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Abstract The polynomial affine gravity is a model that is
built up without the explicit use of a metric tensor field. In
this article we reformulate the three-dimensional model and,
given the decomposition of the affine connection, we analyse
the consistently truncated sectors. Using the cosmological
ansatz for the connection, we scan the cosmological solu-
tions on the truncated sectors. We discuss the emergence of
different kinds of metrics.

1 Introduction

Our current understanding of fundamental physics accounts
for four different interactions, which split into two pillars.
On the one hand, the gravitational interaction is described by
General Relativity, which models the spacetime as a Rieman-
nian manifold (M, g), i.e. its geometrical properties are tied
up to the metric tensor field. On the other hand, the remain-
ing three interactions are described by gauge theories, whose
fundamental field are connections under transformations of
the gauge group, but (covariant) vectors under the group of
diffeomorphisms.

The formulation of the gauge theories requires the choice
of a background manifold, on which the theories stand, and
the standard treatment does not consider back-reaction of
the gauge theories to the manifold. Nonetheless, in General
Relativity the metric tensor field defines the geometric prop-
erties of the spacetime, and also mediates the gravitational
interaction. Such dual role of the metric tensor field origi-
nates significant differences between these pillars of funda-
mental physics, being the most highlighted the quantisation
program. While the attempts to quantise General Relativ-
ity have eluded a consistent culmination, the remaining three

a e-mail: o.castillo.felisola@protonmail.com (corresponding author)

interactions are quantisable and renormalisable, raising what
is known as the standard model of particles.

In a quest to prevent the inconsistent quantisation of the
gravitational interaction, a large number of generalisations
of General Relativity have been proposed. Inspired by the
seminal work by Palatini [1], a large amount of these gener-
alisations modelled the spacetime by manifolds whose con-
nections is not the one of Levi–Civita, dubbed metric-affine
models of gravity (see for example Ref. [2]). These models
rely in the metric as the field mediating the interaction. How-
ever, some have attempted to model the gravitational inter-
action through affine theories, where the mediating field is
an affine (linear) connection on the spacetime. The first pro-
posals of affine gravity were considered by Einstein, Edding-
ton and Schrödinger [3–6], but those models were left aside
because their manipulation was significantly more complex
and offered insufficient novelty from the phenomenologi-
cal point of view. More contemporaneous affine models of
gravity were proposed by Kijowski and collaborators [7–10],
Poplawski [11–14], Krasnov and collaborators [15–20], and
some of us [21,22].

The analysis of gravitational models in lower dimensions,
where the number of parameters decreases in general, serves
as a playground to test methods that might be applied to
the four-dimensional models, but also for their applications
in other branches of physics since vector and tensor gauge
theories can be interpreted as the high-temperature limit of
four-dimensional models [23]. These simplified models stim-
ulate the generation of new ideas and insights into their four-
dimensional counterparts.

The three-dimensional version of General Relativity was
firstly considered by Staruszkiewicz [24], where a
Schwarzschild-like solution was studied, and a relation
between the presence of massive point particles and conical
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singularities (which modify the asymptotic behaviour of the
spacetime) was found. The interest in three-dimensional grav-
ity diminished due to the lack of propagating degrees of free-
dom, until in a series of papers Deser, Jackiw and collaborators
showed that adding a nontrivial, gauge invariant, topological
term to the three-dimensional Einstein–Hilbert action resulted
in a massive model for gravity [25–28]. The topological term
added in this model, dubbed Deser–Jackiw–Templeton, was
the Chern–Simons term associated to the four-dimensional
θ-term build from the (metric) Riemannian curvature—also
known as the Pontryagin density. A remarkable feature of the
Deser–Jackiw–Templeton model is that it was able to induce
a mass for the graviton without a Higgs mechanism and pre-
serving the (infinitesimal) gauge invariance.

Witten showed in Ref. [29], that the three-dimensional
gravity modified by the Pontryagin Chern–Simons
Lagrangian is equivalent to a Yang–Mills theory, called
Chern–Simons gravity, and also that its perturbative expan-
sion was renormalisable.1 Some years later, the first black
hole solution was found by Bañados, Teitelboim and Zanelli
[31], disproving the triviality of classical three-dimensional
gravity and revitalising the interest in the search of exact
solutions [32] and further development into their quantum
aspects [33]. Contemporaneously, Mielke and Baekler gen-
eralised the topological massive model of gravity to include
torsion [34], and extended further to metric-affine gravity by
Tresguerres [35].

1 An update on the original ideas in this paper can be found in Ref.
[30].

An interconnection between three-dimensional gravity
with other branches of physics was encountered by Dereli
and Verçin in the context of the continuum theory of lat-
tice defects, through the identification of the dislocation and
disclination line density tensors with torsion and curvature
tensors, and the free-energy density with the Lagrangian of
the Deser–Jackiw–Templeton model of gravity [36].2 More
recently, methods of quantum field theory in curved spaces
have been applied to the analysis of properties of graphene,
viewed as a membrane endowed with an metric induced by
its embedding into three-dimensional space [38–43].

From a mathematical point of view, the Deser–Jackiw–
Templeton model generalises the three-dimensional Einstein–
Hilbert model by taking into account global properties of the
Riemannian spacetime. The Mielke–Baekler model relaxes
the Riemannian condition, by allowing the spacetime to be
modelled by a Riemann–Cartan manifold, while in the Tres-
guerres model the spacetime possesses also non-metricity.
In all of these models, the metric plays a fundamental role
in their formulation. However, the existence of contexts in
which the notion of metric is not helpful, e.g. in a phase
space or a moduli space, inspires the search of gravitational
models which are defined in spaces where the notion of dis-
placement and flow is defined, but not necessarily a notion
of length. These spaces are called affine manifolds, and they
are the underlying structure supporting the polynomial affine
model of gravity.

The classification of the affinely
connected spaces is shown
schematically in the following
commutative diagram. The
most general affine manifold
might not posses a metric, and
thus it is characterised by a
connection (M, ∇̂). When an
affine manifold is equipped
with a metric, dubbed metric-
affine manifold, the connection
can be decomposed into three
contributions—the Levi-Civita
connection, the contorsion ten-
sor and the deflection tensor—,
and the manifold is classified
according to its curvature (R),
torsion (T ) and non-metricity
(Q). In the diagram, Riemannian
geometries belong to the sector
denoted by (R), Riemann–
Cartan geometries to (R, T ),

(otseirtemoegkcöbnezieW T ),
et cetera.

(M, ∇̂)

(Q,R, T ) (Q, T )

(Q,R) (Q)

(R, T ) (T )

(R) (Flat)

g

2 For a more recent review, see Ref. [37].
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The use of an affine model allows to explore features that
should be attributed to the local invariance under coordi-
nate transformations, regardless of the metric structure on
the manifold. In this context, the polynomial affine model of
gravity emerges naturally. Even though the four-dimensional
model is being analysed, the three-dimensional version is
expected to be easier to characterise, and eventually solve
some issues the affine models have encountered, such as the
coupling of matter.

In this paper we re-state the three-dimensional model of
polynomial affine gravity, firstly proposed in Ref. [21], anal-
yse their field equations and find explicit cosmological solu-
tions. The paper is organised as follows. Section 2 gives a
brief overview of the polynomial affine model of gravity in
three dimensions. Then, in Sect. 3 the field equations are
derived, and some issues regarding their truncation – i.e.
restriction to sectors where only a subset of the fields (irre-
ducible components of the connection) are turned on – are
discussed in Sect. 4. In Sect. 5 we scan the space of solu-
tions which are compatible with the cosmological principle.
Some conclusions are drawn in the Sect. 6. For completeness
we include some appendices, including a discussion of our
notation in Appendix A.

2 Building the model

The polynomial affine model of gravity was born as an
attempt to build up a theory with the affine connection as
sole fundamental field [21]. Formally, the idea behind the
polynomial affine model of gravity is that spacetime is not
a (pseudo-)Riemannian manifold, but an affinely connected
manifold (M, ∇̂). The strategy is then to consider all possi-
ble terms, allowed by the invariance under diffeomorphisms,
as part of the Lagrangian density. Note that a generic affine
connection is a reducible object under the group of diffeo-
morphisms, and therefore we can decompose it.

In the absence of a metric tensor field, the affine connec-
tion decomposes into irreducible components as follows

�̂μ
λ
ν = �̂(μ

λ
ν) + �̂[μλ

ν] = �μ
λ
ν + Bμ

λ
ν + A[μδλ

ν], (1)

where B field is the traceless part of the torsion, Aμ is the
trace of the torsion, and �μ

λ
ν ≡ �̂(μ

λ
ν) is a renaming of the

symmetric part of the affine connection. All these elements
transform as tensors under diffeomorphisms, with the excep-
tion of the symmetric part of the affine connection, which
must be included in the action almost exclusively through
the covariant derivative.

In order to build an action, we consider the chart-induced
basis of the tangent and cotangent spaces, i.e.

