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Abstract The Kinnersley spacetime not only describes a
non-spherical symmetric, non-stationary and accelerating
black hole, but also can be used to explore the characteristics
of collision of two black holes because it has two horizons:
the Rindler horizon and the event horizon. Previous research
shows Rindler horizon and the event horizon cannot touch
due to violation of the third law of thermodynamics. By solv-
ing a fermion dynamical equation including the Lorentz dis-
persion relation, we obtain a modified radiation temperature
at the event horizon of the black hole, as well as the collid-
ing temperature at the touch point of Rindler horizon and the
event horizon. We find the temperature at the touch point is
not equal to zero if ṙH �= 0. This result indicates that the event
horizon and Rindler horizon can collide without violation of
the third law of thermodynamics when Lorentz dispersion
relation is considered.

1 Introduction

Dynamical black holes are those whose mass, charge, or
angular momentum evolves with time. The real black holes
are, by and large, not static, owing to processes such as
mass accretion or Hawking radiation. As an extension of the
Vaidya metric [1] , the Kinnersley spacetime [2] describes a
dynamical black hole that accelerates in recoil. The system is
anisotropic as massless radiation is emitted. The metric can
be viewed as a particular case of the Kerr–Schild metric. The
present study is focused on a modified Hawking radiation of
the Kinnersley black hole which accelerates rectilinearly in
a non-uniform fashion.

For a dynamical black hole, the first law of black hole ther-
modynamics is no longer valid. However, the event horizon
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in such a case remains to be a null hyper-surface with intrin-
sic symmetry of space-time. Therefore, one may derive the
event horizon surface from null hyper-surface equation, and
subsequently, investigate the radiation characteristics of the
dynamical black holes. Besides the event horizon, the Kin-
nersley black hole has a Rindler horizon. There is no reason
to assume that the horizons’ temperature is a constant or the
temperatures at two horizons are always the same. But we
can get their touch temperature by researching their radiation
at the horizons.

Since Hawking realized that, owning to quantum effect,
black holes should emit particles with a thermal distribution
of energies in 1974, a series of studies on Hawking radiation
for various static and stationary black holes have been carried
out [3–11]. Zhao et al. found a method to determine Hawking
temperature at the event horizon of a dynamical black hole
in 1991. The method consists of solving the Klein-Gordon
equation for the scalar field, Dirac equation for fermions, and
Rarita–Schwinger equation in the dynamical curved space-
time. The vital feature of the approach resides in the intro-
duction of a dynamic tortoise coordinate transformation, and
subsequently, one can proceed to evaluate the Hawking ther-
mal radiation [12–18].

However, for all of the studies regarding Hawking radia-
tion before 2000, one had ignored the energy loss of black
holes and the contraction of the radius of the event horizon
caused by particle radiation. Consequently, the resultant radi-
ation spectrum is strictly thermal and possesses precisely the
spectrum of blackbody radiation. Parikh and Wilczek pointed
out that Hawking did not use the tunneling process or give a
specific location of the potential barrier in his derivation [19].
Wilczek et al. further considered the energy conservation in
the study of black hole tunneling radiation. They demon-
strated that the mass of the black hole would decrease as the
radiation takes place. As a result, it leads to the contraction
of the black hole radius, which causes the appearance of the
potential barrier. Subsequently, the radiation spectrum of the
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black hole is no longer a strict blackbody spectrum. It can
be shown that the result of this modification is consistent
with the unitary of quantum theory. Therefore, it is helpful
to solve the information loss problem [19–24]. Based on this
quantum tunneling theory, a series of studies on black hole
radiation has been carried out [25–29]. Moreover, the semi-
classical Hamilton–Jacobi method was proposed to study the
tunneling radiation of black holes [30–32]. In particular, Lin
and Yang proposed a method to study the tunneling radia-
tion of Dirac particles, which has been employed by other
authors [33,34].

