 = 〈
I out
23,1

〉

= N
(

−1

ε

)
B−1

(
1

2
,

1

2
− ε

)∫ π

0
dϕ sin−2ε ϕ cos ϕ

×
∫ +∞

−∞
dx

1 + tanh x

cosh x − cos ϕ

(x2 + ϕ2 − R2)

= N
(Aout(R)

ε
+ Bout(R) + O(ε)

]

= N
[(

ln R2 − R2

4
+ R4

288
+ O(R6)

)
1

ε

+
(

−2 ln2 R + R2

2
ln R + R2

12
+ O(R4)

)
+ O(ε)

]

(46)

where the functions Aout(R) and Bout(R) are given by
the one-fold integrals

Aout(R) = − 1

π

∫ π

0
dϕg(ϕ; R)

Bout(R) = − 1

π

∫ π

0
dϕ[−2 ln(2 sin ϕ)]g(ϕ; R) (47)

expressed in terms of the auxiliary function

gout(ϕ, R)

= cos ϕ

∫ +∞

−∞
dx

1 + tanh x

cosh x − cos ϕ

(x2 + ϕ2 − R2)

= 2 cot ϕ

{

(ϕ − R)(π − ϕ)

+
(R − ϕ)
(
−ϕ + 2 arctan

[
tan
(ϕ

2

)

× coth

(
1

2

√
R2 − ϕ2

)])}
. (48)

We note that the function gout(ϕ, R) is the same control-
ling the azimuthal dependence in jet production in ep
scattering [19].

A.2 Azimuthal dependence

We start from Eq. (37) and observe that, in general, there
are two preferred directions in the k⊥-space, associated to
b and the projection of p3 onto the k⊥-space, which break
the rotational invariance of the integrand function. It is then
convenient to decompose the vector k⊥ as

k⊥ = k1ê1 + k2ê2 + k⊥ (49)

where ê1,2 is an orthonormal basis in the 2-dimensional vec-
tor space spanned by the two preferred directions and k⊥ lives
in the remaining orthogonal space. Choosing the vector basis
such that p̂3 · k⊥ = k1 and b̂ · k⊥ = k1 cos φ3b + k2 sin φ3b,
we get

Iκ = (μb)4−d

2

∫
dd−4k⊥

∫ +∞

−∞
dk1

∫ +∞

−∞

×dk2
ei(k1 cos φ3b+k2 sin φ3b)

k2⊥

∫ +∞

−∞
dx Ŝκ

= (μb)2ε

2
−2ε

∫ π

0
dϕ sin−2ε ϕ

∫ +∞

−∞
dx Ŝκ

∫ π

0
dϑ sin−1−2ε ϑ

123
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×
∫ ∞

0
dk⊥k−1−2ε

⊥ eik⊥(cos φ3b cos ϕ+sin φ3b sin ϕ cos ϑ) (50)

where in the last step we introduced the spherical coordinates

k1 = k⊥ cos ϕ, k2 = k⊥ sin ϕ cos ϑ,

k⊥ = k⊥ sin ϕ sin ϑ. (51)

Using the following result for the integral over k⊥ and ϑ
∫ π

0
dϑ sin−1−2ε ϑ

∫ ∞

0
dk⊥

k−1−2ε
⊥ eik⊥(cos φ3b cos ϕ+sin φ3b sin ϕ cos ϑ)

= �(−2ε)B(−ε,−ε)2−1−2εe−iπε

cosε(φ3b − ϕ) cosε(φ3b + ϕ)

(52)

we obtain the master formula for the soft integrals

Iκ = N
(

−e−iπε

πε

)∫ π

0
dϕ sin−2ε ϕ cosε(φ3b − ϕ)

× cosε(φ3b + ϕ)

∫ +∞

−∞
dx Ŝκ . (53)

• unconstrained kernel Sκ = S12

I12 = −I21

= N ln
u

t

(
− e−iπε

πε

)∫ π

0
dϕ sin−2ε ϕ cosε(φ3b − ϕ)

× cosε(φ3b + ϕ) = N 1

ε
ln

t

u
, (54)

where we have used the result
∫ π

0
dϕ sin−2ε ϕ cosε(φ3b − ϕ) cosε(φ3b + ϕ)=πeiπε

(55)

Note that since the kernel does not depend on ϕ, one
could have immediately obtained I12 = −I21 = 〈I12〉.

• inside the jet, Sκ = Sin
12

I in
12 = I in

21

= N R2
[
− 1

2ε
+ B12(φ3b; R) + O(ε)

]

= N R2
[
− 1

2ε
+
(

− ln
cos φ3b

R
− 1

2
− ln 2

+ +i
π

2
+ O(R2)

)
O(ε)

]
,

(56)

with

Bin(φ3b; R)

= − 1

π

∫ 1

0
dϕ2

√
1 − ϕ2

(
ln[cos(φ3b − Rϕ)]

+ ln[cos(φ3b + Rϕ)] − 2 ln[sin(Rϕ)] − iπ
)

(57)

• outside the jet, Sκ = Sout
13,2

I out
13,2 = I out

23

= N
[Aout(φ3b; R)

ε
+ Bout(φ3b; R) + O(ε)

]

= N
{[

ln R2 − R2

4
+ R4

288
+ O(R6)

]
1

ε

+
[
−1

2
ln2
(

4 cos2 φ3b

R2

)

+π2

6
+ iπsign

(π

2
− φ3b

)

ln

(
4 cos2 φ3b

R2

)
+ O(R2)

]
+ O(ε)

}
, (58)

with

Aout(φ3b; R) = Aout(R) (59)

Bout(φ3b; R) = − 1

π

∫ π

0
dϕgout(ϕ; R)

(
ln[cos(φ3b − ϕ)]

+ ln[cos(φ3b + ϕ)] − 2 ln[sin ϕ] − iπ
)

(60)

and Aout(R) and gout(ϕ; R) are given in Eq. (47) and
Eq. (48), respectively.
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