{
∂μ

}
and {dxμ},

and the volume form defined as

dV αβγ = dxα ∧ dxβ ∧ dxγ . (2)

An interesting type of connection are those compatible with
the volume, i.e. ∇(dV ) = 0, which are said to be equiaffine.
Such compatibility ensures that the Ricci tensor field is sym-
metric, and the trace of the curvature tensor vanishes [44–
46]. Although equiaffinity is not demanded in the following
formulation, in Sect. 5 we shall encounter that symmetric
connections compatible with the cosmological principle are
necessarily equiaffine.

Now, with the aid of the irreducible components of the
connection and the volume form, we can write down the
most general Lagrangian, i.e. a scalar density in three dimen-
sions. A dimensional analysis similar to the one presented in
Refs. [21,22,47–49] shows that the most general action (up
to boundary terms) is given by3

S =
∫

dV αβγ

(
B1 AαAμBβ

μ
γ

+B2 AαFβγ + B3 Aα∇μBβ
μ

γ

+B4 Bα
μ

νBβ
ν
λBγ

λ
μ + B5Rαβ

μ
μAγ

+B6 Rμα
μ

νBβ
ν
γ + B7 �α

μ
μ∂β�γ

ν
ν

+B8

(
�α

μ
ν∂β�γ

ν
μ + 2

3
�α

μ
ν�β

ν
λ�γ

λ
μ

) )
. (3)

In the action, the covariant derivative and the curvature
are defined with respect to the symmetric connection, i.e.
∇ = ∇� and R = R� ; and the symbol F denotes the field
strength of the A-fields, i.e. Fβγ = ∂βAγ − ∂γAβ .

Among the features of the polynomial affine model of
gravity we count: (i) The fundamental field is a connection,
like the other fundamental interactions; (ii) The coupling con-
stants are dimensionless, which is desirable from the view
point of Quantum Field Theory, since the superficial degree
of divergence vanishes; (iii) The model seems to exhibit scale
invariance; (iv) The number of possible terms in the action is
finite (we usually refer to this property as the rigidity of the
model), giving the impression that in the hypothetical sce-
nario of quantisation all the counter-terms have the form of
terms already present in the original action.

3 Field equations

We now focus in obtaining the field equations for the fields
�, B and A, by varying the action in Eq. (3). It is important
to highlight that although the absence of second-class con-
straints in polynomial affine gravity has not been proven yet,
the structure of the action suggests that the variational prob-
lem is well-posed, and therefore the field equations below do

3 Note that this action is equivalent to the one introduced in Ref. [21].
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not consider the existence of affine analogues of the Gibbons–
Hawking–York term.4

Since the action contains up to first derivatives of the fields,
the field equations are obtained through the Euler–Lagrange
equations,

∂μ

(
∂L

∂
(
∂μ�ν

λ
ρ

)

)

− ∂L

∂�ν
λ
ρ

= 0,

∂μ

(
∂L

∂
(
∂μBν

λ
ρ

)

)

− ∂L

∂Bν
λ
ρ

= 0,

∂μ

(
∂L

∂
(
∂μAν

)

)

− ∂L

∂Aν

= 0. (4)

We proceed utilising the formalism introduced by Kijowski
in Ref. [7], and following the steps from Ref. [49].

It can be shown with ease that the Euler–Lagrange equa-
tions (4) can be rewritten as

∇μ��
μν

λ
ρ = ∂∗L

∂�ν
λ
ρ

,

∇μ�B μν
λ
ρ = ∂L

∂Bν
λ
ρ

,

∇μ�Aμν = ∂L

∂Aν

,

(5)

where the quantities �X are the canonical momentum asso-
ciated to the field X – which are tensor densities –, defined
as

��
μν

λ
ρ = ∂L

∂ (∂μ�ν
λ
ρ)

,

�B μν
λ
ρ = ∂L

∂ (∂μBν
λ
ρ)

,

�Aμν = ∂L

∂ (∂μAν)
,

(6)

and the asterisk on the right-hand side of the field equation
for the symmetric part of the connection in Eq. (5) denotes
the partial derivative with respect to the connection that is
not contained in the curvature tensor.

The field equations for the fields A, B and � derived from
the action in Eq. (3) are respectively:

2B1AαBν
α

ρ + 2B2Fνρ + B3∇μBν
μ

ρ

+ B5Rνρ
μ

μ = 0, (7)

2B1AνAρ − 2B3∇(νAρ) + 3B4Bν
μ

σBρ
σ

μ

+ 2B6Rμ(ν
μ

ρ) = 0, (8)

B3AμBρ
ν
σ + B5

(
δν
μFρσ + δν[ρFσ ]μ

)

+ B6
(
2δν

μ∇τBρ
τ
σ + δν

ρ∇τBσ
τ
μ + δν

σ ∇τBμ
τ
ρ

)

4 Analysis of affine analogues to the Gibbons–Hawking–York term can
be found in Refs. [50–55].

+ B7

(
δν
μRρσ

λ
λ + δν[ρRσ ]μλ

λ

)

+ B8

(
Rρσ

ν
μ + δν[ρRσ ]λλ

μ

)
= 0. (9)

Note that the field equation for the B -field, i.e. Eq. (8),
is similar to the Ricci form of the Einstein field equations.
Particularly, it has been shown that the tensor Bν

μ
σBρ

σ
μ

(when non-degenerated) might be interpreted as a torsion-
descendent metric tensor field [14].

4 Truncations

Unlike the analysis of the truncations in the four-dimensional
polynomial affine model of gravity [22,48,49], the presence
of the Chern–Simons terms in Eq. (3) allows to switch-off
certain fields at the level of the action, and not just at the
level of the field equations. Evidently, when we set the fields
to zero at the action level, we are properly truncating the
model. On the contrary, when we set the fields equal to zero
at the level of the field equations, we are not truncating but
only restricting ourselves to special solutions of the complete
model. However, in both cases we called them “truncations”
in the absence of a better general terminology. In order to
distinguish these two possible truncations of the model, we
refer to them as off-shell and on-shell limits. Below we list
six possible truncations of the model.

4.1 Torsion-free limit (A = B = 0)

On the one hand, taking the off-shell torsion-free limit yields
an effective action which is the sum of two Chern-Simons
terms, those terms in Eq. (3) accompanying the coefficients
B7 and B8, whose field equations are

B7

(
δν
μRρσ

λ
λ + δν[ρRσ ]μλ

λ

)

+B8

(
Rρσ

ν
μ + δν[ρRσ ]λλ

μ

)
= 0.

Note that the contribution to the field equations of the term
with coefficient B7 vanishes identically for equiaffine con-
nections,5 and thus the field equations for the symmetric con-
nection are

B8

(
Rρσ

ν
μ + δν[ρRσ ]λλ

μ

)
= 0. (10)

5 For equiaffine connections the skew-symmetric part of the Ricci ten-
sor field vanishes. From the first (or algebraic) Bianchi identity, it fol-
lows that the trace of the curvature vanishes. Therefore, Rμν

α
α =

∂[μ�ν]αα = 0. In the remaining of the article we shall ignore the con-
tribution of this term to the field equations, however, we keep the term
in the action because it might contribute to topological quantities.
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These field equations require that the connection is projec-
tively Weyl-flat.6

On the other hand, when one takes the on-shell torsion-
free sector, there are subsidiary equations,

Rνρ
μ

μ = 0 and Rμ(ν
μ

ρ) = 0,

the first is satisfied when the connection is equiaffine, while
the second (Ricci-flatness) restricts the solutions of the sys-
tem to be flat connections.

4.2 Vectorial torsion (� = B = 0)

The restriction to sole vectorial torsion in the off-shell limit
yields a Chern–Simons-like action, whose field equations are

Fνρ = 0, (11)

while the on-shell restriction raises the auxiliary condition

2B1AνAρ − 2B3∂(νAρ) = 0. (12)

The system of Eqs. (11) and (12) can be solved in general.
First, equation (11) implies that locally the fieldA is an exact
1-form, A = dφ. Secondly, Eq. (12) can be written in the
form

∂ν∂ρ f = 0, with f = e
− B1

B3
φ
.

The above equation implies that f is a linear function of the
coordinates, and allows to solve for φ and therefore A,

φ(x)= − B3

B1
ln

(
D+Cμx

μ
)

and Aν(x) = − B3

B1

Cν

D+Cμxμ
.

Note that the field Eq. (11), implies that the A-field inher-
its a gauge redundancy, i.e. any two configurations of the
A-field related by an exact 1-form (A′ = A + dλ) solve
the field equations. This statement holds when the B -field is
eliminated at the action level. Once the B -field is included
in the action, such gauge redundancy disappears with the
existence of the B -field, even if B = 0, due to the introduc-
tion of additional field equations., i.e. B breaks the gauge
redundancy of A.