Recent development in theoretical physics and black
hole physics indicates the possibility of the breaking of the
Lorentz relation in the limit of high energy [35]. Although
a general dispersion relation has not been established, it is
understood that the magnitude of the correction term is of the
Plank scale. This correction may lead to a sizable influence
to the tunneling radiation of black hole [36–41]. Relevant
study of fermion tunneling radiation with Lorentz dispersion
relationship in static and stationary black holes has been car-
ried out recently [42–44]. However, it is more interesting
to further extend the research to a more realistic scenario,
including the Lorentz dispersion relation into the treatment
of Hawking radiation of arbitrary spin fermions in the context
of a dynamical black hole.

So far, there is no strict analytical solution for describ-
ing black holes’ collision. Kinnersley black hole provides a
possibility for simulating the collision process of two black
holes. Kinnersley black hole is a strict solution of the Einstein
field equation. Although there is only one black hole in this
spacetime, there is another horizon named Rindler horizon.
So we can investigate the touch process of the two horizons to
analyze the characteristics of collision of two black holes. We
must point out that the real collision process of black holes
is different from the contraction between Rinder horizon and
the event horizon. The motion of two colliding black holes
is usually along geodesics, the proper acceleration is zero.
But the intrinsic acceleration of Kinnersley black hole is not
zero. Nevertheless, our study is still valuable for exploring
characteristics of the collision of black holes. This motivates
the present study, which involves an attempt to investigate
if the horizons’ touch can take place, how high the collision
temperature at the touch point is, by considering the Lorentz
dispersion relation and modified tunneling radiation.

This paper is organized as follows. In the following sec-
tion, based on the Lorentz dispersion relation, the dynamical
equations, namely, the Dirac equation and Rarita–Schwinger
equation, for fermions with arbitrary spin are derived in the
Kinnersley spacetime. Section 3 is devoted to the study of
the modified tunneling rate and the radiation temperature at
the event horizon. The temperature at the touch point of the
event horizon and Rindler horizon, and further discussions
are given in the last section.

2 Accurate dynamical equation of arbitrary spin
fermions in the Kinnersley black hole

The Rarita–Schwinger equation for fermions with arbitrarily
spin in the curved spacetime is [33,43–47]

(
γ μDμ + m

h̄

)
ψα1...αk = 0. (1)

It satisfies with the following condition:

γ μψμα2...αk = Dμψμ
α2...αk

= ψμ
μα3...αk

, (2)

where γ μ is the Gamma matrix in the curved spacetime,
which satisfies the following condition:

{γ μ, γ ν} = 2gμν I, (3)

where I is the unit matrix. Dμ in Eq. (1) is defined as

Dμ = ∂μ + Ωμ + i

h̄
eAμ, (4)

where Ωμ is spin-connection in the curved spacetime. In the
flat spacetime, Ωμ = 0. In the research of string theory and
quantum gravitational theory, authors proposed a dispersion
relation:

P2
0 = p2 + m2 − (LP0)

α p2. (5)

In the natural unit, P0 and p are the energy and momentum of
particle with static massm. L is a constant in the magnitude of
Plank scale. Adopting α = 2, the modified Rarita–Schwinger
equation can be rewritten as [41]

(
γ μDμ + m

h̄
− λh̄γ t Dtγ

j D j

)
ψα1...αk = 0, (6)

where λ = i/h̄L , λ � 1, λh̄γ t Dtγ
j D j is a very small term,

j = 1, 2, 3. Eq. (6) is a new modified dynamical equation
for arbitrary spin fermions. The solution of this matrix equa-
tion is dependent on the specific spacetime line element. In
this paper, we will extend the solution of Eq. (6) to the rec-
tilinearly nonuniformly accelerating Kinnersley spacetime.
Line element of the Kinnersley black hole in the advanced
Eddington coordinate can be expressed as [11,43]

ds2 = (1 − 2ar cos θ − r2 f 2 − 2Mr−1)dv2 − 2dvdr

+ 2r2 f dvdθ − r2dθ2 − r2 sin2 θd2ϕ,
(7)

where f = −a(v) sin θ , a(v) is the acceleration, v is the
Eddington time, θ and ϕ are spherical coordinate. Polar point
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θ = 0 is the direction of acceleration. The corresponding
metric determinant is

g = −r4 sin2 θ. (8)

The nonzero components of the inverse metric tensor are
shown as

g01 = g10 = −1,

g11 = −(1 − 2ar cos θ − 2Mr−1),

g21 = g12 = − f,

g22 = −r−2,

g33 = −r−2 sin−2 θ.