4.3 Trace-less torsion (� = A = 0)

Interestingly, the off-shell truncation to trace-less torsion
leaves an effective action whose sole term is that with coef-

6 Weyl introduced two different notions of curvature, both of therm
are referred as Weyl’s tensors, and sometimes they are called projective
and conformal Weyl tensor [56]. As physicists we are accustomed to
the conformal Weyl tensor, which might is the curvature without traces
(with respect to the metric). The projective Weyl tensor might be defined
without requiring a metric, and it is invariant under the projective trans-
formations of the connection, �̃μ

λ
ν = �μ

λ
ν + δλ

μVν + δλ
νVμ. See Refs.

[44,46,57].

ficient B4, which provides no dynamics to the B -field. The
field equations are

Bν
μ

σBρ
σ

μ = 0. (13)

The on-shell restriction yields the subsidiary equations,

∂μBρ
μ

σ = 0 and ∂[μBρ
ν
σ ] = 0. (14)

Note that these equations are equivalent,7 and their equiva-
lency can be extended to the covariant version of the equa-
tions.

Equation (13) can be rewritten in terms of the quasi-Hodge
dual [58],

Tμα = 1

2
Bβ

μ
γ εαβγ , (15)

giving a cofactor equation for the tensor T . Hence, Tμα =
ρ(x)VμV α is the general solution where ρ is a scalar density,
and therefore

Bν
μ

λ = ρ(x)VμV σ εσνλ.

The structure of our tensor Tμα is equivalent to that of
the energy–momentum tensor for cold matter (i.e. dust),
where ρ is the energy density and Vμ represents the velocity
of the matter distribution. Similarly, the Eq. (14) is a gener-
alisation of the continuity equation and energy–momentum
conservation,

0 = ∂μBν
μ

λ

= (
(∂μρ)VμV σ + ρ(∂μV

μ)V σ + ρVμ(∂μV
σ )

)
εσνλ

= [ρ∇V V + (∇ · (ρV ))V ]σ εσνλ.

The last line is the equation for a self-parallel vector, written
in with a non-canonical affine parameter. The expression in
brackets corresponds to the divergence of the tensor T , i.e.
∂μTμσ , which represents – in our analogue with the cold mat-
ter energy–momentum tensor – the momentum conservation.
However, in General Relativity the each term in the bracket
vanishes independently, corresponding to the geodesic and
continuity equations respectively.

4.4 Symmetric connection with vectorial torsion (B = 0)

The off-shell limit, yielding an effective action that is the sum
of the three Chern–Simons terms (whose coupling constants
are B2, B7 and B8) plus an interaction coming from the term
whose coupling constant is B5,

0 = 2B2Fνρ + B5Rνρ
μ

μ, (16a)

0 = B5

(
δν
μFρσ + δν[ρFσ ]μ

)

7 Contracting the latter with εμρσ yields the former.
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+ B7

(
δν
μRρσ

λ
λ + δν[ρRσ ]μλ

λ

)

+ B8

(
Rρσ

ν
μ + δν[ρRσ ]λλ

μ

)
. (16b)

Since Eq. (16a) relates the field strength F with the trace
of the curvature tensor, Eq. (16b) become an equation for
just curvature objects. In particular, if the coupling constants
satisfy
(

2B2B7 − B2
5

B2B8

)

= 1

2
, (17)

Eq. (16b) coincides with Weyl’s projective curvature tensor
field, which in three dimensions is

Wμν
λ

ρ = Rμν
λ

ρ − 1

4
δλ
ρRμν

σ
σ

−1

2

(
Rσν

σ
ρδλ

μ − Rσμ
σ

ρδλ
ν

)

−1

8

(
δλ
μRνρ

σ
σ − δλ

νRμρ
σ

σ

)
.

Therefore, in this sector field equations describe a symmetric
projectively-flat connection. A projectively-flat connection is
locally written as

�ν
λ

ρ = δλ
ν ψρ + δλ

ρψν,

where ψμ is a generic (differentiable) vector field. From Eq.
(16a), the A-field is proportional to ψμ,

Aμ = −2B5

B2
ψμ.

Note that if the coefficients do not satisfy Eq. (17), the
two equations in (16) are incompatible unless the trace of the
curvature and the field strength vanish independently, i.e.

ψμ = ∂μα and Aμ = ∂μβ.

In the on-shell limit the system of field equations are
enriched by the additional equation,

B1AνAρ − B3∇(νAρ) + B6Rμ(ν
μ

ρ) = 0, (18)

Note that the nontrivial part of the equation comes from the
symmetric part, which is an Einstein-like equation.

4.5 Symmetric connection with trace-less torsion (A = 0)

The off-shell restriction to this sector involves the terms in
the action, in Eq. (3), with coefficients from B4, B6, B7 and
B8. The field equations on this off-shell limit are,

3B4Bν
μ

σBρ
σ

μ + 2B6Rμ(ν
μ

ρ) = 0, (19)

B6
(
2δν

μ∇τBρ
τ
σ + δν

ρ∇τBσ
τ
μ + δν

σ ∇τBμ
τ
ρ

)

+ B7

(
δν
μRρσ

λ
λ + δν[ρRσ ]μλ

λ

)

+ B8

(
Rρσ

ν
μ + δν[ρRσ ]λλ

μ

)
= 0. (20)

In the on-shell limit, there is an extra subsidiary condition,

B3∇μBν
μ

ρ + B5Rνρ
μ

μ = 0. (21)

Note that for volume-preserving connections, Eq. (21) is
nothing but the continuity equation of the T -tensor [see
Eq. (15)] which might be interpreted as a conserved “energy-
momentum tensor”, or in case of being non-degenerated it
admits the interpretation of a compatible inverse metric ten-
sor field. Similarly, the term accompanying the coupling con-
stant B7 in Eq. (20) vanishes.

Equation (19) is an Einstein-like equation, where the term
Bν

μ
σBρ

σ
μ behaves like a torsion-descendent metric.8

4.6 The torsion sector (� = 0)

The off-shell limit to the torsion sector of our model is given
by restricting the action (3) to the terms with coefficients
from B1 to B4. The field equations in this limit are

2B1AαBν
α

ρ + 2B2Fνρ + B3∂μBν
μ

ρ = 0, (22a)

2B1AνAρ − 2B3∂(νAρ) + 3B4Bν
μ

σBρ
σ

μ = 0. (22b)

However, the on-shell restriction to the torsion sector
yields an extra condition,

B3AμBρ
ν
σ + B5

(
δν
μFρσ + δν[ρFσ ]μ

)

+B6
(
2δν

μ∂τBρ
τ
σ + δν

ρ∂τBσ
τ
μ

+δν
σ ∂τBμ

τ
ρ

) = 0. (23)

5 A scan of cosmological solutions

5.1 Ansatz for the connection

In order to develop further aspects of the three-dimensional
polynomial affine model of gravity, we have to provide an
ansatz for the connection. The ansatz are found by solving
the equations derived from the vanishing Lie derivative of
the connection, i.e.

£V �̂μ
λ
ν = V σ ∂σ �̂μ

λ
ν − �̂μ

σ
ν∂σV

λ

+�̂σ
λ
ν∂μV

σ + �̂μ
λ
σ ∂νV

σ + ∂2V λ

∂xμ∂xν

= ∇̂μ∇̂νV
λ + R̂ρμ

λ
νV

ρ − ∇̂μ

(
Tν

λ
ρV

ρ
) = 0,

(24)

where V represents a vector associated to the generators of
the symmetry group, i.e. each V defines a symmetry flow,
and Tν

λ
ρ is the torsion of the affine connection �̂.

8 To our knowledge, the analysis of such geometrical object was firstly
considered by N. Popławski in Ref. [14].
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Two physically interesting cases are the isotropic connec-
tion, which is required to analyse spherical configurations,
e.g. black hole solutions, and the isotropic and homogeneous
connection, that is compatible with the cosmological princi-
ple, and therefore required to build cosmological models.

An (affine) Friedman–Robertson–Walker spacetime can
be defined as a geometry containing a constant curvature co-
dimension one subspace. The embedding is such that when
the self-parallel curves on the spacetime are restricted to the
co-dimension one subspace, the path is also a self-parallel
curve of the subspace.9 The three possible constant curvature
are customarily differentiated by the parameter κ which take
values +1, 0 or −1.

In three dimensions, the vector fields generating the
isometry groups of the different constant curvature two-
dimensional subspace are (in spherical coordinates)

J = (
0 0 1

)
,

X =
√

1 − κr2
(
0 cos ϕ − 1

r sin ϕ
)
,

Y =
√

1 − κr2
(
0 sin ϕ 1

r cos ϕ
)
,

(25)

where J is associated with the sole angular momentum defin-
ing the isotropy, while X and Y are associated with the trans-
lations defining the homogeneity.

5.1.1 Isotropic connection

Since the components of the vector field J are constants, the
Lie derivative of the connection along its flow is equal to that
of a

(1
2

)
-tensor. The vanishing Lie derivative along the vector

field J yields

£J �̂μ
λ
ν = ∂ϕ�̂μ

λ
ν = 0, (26)

i.e. this symmetry does not relate different components of
the connection, but its dependence on the coordinates.

At this stage, without mentioning the field equations for
the connection, if one would try to find an analogue of the
Schwarzschild solution, there are twenty seven functions to
be determined.

5.1.2 Isotropic and homogeneous connection

Now, we require that the restricted components of the con-
nection in Eq. (26), are symmetric with respect to the vec-
tor fields X and Y .10 The procedure to solve the equations
£X�μ

λ
ν = 0 is tedious but straightforward (see for exam-

ple Refs. [47,48]), hence we only show the results below.

9 A similar definition in Riemannian geometry can be found in Ref.
[59].
10 Note that due to the isotropy, calculating both Lie derivatives is
redundant, therefore we need to calculate and solve only one of them.

This time, we split the affine connection into its irreducible
components,

�t
t
t = j (t), �i

t
j = g(t)Si j ,

�i
k
j = γi

k
j , �t

i
j=� j

i
t = h(t)δij+ f (t)Sikεk j

r√
1−κr2

,

(27)

where f , g, h and j are functions of time, while Si j and γi
j
k

are the two-dimensional rank two symmetric tensor and con-
nection compatible with isotropy and homogeneity,11 defined
by

Si j =
( 1

1−κr2 0
0 r2

)
,

and

γr
r
r = κr

1 − κr2 , γϕ
r
ϕ = −r(1 − κr2), γr

ϕ
ϕ = 1

r
,

γϕ
ϕ
r = 1

r
.

It is important to highlight the existence of an unexpected
function in the components of the affine connection, to know,
the f -function, which might be introduced solely in the three-
dimensional case. Furthermore, as shown in Appendix C, the
function j can be set to zero by a reparametrisation of the
time coordinate.

Before moving to the ansatz of other fields, we would
like to mention that the connection components in Eq. (27)
reduce to the standard Friedman–Robertson–Walker Levi-
Civita connection for f = j = 0, g = aȧ and h = ȧ/a,
where a is the scale factor from the Friedman–Robertson–
Walker metric. Moreover, as shown in the seminar work by
Katzin, Levin and Davis [60] the symmetries of the connec-
tion would be improper collineations of the curvature.

The nonvanishing components of the B -field are

Bϕ
t
r = −Br

t
ϕ = ξ(t)

r√
1 − κr2

,

Bt
r
ϕ = −Bϕ

r
t = ψ(t)r

√
1 − κr2,

Br
ϕ
t = −Bt

ϕ
r = ψ(t)

r
√

1 − κr2
,

(28)

while the nonvanishing component of the A-field is At =
η(t).

11 It is worth mentioning that the general two-dimensional isotropic
and homogeneous (covariant and contravariant) tensors posses a non-
vanishing skew-symmetric component. This off-diagonal component
allows us to write the three-dimensional torsion full connection in the
same form of Eq. (27) but where the matrices S and S−1 are no longer
symmetric.
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5.2 Curvature of the symmetric connection

From Eq. (27), the components of curvature are calculated,
yielding

Rti
t
j = −Ri t

t
j = (ġ − gh) Si j − f g

r√
1 − κr2

εi j ,

Ri j
t
t = 2 f g

r√
1 − κr2

εi j ,

Rti
j
t = −Ri t

j
t =

(
ḣ + h2 − f 2

)
δ
j
i

+ (
ḟ + 2 f h

) r√
1 − κr2

S jkεki ,

Ri j
k
l = 2(gh + κ)Sl[ jδki] − f g

r√
1 − κr2

εi jδ
k
l . (29)

It follows that the trace of the curvature vanishes, Rμν
σ

σ =
0, and therefore our connection is equiaffine. Hence, the Ricci
tensor field is symmetric.

The nonvanishing components of the Ricci tensor field
are,

Rt t = −2
(
ḣ + h2 − f 2

)
, Ri j = (ġ + κ) Si j . (30)

The three-dimensional Weyl projective curvature for an
equiaffine connection is then,

Wμν
λ
ρ = Rμν

λ
ρ − 1

2

(
Rνρ δλ

μ − Rμρ δλ
ν

)
, (31)

Note that since in general three-dimensional connections
are not projectively flat, the curvature cannot be resolved in
terms of the Ricci tensor, unlike what it is expected from
General Relativity.

Before we turn over solving the differential equations,
there are some interesting remarks:

– The f 2-function is a parameter for the system of ordi-
nary differential equations for isotropic and homoge-
neous Ricci-flat spaces.

– Isotropic and homogeneous flat spaces require that either
f or g vanishes.

– The dynamical equations for f and g are always inte-
grable in terms of h and κ .

– The dynamics of h is determined by a Riccati ordinary
differential equation, which is the same for both flat and
Ricci-flat spaces.

Since the Riccati equation is not solvable in general, we
may characterise the solutions of the system of ordinary dif-
ferential equations by the partial solutions of the Riccati
equation.

5.3 Space of solutions

The substitution of the cosmological ansatz for the connec-
tion into the field equations in Eqs. (7), (8) and (9), yields the
system

2B8g f − B3ξη = 0, (32a)

B6(2gψ + ξ̇ ) − B8 f g = 0, (32b)

B8(2gh + κ − ġ) = 0, (32c)

B3ηψ + B8(2h f + ḟ ) = 0, (32d)

B1η
2 − B3η̇ + 3B4ψ

2 − 2B6(ḣ + h2 − f 2) = 0, (33a)

B3gη − 3B4ψξ + B6(κ + ġ) = 0, (33b)

2B1ηξ + B3(2gψ + ξ̇ ) = 0. (33c)

In the above set of equations the absence of the coefficients
B2, B5 and B7 is due to the form of the cosmological ansatz,
e.g. since A(t) = η(t)∂t then its field strength is identically
zero.

Note that the Eq. (32a) is algebraic, from Eqs. (32b) and
(33c) an algebraic relation is obtained after eliminating the
expression 2gψ + ξ̇ , and similarly from Eqs. (32c) and (33b)
after eliminating ġ. These expressions are

2B8g f − B3ξη = 0, (34a)
B8

B6
g f + 2

B1

B3
ξη = 0, (34b)

3
B4

B6
ψξ − 2gh − B3

B6
gη = 2κ. (34c)

Equations (34a) and (34b) can be seen as a system of equa-
tions for the variables f and η as functions of g and ξ , but
there independence is dictated by the determinant of the sys-
tem coefficients,

� = B8

[
4
B1

B3
+ B3

B6

]
gξ. (35)

We explore the space of cosmological solutions consider-
ing all possible cases, which can be represented by decision
trees. On the one hand, when the determinant in Eq. (35)
is nonvanishing, it follows that f = η = 0, and also that
both g and ξ are nonvanishing. The field equations allow
to parametrise ψ = ψ(g, h, ξ), and thus the final system
reduces to a set of three equations and three unknowns.
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On the other hand, when the determinant � vanishes,
following the same approach, the decision tree has more
branches.12

Ω = 0

g = 0 ∧ κ = 0

ξ = 0 2 eqs., vars.: f, h, η, ψ

η = 0

ξ = 0 2 eqs., var.: f, h, ψ

ψ = 0 2 eqs., var.: f, h

ξ = 0

f = 0

g = 0 ∧ κ = 0
η = 0 1 eq., var.: h, ψ

ψ = 0 1 eq., var.: h, η

ψ = 0 3 eqs., var.: g, h, η

η = 0
g = 0 ∧ κ = 0 1 eq., var.: h, ψ

ψ = 0 3 eqs., var.: g, h

g = 0 ∧ κ = 0 2 eqs., var.: f, h, η, ψ

ψ = 0

f = 0 3 eqs., var.: g, h, η

g = 0 ∧ κ = 0 2 eqs., var.: f, h, η

The solutions obtained after exhausting the branches of
the decision trees are presented below, but they are grouped
according to the fields that are nontrivial.

5.4 Torsion-free limit (A = B = 0)

Consider first the field equation (10). Although at first sight
the solution seems that spacetime is flat, when working the
expression carefully, one notice that the requirements are
that,

f g = 0, ġ − 2gh − κ = 0, ḟ + 2 f h = 0, (36)

since these are the restriction of the field equations in Eq.
(32) to elements obtained from the B8-term.

However, the extra equation obtained when we take theon-
shell torsion-free limit, i.e. Ricci-flatness, is satisfied simul-
taneously if and only if the connection is flat.

5.4.1 Projectively-flat solutions

A projectively-flat connection requires to solve the Eq. (36).
There are two branches of solutions, with either g = 0 or

f = 0. None of these branches requires the connection to be
flat. Additionally, since h is a non-dynamical function,

12 Note that in the decision tree we do not include branches for the cases
where the parameters of the model are constrained, i.e. the case B8 = 0
and B2

3 + 4B1B6 = 0. These cases will be analysed in Sect. 5.10.

it is possible to solve the field equations in terms of an h-
parameter function.

The branch g = 0, requires vanishing κ . In this scenario,
the f -function is solved by

f (t) = C f e
−2H(t),

where H(t) = ∫ t
t0

dτ h(τ ).
In the branch f = 0, again the h-function plays the role

of a parameter function, and the dynamical function is given
by

g(t) = e2H(t)
(
Cg + κ

∫ t

t0
dτ e−2H(τ )

)
,

with Cg the integration constant.
Note that the case f = g = 0 leaves the function h

undetermined, but it is compatible with both of the previous
branches.