(9)

The characteristic of this element line is the component of
inverse metric tense g00 = 0. For fermions with arbitrarily
spin, the wave function is

ψα1...αk = ηα1...αk e
i
h̄ S, (10)

where ηα1...αk and S are matrices and the action of the
fermion, respectively. Substituting Eqs. (10) and (4) (where
Aμ = (0, 0, 0, 0), Ωμ = 0 for Kinnersley black hole) into
Eq. (6), we get

[(iγ μ + λ∂vSγ vγ μ)∂μS − λγ vγ v(∂vS)2 + m]ηα1...αk = 0.

(11)

Here t in Eq. (6) has been substituted by v. Due to γ vγ v =
gvv = 0 for the Kinnersley black hole, so Eq. (11) can reduce
to

[(iγ μ + λ∂vSγ vγ μ)∂μS + m]ηα1...αk = 0. (12)

This is a matrix equation, from it we obtain two equivalent
equations.

[(iγ ν + λ∂vSγ vγ ν)(iγ μ + λ∂vSγ vγ μ)∂μS∂νS − m2]
ηα1...αk = 0,

[(iγ μ + λ∂vSγ vγ μ)(iγ ν + λ∂vSγ vγ ν)∂μS∂νS − m2]
ηα1...αk = 0.

(13)

From Eq. (13) and condition (3) we get

[gμν∂μS∂νS − 2iλ∂vSg
v j∂ j Sγ μ∂μS

− λ2(∂vS)2gvμ∂μSg
vν∂νS + m2]ηα1...αk = 0,

(14)

i.e.,

[gμν∂μS∂νS − 2iλ∂vSg
v j∂ j Sγ μ∂μS

+ m2 − λ2(∂vS)2(gv j∂ j S)2]ηα1...αk = 0.
(15)

Generally, j = 1, 2, 3, but from Eq. (9) one can find j = 1
in Eqs. (14)–(15) for the Kinnersley black hole, so Eq. (15)
can be rewritten as

(−iλγ μ∂μS + mk)ηα1...αk = 0, (16)

where

mk = gμν∂μS∂νS + m2 − λ2(∂vS)2(gv j∂ j S)2

2∂vSgv j∂ j S
. (17)

Multiplying iλγ ν∂νS on both sides of Eq. (16), we have

(λ2γ μγ ν∂μS∂νS + m2
k)ηα1...αk = 0. (18)

From condition (3), Eq. (18) becomes

(λ2gμν∂μS∂νS + m2
k)ηα1...αk = 0. (19)

Considering Hamilton–Jacobi equation, gμν∂μS∂νS+m2 =
0. And the condition that the matrix Eq. (19) has nontrivial
solution is the value of the determinant corresponding to the
matrix of equation (19) is zero, i. e.,

[
gμν∂μS∂νS + m2 − λ2(∂vS)2(gv j∂ j S)2

2∂vSgv j∂ j S

]2

− λ2m2 = 0.

(20)

After simplification, it can be expressed as

gμν∂μS∂νS+m2−2λm∂vSg
v j∂ j S−λ2(∂vS)2(gv j∂ j S)2 = 0.

(21)

This equation is derived from Eq. (12). Equation (12) and Eq.
(21) are two equivalent equations considering the modified
Lorentz dispersion relation. The particularity of Kinnersley
black hole has been considered in the derivation process. This
equation is actually a deformed Hamilton–Jacobi equation.
In the derivation process, no approximation has been made.
Therefore, this is an accurately modified dynamical equation
of arbitrary spin fermions in the dynamic Kinnersey space-
time.
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3 The correction to tunneling radiation of fermions in
the Kinnersley spacetime

Substituting Eq. (9) into Eq. (21), the dynamical equation
becomes

− 2
∂S

∂v

∂S

∂r
−(1−2ar cos θ − 2Mr−1)

(
∂S

∂r

)2

−2 f
∂S

∂r

∂S

∂θ

− 1

r2

(
∂S

∂θ

)2

− 1

r2 sin2 θ

(
∂S

∂ϕ

)2

+ m2 + 2λm
∂S

∂v

∂S

∂r

− λ2
(

∂S

∂v

)2 (
∂S

∂r

)2

= 0.