5.4.2 Flat solutions

As mentioned previously, flat connections solve the field
equations obtained from the on-shell torsion-less limit of the
polynomial affine model of gravity.

From Eq. (29), the system of ordinary differential equa-
tions defining isotropic and homogeneous affinely connected
flat spaces are

f g = 0, ġ − gh = 0, gh + κ = 0,

ḣ + h2 − f 2 = 0, ḟ + 2 f h = 0.
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As in the previous case, there are two branches of solu-
tions. The branch with f = 0, the field equations are solved
by

h(t) = 1

t + Ch
, g(t) = −κ(t + Ch), (37)

with Ch the integration constant of the equation for the h-
function.

The second branch requires g = 0∧κ = 0. Since the case
f = 0 is included the other branch, we restrict to f �= 0.
Therefore, the f -function can be integrated in terms of h,

f (t) = e−2H(t).

Then, the field equation for h turns into a second order dif-
ferential equation. The solution of the system is given by

h(t) = t + c1

(t + c1)2 + 1
, f (t) = 1

(t + c1)2 + 1
. (38)

5.4.3 Ricci-flat solutions

Ricci-flat connections solve the field equations from the on-
shell torsion-free limit of polynomial affine gravity solely if
the coupling constant B8 is zero.

From Eq. (30), the system of ordinary differential equa-
tions defining isotropic and homogeneous affinely connected
Ricci-flat spaces are

ḣ + h2 − f 2 = 0, ġ + κ = 0. (39)

The solution for the differential equation for g is

g(t) = −κt + Cg.

The first equation in Eq. (39) is a Riccati ordinary dif-
ferential equation, in which the f -function plays the role
of parameter function. A well-known strategy to solve the
Riccati equation is to transform it into a second order linear
differential equation. The transformation u(t) = eH(t), takes
it onto

ü − f 2u = 0. (40)

Equation (40) can be immediately compared with the one-
dimensional time-independent Schrödinger equation, where
u would be the wave function, the f 2-function plays the
role of the quantum mechanical potential minus the energy
eigenvalue.

5.5 Purely vectorial sector (� = B = 0)

The off-shell limit toward the purely vectorial sector is domi-
nated by the term whose coefficient is B2. The field equations
are identically satisfied, given that for Aμ = η(t)δ0

μ its field
strength vanishes, i.e. the field equations impose no restric-
tion to the function η.

On the other hand, the subsidiary condition coming from
the on-shell limit is

B3 η̇ − B1 η2 = 0,

whose solution is

η(t) = − B3

B1

1

t + Cη

. (41)

5.6 Purely traceless torsion sector (� = A = 0)

In this sector, the field equations from the off-shell limit
become ψ2 = ψξ = 0, whose solution is driven by
ψ(t) = 0, while ξ(t) remains as an unknown function.

When one considers the on-shell limit, the system of field
equations is

ξ̇ = 0, κ = 0, ψ2 = 0, −3B4 ψξ + B6 κ = 0, (42)

which is solved by

ξ(t) = Cξ , ψ(t) = 0, κ = 0. (43)

5.7 Connection with vectorial torsion (B = 0)

The field equations, in the off-shell limit, are those of the
non-Abelian Chern–Simons for the symmetric connection
and the Chern–Simons for the A-field. They, however do
not interact, and additionally in the cosmological ansatz the
field equation for A is automatically satisfied. Therefore, the
cosmological models with vectorial torsion in the off-shell
limit, do not differ from those of the torsion-free (off-shell)
limit mixed – but non-interacting – with an unconstrained
vector field Aμ = η(t)δ0

μ.
The field equations obtained in the on-shell limit come

with an additional condition, which can be written as

B6Rμν − B3∇μAν + B1AμAν = 0.

The above expression yield two independent field equations,

−2B6

(
ḣ + h2 − f 2

)
− B3η̇ + B1η

2 = 0, (44)

B6 (ġ + κ) + B3 gη = 0. (45)

Therefore the equations to solve are Eqs. (36), (44) and (45).
From Eqs. (36), the branches structure is inherited, i.e. g =
0 ∨ f = 0.

The branch of solutions with vanishing g requires that
κ = 0. The nontrivial field equations are then Eq. (44) and

ḟ + 2 f h = 0.

Since f (t) = exp(−2H(t)), Eq. (44) can be recasted as

−2B6

(
ḣ + h2 − e−4H(t)

)
− B3η̇ + B1η

2 = 0.
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From the last equation it is evident that a solution is given by
the flat connection (38), together with

η(t) = − B3

B1

1

t + Cη

.

Note in addition that for a generic function h, unrelated to η,
we can define

φ(t) = 2B6

B1

(
ḣ + h2 − e−4H(t)

)
,

resulting in a Riccati equation for theη-function, which might
be transformed into the one-dimensional Schrödinger equa-
tion

ü − B3

B1
φ(t)u(t) = 0,

with the change of variable, u(t) = exp
(
− B3

B1
H(t)

)
where

H(t) = ∫ t
t0

dτ η(τ). Summarising, in this branch, given a
parameter function h, it is (in principle) possible to integrate
the field equations to determine the connection.

On the other hand, in the branch f = 0, the nontrivial
differential equations to solve are

B1η
2 − B3η̇ − 2B6(ḣ + h2) = 0,

B6(ġ + κ) + B3ηg = 0,

ġ − 2gh − κ = 0.

(46)

Solving for η and h from the last two expressions and sub-
stituting into the first, one obtains a differential equation for
the g-function,

B6

B3

(
B2

3 − 2B1B6

) ġ + κ

g
= 0. (47)

There are three branches of solutions:

1. For ġ + κ = 0, it follows that g = −κt + Cg , η = 0
and h = κ

2(κt−Cg)
. Note that for κ = 0 this solution is

valid if Cg �= 0, but the solution with g = 0 requires that
h = 1

t+Ch
.

2. For B6 = 0 there are two kinds of solutions, both with
arbitraryh function: (i) g = 0∧κ = 0 andη = − B3

B1

1
t+Cη

,

or (ii) η = 0 and g(t) = e2H(t)
(
Cg + κ

∫ t
t0

dτ e−2H(τ )
)

.

3. For B2
3 = 2B1B6, the solutions are parametrised by the

function g, which is required to be nonvanishing and C1.
Hence, h = ġ−κ

2g and η = − B3
B1

ġ+κ
g .

5.8 Connection with traceless torsion (A = 0)

The field equations in the off-shell limit are obtained from
(19) and (20), and yield

f g = 0, B6(2gψ + ξ̇ ) − B8 f g = 0, ġ − 2gh − κ = 0,

ḟ + 2 f h = 0, 3B4ψ
2 − 2B6(ḣ + h2 − f 2) = 0,

− 3B4ψξ + B6(κ + ġ) = 0.

The extra condition obtained from the on-shell limit is

ξ̇ + 2gψ = 0,

was already satisfied with the off-shell equations, i.e. there
is no difference between the off-shell and on-shell A → 0
limit, for the cosmological ansatz.

The solutions to the system of field equations are cate-
gorised in to classes, those with g = 0 or f = 0.

The branch of solutions with g = 0 requires that κ = 0
and either ψ = 0 or ξ = 0. On the one hand, for ψ = 0,
the field equations require that ξ = Cξ , while the nontrivial
equations are solved by (38), with the difference that the
torsion tensor field is nonvanishing. on the other hand, for
ξ = 0 the field equations to be solved are

ḟ + 2 f h = 0 and ḣ + h2 − f 2 − 3B4

2B6
ψ2 = 0.

Since there are three unknowns and only two equations, the
solutions are parametrised by one of the unknowns, e.g. ψ .
A simple solution is obtained for ψ ∝ f , with results similar
to those in Eq. (38). Note that another solution is given by
f = 0, in whose case the sole nontrivial field equation is

ḣ + h2 − 3B4

2B6
ψ2 = 0. (48)

This is a Riccati equation for h, which is equivalent to a one-
dimensional Schrödinger equation, in which the function ψ

is the analogous to the quantum mechanical potential.
The system of equations for the branch with f = 0 is

ψ(t) + ξ̇

2g
= 0, h(t) − ġ − κ

2g
= 0,

− 3B4ξ̇
2 + 2B6(κ

2 − ġ2 + 2gg̈) = 0, 2B6(κ + ġ)

+ 3B4ξ ξ̇

g
= 0

(49)

The system of Eq. (49) is solved by

ψ(t) = − ξ̇

2g
, (50a)

h(t) = ġ − κ

2g
, (50b)

ξ(t) =
√

C2
ξ − 2B6

3B4

(
g2 + 2κ

∫
g dt

)
, (50c)

0 = gg̈

(
g2+2κ

∫
g dt

)
+κg2 (ġ+1)

+κ

∫
g dt

(
1−ġ2

)
+3B4

4B6
Cξ

(
ġ2−2gg̈−κ2

)
. (50d)
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Particularly, for κ = Cξ = 0 the explicit solution is given
by13

f (t) = 0, g(t) = Cmt + Cg, h(t) = Cm

2(Cmt + Cg)
,

ξ(t) =
√

−2B6

3B4

(
Cmt + Cg

)
,

ψ(t) = −
√

− B6

6B4

Cm

Cmt + Cg
, η(t) = 0, (51)

where sgn (B4) = − sgn (B6).
For κ �= 0 a simplification of the field equations is to

propose g as a linear function of t , yielding

f (t) = 0, g(t) = −κt + Cg, h(t) = 1

t − Cgκ
,

ξ(t) = Cξ ψ(t) = 0, η(t) = 0.