(22)

In order to solve this deformed Hamilton–Jacobi equation,
we must make the following tortoise coordinate transforma-
tion:

r∗ = r + 1

2κ
ln

r − rH (v, θ)

rH (v0, θ0)
,

v∗ = v − v0,

θ∗ = θ − θ0,

(23)

where rH is the event horizon of black hole, v0 and θ0 are
two constants corresponding to the time particle escapes from
black hole, we can deduce the above equations to

∂

∂r
= 2κ(r − rH ) + 1

2κ(r − rH )

∂

∂r∗
,

∂

∂v
= ∂

∂v∗
− ṙH

2κ(r − rH )

∂

∂r∗
,

∂

∂θ
= ∂

∂θ∗
− r

′
H

2κ(r − rH )

∂

∂r∗
,

(24)

where κ usually denotes surface gravitation of the black hole,
ṙH = ∂νrH , r

′
H = ∂θrH . According to null hyper-surface

equation

gμν ∂F

∂xμ

∂F

∂xν
= 0, (25)

and substituting Eq. (9) into the above equation, the rH equa-
tion is decided by

2ṙH −(1−2arH cos θ−2Mr−1
H ) + 2 f r

′
H −

(
r

′
H

rH

)2

= 0.

(26)

Substituting Eq. (24) into Eq. (22), we have

− 2

[
∂S

∂v∗
− ṙH

2κ(r − rH )

∂S

∂r∗

] [
1 + 2κ(r − rH )

2κ(r − rH )

]
∂S

∂r∗

− (
1 − 2ar cos θ − 2Mr−1) [

1 + 2κ(r − rH )

2κ(r − rH )

]2 (
∂S

∂r∗

)2

− 2 f

[
1 + 2κ(r − rH )

2κ(r − rH )

]
∂S

∂r∗

[
∂S

∂θ∗
− r

′
H

2κ(r − rH )

∂S

∂r∗

]

− 1

r2

[
∂S

∂θ∗
− r

′
H

2κ(r − rH )

∂S

∂r∗

]2

− 1

r2 sin2 θ

(
∂S

∂ϕ

)2

+ m2

+ 2mλ

[
∂S

∂ν∗
− ṙH

2κ(r − rH )

∂S

∂r∗

]

×
[

1 + 2κ(r − rH )

2κ(r − rH )

]
∂S

∂r∗
+ o(λ2) = 0.

(27)

In order to simplify Eq. (27), when r → rH , 1 + 2κ(r −
rH ) → 1, it yields

(
∂S

∂r∗

)2
{

−2ṙH + (1 − 2ar cos θ − 2Mr−1)[1 + 2κ(r − rH )]
2κ(r − rH )

+−2 f r
′
H + (r

′
Hr−1)2 + 2λmṙH

2κ(r − rH )

}

+
(

∂S

∂r∗

)(
2

∂S

∂v∗
+ 2 f Pθ∗ − 2Pθ∗r

′
Hr−2 − 2mλ

∂S

∂v∗

)

+ 2κ(r−rH )

[
−m2+ 1

r2 P2
θ∗+ 1

r2 sin2 θ

(
∂S

∂ϕ

)2
]

+o(λ2)=0,

or

(
∂S

∂r∗

)2
{

−2ṙH + (1 − 2ar cos θ − 2Mr−1)

2κ(r − rH )

+−2 f r
′
H + (r

′
Hr−1)2 + 2λmṙH

2κ(r − rH )

}

+
(

∂S

∂r∗

)(
2

∂S

∂v∗
+2 f Pθ∗−2Pθ∗r

′
Hr−2−2mλ

∂S

∂v∗

)
= 0,

(28)

where Pθ∗ = ∂S
∂θ∗ , κ is “surface gravitation of the black hole”,

which is related to the tortoise coordinate. The numerator
in the coefficient of ( ∂S