(52)

5.9 Restriction to torsional sector (� = 0)

The solutions to the off-shell restriction to the torsional sector
require that either ψ = 0 or ξ = 0.14 For ξ = 0 the nontrivial
field equation is the Riccati-like equation,

B1η
2 − B3η̇ + 3B4ψ

2 = 0, (53)

which (as mentioned before) is equivalent to a
one-dimensional Schrödinger equation whose potential is
related to the function ψ2. For ψ = 0, the explicit solution
is

ψ(t) = 0, η(t) = − B3

B1

1

t + Cη

, ξ(t) = Cξ

(
t + Cη

)2
.

(54)

In the on-shell limit, the subsidiary conditions are ξη = 0,
ξ̇ = 0 and ψη = 0. Hence, there is no solution because the
field equations require that B = 0.

5.10 Exceptional solutions to the whole model

The cosmological solutions to polynomial affine model of
gravity in three dimensions with all the fields turned on are
exceptional, since we are solving the seven dimensional sys-
tem of field equations (32), with only six unknowns. Gener-
ically, the consistency conditions of the system require that

13 Formally, the field equations can be solved for Cξ �= 0, but the
solution for the g-function is expressed in terms of the inverse of an
hypergeometric function. Hence, we have omitted the details of such
solution.
14 Note that ψ and ξ cannot vanish at the same time, since it would
imply that B = 0.

either some of the functions vanish (worsening the well-being
of the system) or a relation between the parameters of the
model.

A first example of these is given by the case g = ξ = κ =
0, with nontrivial field equations

ḟ + 2 f h = − B3

B8
ηψ, (55a)

ḣ + h2 − f 2 = 1

2B6

(
B1η

2 − B3η̇ + 3B4ψ
2
)

. (55b)

These field equations are solvable when all functions are
inversely proportional to t .

Another branch of solutions is found when the cou-
pling constants are not all independent. As an example, for
B2

3 + 4B1B6 = 0 the field equations allow to decouple the
functions g and ξ – which are unconstrained –, from the
equations for f and ψ , which should satisfy the differential
equations (55). We were able to find two types of solutions of
this system of equations (which do not fall into the previously
presented categories).

– Solution with B3 = 0: With this condition, the solution
is characterised by the functions

f (t) = 0, g(t) = −κt + Cg, h(t) = 1

t − κCg
,

ξ(t) =
√

−2B6

3B4
Cg, ψ(t) = 0, η(t) = arbitrary,

(56)

for κ �= 0. While for κ = 0, the functions defining the
connection are

f (t) = 0, g(t) = Cmt + Cg, h(t) = Cm

2(Cmt + Cg)
,

ξ(t)=
√

−2B6

3B4
(Cmt + Cg), ψ(t)=

√

− B6

6B4

Cm

Cmt+Cg
,

η(t) = arbitrary.

(57)

– Solutions for κ = 0: The system of field equations
can be solved for the ansatz g(t) = tn with n ∈
R−

{
−2,

[
1−√

33
4 , 1+√

33
4

]}
, with the addition condition

B4 = − 8B3
6 (n + 2)

3B2
8

(
2n3 − 3n2 − 3n + 4

) .

The functions defining the connection are

f (t) =
√

2n2 − n − 4 sgn(B8)

2t
, g(t) = tn,

h(t) = n

2t
, η(t) = 2B6

B3t
,
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ξ(t) =
√

2n2 − n − 4 sgn(B8)tn

2B6
,

ψ(t) = (n − 1)
√

2n2 − n − 4 sgn(B8)

4t B6
. (58)

6 Discussion and conclusions

In an attempt to bring gravity to the same footing with gauge
theories, we have proposed a model of gravity whose sole
fundamental field is the affine connection. Such model has
been named polynomial affine gravity. Our model might be
understood as a Schwarz topological theory, in the sense that
the metric plays no role in the model building, similar to the
case of Chern–Simons theories.

The polynomial affine model of gravity has been built in
three and four dimensions (i.e. there are no ab initio restric-
tions on the dimension of the space, unlike for Chern–Simons
theories), and possesses attractive features. Firstly, the model
is appealing for a quantum theory of gravity, since all the
terms in the action are power-counting renormalisable, and
in addition the lack of additional invariant forms would for-
bid the existence of counter-terms. Secondly, the absence of
an energy scale, reflected by the fact that all the coupling
constants are dimensionless, appears as a hint (of a sort) of
conformal invariance (at least at tree level).

Customarily, the conformal transformation is understood
(in metric gravitational models) as a point-wise scaling of the
metric tensor field, and the invariant curvature under these
transformations is the conformal Weyl tensor field, i.e. the
g-traceless part of the Riemann–Christoffel curvature. This
notion, can be generalised without evoking a metric. The
idea is that self-parallel curves can be preserved under “gen-
eralised” transformations. These are the projective transfor-
mations, and the invariant curvature under these transforma-
tions is the projective Weyl tensor field.

In this article we focus in the three-dimensional version
of the polynomial affine model of gravity, where the action
and therefore the field equations are simpler than their four-
dimensional analogous, expecting the physical interpretation
to be clearer. Note that in comparison the three-dimensional
action [see Eq. (3)] is determined by eight terms (including
the Chern–Simons terms) while the four-dimensional one is
composed by twenty terms (disregarding topological terms),
unrelated through boundary terms.

Interestingly, the term of the action with coefficient B3 can
be re-written (up to boundary term) as, ∇μAαBβ

μ
γ dV αβγ .

In this case, the B -field can be solved algebraically.
It is worth noticing that unlike the three-dimensional ver-

sion of General Relativity, in an affine model the (projective)
Weyl tensor does not vanish necessarily, and thus there is
room to novel phenomenological effects. In particular, the
field equation (9) contains terms that can be related to the

projective Weyl curvature, and therefore its space of solu-
tions might differ from the one expected in General Relativ-
ity, even in the cases where the field equations are alike, e.g.
for flat or Ricci-flat manifolds.

The field equations derived from the action in Eq. (3),
include a generalisation of the Einstein field equations [see
Eq. (8)],

Rμ(ν
μ

ρ) = − B1

B6
AνAρ + B3

B6
∇(νAρ)

−3B4

2B6
Bν

μ
σBρ

σ
μ = T̃νρ, (59)

obtained by varying with respect to the B -field is the anal-
ogous to the Einstein equations written in the Ricci form.
Noticeable, the fact that – even for torsion-free truncation –
the field equations for the symmetric connection appear from
the variation with respect to other field, has been interpreted
as a sign of the non-uniqueness of the Lagrangian description
of the system [61].

The Eq. (59) represents a non-Riemannian generalisation
of the Einstein equations in the Ricci form, where the right-
hand side geometrically encodes what in General Relativity
is attributed to the presence of matter. However, T̃ does not
admit a separation between material and geometrical con-
tributions, unlike its analogous form in General Relativity,
which is expressed in terms of the energy–momentum tensor
Tμν and its trace T , as

T̃ GR
νρ ∝ Tνρ − Tgνρ.

Furthermore, when T̃ is non-degenerated, it equips the
affine manifold with a torsion-descendent notion of metric,
and hence Eq. (59) provides a notion of affine Einstein mani-
fold. A nice feature of this torsion-descendent metric is that,
unlike the emergent metric from Ref. [49], it might be well-
defined even when the space is Ricci-flat.

However, since the affine connection is a less intuitive geo-
metrical object (in comparison with the metric), we analysed
the possible truncations of the model, i.e. sectors where only
a subset of the irreducible components of the connections are
nontrivial.

Turning to the solutions of the field equations, we found
the ansätze of the three-dimensional affine connection com-
patible with the cosmological principle. Firstly, we found
that the symmetric connection is determined by three func-
tions,15 f , g and h. The f function has no analogous in a
cosmological Levi-Civita connection, and therefore it is a
non-Riemannian parameter. In addition, the g and h func-
tions describe a non-Riemannian cosmological geometry

15 When solving the differential equations obtained from the Lie deriva-
tive of the connection, there is a fourth parametric function ( j) char-
acterising the affine connection, but we show in Appendix C that this
parameter can be eliminated by a reparametrisation on the time coordi-
nate.
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unless they could be parametrised in terms of a scale fac-
tor, a = a(t), as

g = aȧ and h = ȧ

a
. (60)

Hence, in the torsion-free sector of the polynomial affine
model of gravity the non-Riemannian structure percolates
the Einstein-like equations if f �= 0 and/or g and h are not
parametrised as in Eq. (60).

Before discussing the cosmological structure of the tor-
sional fields, we would like to briefly mention the geometri-
cal meaning of the f function in the cosmological ansatz of
the symmetric connection. Consider the symmetric part of
the affine connection defining the polynomial affine model
of gravity, �μ

λ
ν , and a generic metric, gμν . Let �̊μ

λ
ν be

the Levi–Civita connection associated to the metric g. The
difference between the two connections, �μ

λ
ν − �̊μ

λ
ν , is a

tensor defining the Weyl’s congruent transferences.16 Such
tensor does not have an analogous in Riemannian geome-
try, since it is related to the non-metricity. The cosmological
ansatz for the connection in three dimensions admits certain
components of the transference tensor, determined by the
function f . Interestingly, in the cosmological ansatz in four
dimensions requires vanishing transference tensor.

The (cosmological) torsion field is characterised by three
functions, η, ξ and ψ , the first one defines the A-field
and the remaining two define the B -field. In comparison
with the four-dimensional case, which is characterised by
just two functions, the torsion tensor field is less restricted.
Noticeable, the same is true about the characterisation
of the (cosmological) symmetric connection, since in the
four-dimensional scenario it is determined (after the time
reparametrisation) by solely two functions.17

Using the cosmological ansatz, the Eq. (59) is written as

ḣ + h2 = �(non-Riemannian terms in �̂ ),
(

in GR: Ḣ + H2 ∝ (ρ + 3p) with H = ȧ

a

)
(61)

where h is one of the functions defining the symmetric con-
nection and its analogous in General Relativity, i.e. H , is the
Hubble parameter. Equation (61) is a generalisation of the
Friedmann equation, where other geometric fields uphold
what in General Relativity would be interpreted as matter
effects. Generically, the � function depends on all the other
(i.e. non h) functions characterising the affine connection,
but it is peculiar that the case where only f and h are nonva-
nishing, the Eq. (61) becomes a Riccati ordinary differential

16 These transformations might be also called congruent transplanta-
tion, which is the translation of the original German vocable (kongruente
Verpflanzung).
17 We would like to stress that in Refs. [47–49] we were not aware of the
time reparametrisation, and therefore the additional function turns the
manipulation of the field equations into a more cumbersome process.

equation

ḣ + h2 − f 2 = 0,

which can be expressed through the transformation u(t) =
eH(t), where H(x) = ∫ x

x0
dy h(y), onto a one-dimensional

“time-independent” Schrödinger equation, ü − f 2u = 0,
where u would be the wave function, the f 2-function plays
the role of the quantum mechanical potential (with the energy
eigenvalue subtracted). Note that particularly in the flat and
Ricci-flat cases (coming from the torsion-free truncation) the
Riccati equation with constant f is analogous to the (acceler-
ation) Friedmann equation describing a Universe filled with
a perfect fluid in a dark energy dominated era, which in Gen-
eral Relativity is

ḣ + h2 − 8πG

3
ρDE = 0.

In Sect. 5 have found cosmological solutions to the field
equation of the polynomial affine model of gravity, charac-
terised by the system in Eq. (32). We proceeded systemati-
cally, scanning all the possible kinds of solutions. We noted
that the solutions split into two categories, depending on
whether the function � from Eq. (35) vanishes or not. How-
ever, we re-classified the solutions according to the type of
truncation they belong to. It is worth mentioning that even
though in the classification of solutions we do not consider
explicitly the case with vanishing B8, this branch of solutions
lying in the sector � = 0, yields no additional solutions to
those in Sect. 5, e.g. the solutions with f = 0 in Sect. 5.4.2
and the solutions in Sect. 5.8. Furthermore, in the sector with
4B1B6 + B2

3 = 0 we found solutions to the whole system of
field equations, where none of the functions determining the
components of the connection vanish.

Now, even though we have found affine cosmological
solutions to the polynomial affine model of gravity in three
dimensions, real life applications require the existence of a
metric. In purely affine models, although the fundamental
field is the connection, it is possible to define various types
of (derived) metrics. Let us mention four of these derived
metrics:

1. The symmetric part of the Ricci tensor field, when it is
non-degenerated, serves as a metric. This was noticed
very early in the development of differential geometry
(see for example section 5 of Ref. [44]), and used recently
in Ref. [49]. A notable disadvantage is that interesting
cases, such as Minkowski and Schwarzschild, cannot be
described using this notion of metric.

2. The quasi-Hodge dual of the B -field, i.e. Tμν =
1
2Bα

μ
βεναβ , is a symmetric

(2
0

)
-tensor density. When

T is non-degenerated, it can be used as an inverse met-
ric density, similar to that used by Eddington, Einstein,
Schrödinger and others to build affine models of General
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Relativity (see Ref. [62]). In Ref. [21] this analogue is
used to intuitively relate the three-dimensional action of
polynomial affine gravity with General Relativity non-
minimally coupled to the A-field (see Eq. (9) of the
referred article).

3. The construction Tμ
λ
ρTν

ρ
λ, defined from the torsion,

is a symmetric
(0

2

)
-tensor field that serves (when non-

degenerated) as a metric. This tensor was introduced by
Poplawski in Ref. [14], and it is related to the symmetric
part of Eq. (A.7) (since the S-tensor is proportional to
the torsion).

4. The symmetric part of Sσμ
σ

ν in Eq. (A.7) can also be
interpreted as a metric, when it is non-degenerated.

Each of the examples above serves to endow the affine
manifold with a metric structure with respect to which we
could measure geodesic distances and compare with the par-
allel transport obtained using the symmetric connection.

Only a few of the solutions explicitly presented in the
paper admit non-degenerated metrics. From the solution to
the coupled system �–A, the case with vanishing f and B6

[see the second type of solutions after Eq. (47)] possesses a
Riccimetric as long as the arbitrary function h is not the recip-
rocal of t , while the case with vanishing f and B2

3 = 2B1B6

[see the third type of solutions after Eq. (47)] possesses a met-
ric of the fourth kind, as long as g �= −κt+Cg . The solutions
of the coupled system �–B with κ = 0 [see Eq. (51)] and
the exceptional cases with vanishing κ [see Eqs. (57) and
(58)], possess the first three types of metric described above,
as long as Cm �= 0 and n �= 0. In addition, one can endow
the exceptional solutions with the fourth kind of metric, with
the constrain that η is not a constant function in Eqs. (56) and
(57).

The above opens the discussion of the background inde-
pendence of the gravitational model, which is explicitly bro-
ken in General Relativity due to the presence of the metric
in the Einstein–Hilbert action.

We would like to conclude this article highlighting some
interesting questions that are not completely answered or
understood, from the point of view of our model.

Firstly, we need to mention a relation between the poly-
nomial affine model of gravity and General Relativity. Note
that if the field Tμν from Eq. (15), which is a symmetric

(2
0

)
-

tensor density, is identified with the inverse metric density
from General Relativity, i.e. Tμν ≡ √

ggμν ,18 the action in
Eq. (3) is analogous to the three-dimensional General Rel-
ativity with cosmological constant, nonminimally coupled
with a vector field A and the Chern–Simons terms [21].

Secondly, so far our analysis is based in the pure gravity
sector, i.e. without the addition of matter. The absence of a

18 This identification has been used by Schrödinger [6] and Kijowski
[7].

fundamental metric tensor in the formulation of the model
forbids the standard inclusion of matter through the mini-
mal coupling procedure. Hence, the interaction with matter
needs to be reformulated. Even though we have been able of
coupling a scalar field with the polynomial affine model of
gravity (in four dimensions), we are working in how to gen-
eralise such coupling to other types of fields (in particular,
fermionic matter).

Thirdly, although our preliminary analysis of the dynam-
ics of the model is not conclusive, we venture to conjecture
that a gravitational model based mediated by the most general
affine connection contains propagating degrees of freedom,
unlike the three-dimensional version of General Relativity.

Our study provides the framework for analysing the four-
dimensional version of the polynomial affine model of grav-
ity, since the development of this paper allowed us to focus
in deepen our understanding of the geometrical structure
of affinely connected manifolds, without distracting our-
selves by the complexity introduced on the field equations
through additional components available in higher dimen-
sional spaces. Further studies, which take these tools into
account, will allow us to complete the classification of the
solutions in four dimensions started in Refs. [48,49].
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Appendix A: Notions of non-Riemannian geometry

The aim of this appendix is to provide a short summary
of results in non-Riemannian geometry, and also intends to
fix the notation used through the development of the paper.
Readers interested in the subjects are recommended to review
the classical texts by Eisenhart [44] and Schouten [45], the
final chapter of the book by Synge and Schild [63], the book
by Gilkey and collaborators [64], and articles like Refs. [65–
67].

A d-dimensional affine manifold (M, ∇̂) is a
d-dimensional differential manifold M equipped with a lin-
ear connection ∇̂. The linear connection is determined by
their d3-independent components �̂μ

λ
ρ , such that

∇̂μ = ∂μ + �̂μ
••.