∂r∗ )2 is closely related to null hyper-
surface equation (25). The coefficient at the event horizon,
where r → rH , is an infinite limit of 0/0 type. Setting the
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coefficient of ( ∂S
∂r∗ )2 is 1, we use the L’Hopital Law to get

temperature parameter, i. e.,

lim
v→v0
r→rH
θ→θ0

{−2r2ṙH +(r2−2ar3 cos θ−2Mr)[1 + 2κ(r − rH )]
2r2κ(r − rH )

+−2r2 f r
′
H + r

′2
H + 2r2λmṙH

2r2κ(r − rH )

}
= 1.

(29)

In Eq. (28), we can not separate the fermion action S into
a sum of several parts, but we are sure that the particle energy
is determined by the following formula

∂S

∂v∗
= −ω. (30)

We are also sure that the action S can be expressed as
S = R(v∗, r∗, θ∗) + nϕ. The component of generalized
momentum in ϕ direction is a constant, ∂S

∂ϕ
= n. The compo-

nent of generalized momentum in θ direction can be denoted
as Pθ . Substituting Eqs. (29) and (30) into Eq. (28), we get

(
∂S

∂r∗

)2

− [2(1 − λm)ω − 2ω0]
(

∂S

∂r∗

)
= 0,

i.e., (
∂S

∂r∗

)2

− 2(1 − λm)

(
ω − ω

′
0)(

∂S

∂r∗

)
= 0,

(31)

where

ω0 = Pθ ( f − r
′
Hr

2
H ), (32)

ω
′
0 = ω0

1 − λm
= ω0(1 + λ0 + λ2

0 + · · · ). (33)

where λ0 = λm, λ0 � 1. Eq. (31) is the equation satis-
fied by fermion action S at the event horizon of Kinnersley
black hole. Solving Eq. (31) and using tortoise coordinate
transformation Eq. (24), we get

∂S

∂r
= 2κ(r − rH ) + 1

2κ(r − rH )
|r→rH

∂S

∂r∗

= 1

2κ(r − rH )
[2(1 − λm)(ω − ω

′
0)]. (34)

Using residue theorem to solve S in the Eq. (34), it is easy to
get

S = iπ

κ
(1 − λm)(ω − ω

′
0). (35)

According to the tunneling theory, we get the tunneling
rate of fermions with arbitrarily spin in the rectilinearly non-
uniformly accelerating Kinnersley spacetime is: [19]

Γ = exp(−2ImS)

= exp(−ω − ω
′
0

T L
H

),
(36)

where radiation temperature

T L
H = κ

2π(1 − λm)
. (37)

Solving Eq. (29), we get temperature parameter κ ,

κ = rH − M − 3r2
Ha cos θ − 2 f rHr

′
H + 2(λm − 1)ṙHrH

2MrH + 2ar3
H cos θ

.

(38)

Note that the κ here is not surface gravitation because we
are discussing a dynamical black hole. Only in the station-
ary space-time, κ is equal to surface gravitation. Hence the
radiation temperature at the event horizon is

T L
H = rH −M−3r2

Ha cos θ−2 f rHr
′
H + 2(λm − 1)ṙHrH

2π(1 − λm)(2MrH + 2ar3
H cos θ)

≈ rH − M − 3r2
Ha cos θ − 2 f rHr

′
H − 2ṙHrH

2π(2MrH + 2ar3
H cos θ)

× (1 + λ0 + λ2
0 + · · · )

= T0(1 + λ0 + λ2
0 + · · · ),

(39)

where T0 is the Hawking temperature at the event horizon of
Kinnersley black hole before our correction. λ0 = λm. Obvi-
ously, it can be seen from Eqs. (36)–(39) that the quantum
tunneling rate of arbitrary spin fermions and Hawking tem-
perature at the event horizon of Kinnersley black hole are
not only related to the acceleration a(v) of black hole and
the azimuth θ , but also related to the change rate of the event
horizon ṙH and r

′
H . If λ = 0 in Eqs. (38)–(39), it reduces to

the classic Hawking tunneling temperature of the black hole
without correction. When a=0, the metric (7) is reduced to
Vaidy metric [1]. From Eqs. (37)–(38), we have

κ = 1 − 4Ṁ

4M

TH = 1 − 4Ṁ

8πM
.

(40)

These are just the well-known surface gravitation and Hawk-
ing temperature of the Vaidya black hole. When Ṁ = 0,
these results can be reduced to the case of Schwarzschild
black hole.

It should be further explained that Eq. (32) shows that
the chemical potential is modified. It can also be seen from
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Eq. (39) that the radiation temperature of the black hole
change with the azimuth, i. e., the radiation temperature of
each point on the black hole horizon is different. For the
Kinnersley black hole with uniform acceleration and linear
motion, a(v) is a constant, but the corresponding expression
is the same as Eq. (39).

4 The touch temperature of the event horizon and
Rindler horizon

Equation (39) denotes the temperature at the event horizon
of Kinnersley black hole. In the following, we will discuss a
special time when the event horizon rH is colliding Rindler
horizon rR . When θ and ϕ are constants in line element (7),
radial light from the black hole satisfies

dυ(g00dυ − 2dr) = 0. (41)

One of the solution of the above equation is

ṙ =
[

dr

dυ

]
θ,ϕ

= g00

2
. (42)

This equation describes the null surface (horizon) generatrix,
so it is also a horizon equation same to Eq. (26). Substituting
g00 into Eq. (42), it becomes

2ṙH − (1 − 2arH cos θ − 2Mr−1
H − r2

H sin2 θ) = 0. (43)

Comparing Eqs. (26) and (43), we have

r
′
H = ar2

H sin θ. (44)

Touch point of the event horizon and the Rindler horizon
locates in the direction of θ = 0, i. e., cos θ = 1, sin θ = 0.
Hence r

′
H = 0 and Eq. (43) is simplified as

2ṙH − (1 − 2arH − 2Mr−1
H ) = 0. (45)

When λ = 0, the temperature becomes

TH = rH − M − 3r2
Ha − 2ṙHrH

2π(2MrH + 2ar3
H )

. (46)

The touch point of the event horizon and Rindler horizon
satisfies a relationship [48]

a = M

r2
H

= M

r2
R

. (47)

Using Eq. (47) into the numerator of Eq. (46),

TH = rH − 2ar2
H − 2M − 2ṙHrH

2π(2MrH + 2ar3
H )

, (48)

It can be found that the the numerator of Eq. (47) is equivalent
to the left side of Eq. (45), so

TH = 0. (49)

According to the third law of thermodynamics, absolute zero
of temperature is impossible. This means the event horizon
and Rindler horizon cannot touch in the fiducial case. How-
ever, when Lorentz dispersion relation is valid, λ �= 0, we
get the temperature at the touch point

T L
H = 2λmṙHrH

2π(1 − λm)(2MrH + 2ar3
H )

. (50)

This means the event horizon and Rindler horizon can col-
lide, and not offend against the third law of thermodynamics.
It should be emphasized that this touch process is not the
collision of black holes that are moving along the geodesic,
but that one black hole hangs over another black hole under
the action of external force, and then gradually increase the
external force to gradually reduce the suspension height until
they contact each other. This is different from black hole col-
lision, but it may include some characteristics of black hole
collision.

The study of quantum field theory and quantum gravita-
tion theory shows that Lorentz dispersion relation must be
modified in the field of high energy. By using the modi-
fied Lorentz dispersion relation and the extended Rarita–
Schwinger equation, the modified dynamical equation of
arbitrary spin fermions is derived. This equation is an accu-
rately modified fermion dynamical equation without approx-
imation. In the actual calculation process, one can ignore the
λ2 term during the calculation of modified fermion tunnel-
ing rate, radiation temperature and other important physical
quantities of black hole. We have demonstrated that the event
horizon and Rindler horizon in the Kinnersley spacetime
can touch without violation of the third law of thermody-
namics. This conclusion can also be demonstrated by using
Lorentz-violating scalar field theory [49]. We will continue
this research in the future.
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