Since an affine structure does not require the existence of a
metric tensor field, the affine connection admits a decompo-
sition in their lower indices, into their symmetric and skew-
symmetric parts,

�̂μ
λ
ρ = �̂(μ

λ
ρ) + �̂[μλ

ρ] = �μ
λ
ρ + Sμ

λ
ρ.

The symmetric component of the connection remains as a
connection, which we denote by simply �μ

λ
ρ , while the

skew-symmetric component is a tensor field proportional to
the torsion tensor field (explicitly, it is twice the tensor field).

The curvature of a connection, defined by

R̂(X,Y )Z =
(
∇̂X ∇̂Y − ∇̂Y ∇̂X − ∇̂[X,Y ]

)
Z , (A.1)

with X , Y and Z vector fields, can be written in components
as

R̂μν
λ
ρ = ∂μ�̂ν

λ
ρ − ∂ν�̂μ

λ
ρ + �̂μ

λ
σ �̂ν

σ
ρ − �̂ν

λ
σ �̂μ

σ
ρ.

(A.2)

The curvature tensor field is skew-symmetric in the first cou-
ple of indices, and therefore the contra-variant index can
be contracted in two independent ways, R̂λν

λ
ρ and R̂μν

λ
λ,

referred to as the first and second Ricci curvatures. Custom-
arily, the first Ricci curvature is simply called Ricci tensor
field, while the second Ricci curvature is also referred to
as homothetic curvature or trace of the curvature. Note that
when restricting oneself to Riemannian connections the Ricci
tensor field is symmetric and the trace of the curvature van-
ishes, but for generic affine connections these properties do
not hold.

The curvature in Eq. (A.2) can be decomposed in terms of
the symmetric connection �μ

λ
ρ and the tensor Sμ

λ
ρ , yield-

ing

R̂μν
λ
ρ = Rμν

λ
ρ + ∇̂μSν

λ
ρ − ∇̂νSμ

λ
ρ

−Sμ
λ
σSν

σ
ρ + Sν

λ
σSμ

σ
ρ − 2Sμ

σ
ν

Sσ
λ
ρ = Rμν

λ
ρ + ∇μSν

λ
ρ

−∇νSμ
λ
ρ + Sμ

λ
σSν

σ
ρ

−Sν
λ
σSμ

σ
ρ = Rμν

λ
ρ + Sμν

λ
ρ. (A.3)

Given the split of the curvature of the affine connection in
Eq. (A.3), we can analyse the contractions of their compo-
nents. Let us take first the curvature of the symmetric con-
nection,

Rμν
λ
ρ = ∂μ�ν

λ
ρ − ∂ν�μ

λ
ρ + �μ

λ
σ �ν

σ
ρ − �ν

λ
σ �μ

σ
ρ.

The Ricci tensor is given by

Rνρ = Rλν
λ
ρ

= ∂λ�ν
λ
ρ − ∂ν�ρ

λ
λ

+�σ
λ
λ�ν

σ
ρ − �ν

λ
σ �ρ

σ
λ, (A.4)

which splits into symmetric and skew-symmetric parts,

R(νρ) = ∂λ�ν
λ
ρ − 1

2

(
∂ν�ρ

λ
λ + ∂ρ�ν

λ
λ

)

+ �σ
λ
λ�ν

σ
ρ − �ν

λ
σ �ρ

σ
λ,

R[νρ] = −1

2

(
∂ν�ρ

λ
λ − ∂ρ�ν

λ
λ

)
.

From the transformation of the connection under diffeomor-
phisms, one finds that the trace of the symmetric connection,
�μ = �μ

λ
λ, transforms like

�′
μ = �α

∂xα

∂x ′μ + ∂μ ln d,

with d = det ∂xα

∂x ′ν is the scalar density defined by the deter-
minant of the transformation. Therefore, the skew-symmetric
part of the Ricci tensor is given by the curl of a vector

R[μν] = ∂μaν − ∂νaμ, with aμ = aμ
λ
λ. (A.5)

The tensor aμ
λ
ρ is defined by the difference between the

connection �μ
λ
ρ and a symmetric connection of reference.

In order to illustrate this point, we show two cases: (i) if
one chooses the Levi–Civita connection as reference, aμ

λ
ρ

is the contorsion tensor; and (ii) if the reference is given by
the parameters of the parallel displacement in an Euclidean
manifold, then aμ

λ
ρ = ∂xλ

∂y′α
∂y′α

∂x (μ∂xρ) .
The second contraction of the curvature, i.e. the trace of

curvature, is given by

Rμν
λ
λ = ∂μ�ν − ∂ν�μ = −2R[μν] .

The last step might be obtained from the algebraic Bianchi
identity for a torsion free connection.

The second term coming from the splitting of the curvature
tensor,

Sμν
λ
ρ = ∇μSν

λ
ρ − ∇νSμ

λ
ρ

+Sμ
λ
σSν

σ
ρ − Sν

λ
σSμ

σ
ρ, (A.6)
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admits two contractions

Sμν
μ

ρ = ∇μSν
μ

ρ + ∇νSρ

−Sσ Sν
σ

ρ + Sν
μ

σSρ
σ

μ, (A.7)

and

Sμν
λ
λ = ∇μSν − ∇νSμ = ∂μSν − ∂νSμ . (A.8)

In the above equations we have introduced the vector Sμ =
Sμ

λ
λ = −Sλ

λ
μ.

Note that both terms of the homothetic curvature of the
linear connection, �̂ , is the curl ofSμ −aμ and thus invariant
under the addition of a gradient, i.e. Sμ − aμ → Sμ − aμ +
∂μφ. This reflects a gauge redundancy in the trace of the
curvature, which is inherited from the freedom of choosing
a connection of reference to define the a tensor.

Let us turn to the Bianchi identities. The torsion of the
affine connection is defined as

T̂ (X,Y ) = ∇̂XY − ∇̂Y X − [X,Y ], (A.9)

and its derivative is

∇̂Z (T̂ (X, Y )) = ∇̂Z T̂ (X, Y ) + T̂ (∇̂Z X, Y ) + T̂ (X, ∇̂ZY ).

(A.10)

The derivative of the vectors in last two terms of Eq. (A.10),
are expressible in terms of the torsion, since

T̂ (T̂ (X, Y ), Z) = T̂ (∇̂XY, Z) + T̂ (Z , ∇̂Y X) − T̂ ([X, Y ], Z).

(A.11)

The algebraic Bianchi identity is obtained by adding the
cyclic permutation of the vectors X , Y and Z , which shall be
denoted by the operator SX,Y,Z . Therefore, from Eq. (A.11)
one gets

SX,Y,Z

(
R̂(X, Y, Z) − T̂ (T̂ (X, Y ), Z) − ∇̂X T̂ (Y, Z)

)
= 0.

(A.12)

The differential Bianchi identity is obtained from the
derivative of the curvature in Eq. (A.1),

∇̂Z (R̂(X,Y )W ) = ∇̂Z R̂(X,Y )W + R̂(∇̂Z X,Y )W

+R̂(X, ∇̂ZY )W + R̂(X,Y )∇̂ZW,

after expressing the derivatives of the vectors (others than
W ) in terms of the torsion tensor, and the application of the
cyclic permutation operator,

SX,Y,Z

(
∇̂Z R̂(X,Y )W + R̂(T̂ (X,Y ), Z)W

)
= 0. (A.13)

In order to get the last expression one uses that
[
∇̂Z , R̂(X,Y )

]
W − R̂([X,Y ], Z)

= [∇̂Z , [∇̂X , ∇̂Y ]]W + ∇̂[[X,Y ],Z ]W,

and the action of the cyclic permutation operator on it van-
ishes due to the Jacobi identity of the Lie bracket and the
commutator.

Appendix B: Dimensional analysis

In Refs. [22,47–49], we used a sort of dimensional analysis
to find the most general expression satisfying certain con-
ditions. The idea of such analysis was to consider a couple
of operators, W and N that count the (density) weight and
number of free indices of an expression of the form

O = AmBn∇ p dV q , (B.1)

where m, n, p and q are certain power of the terms. Since
we have considered terms the form of the generic operator
in Eq. (B.1), our model inherits a polynomial character.

In order to find the most general action, we should require
that the weight of the possible terms is one, W (O) = 1,
which sets q = 1, and that there are no free indices,19 i.e.
N (O) = 0, which restrict that m + n + p = 3.

After setting basic structure of possible terms in the action,
we have to consider all possible indices contractions, and use
the symmetries of the fields to eliminate redundant contribu-
tions. Additionally, for presenting the action in Eq. (3), we
have dropped terms that are related through the addition of
boundary terms.

Appendix C: Reparametrisation of time coordinate

Under a change of coordinates, x ′a = x ′a(xi ), the component
of the connection transform as

∂2xi

∂x ′a∂x ′b + � j
i
k
∂x j

∂x ′a
∂xk

∂x ′b = �′ c
a b

∂xi

∂x ′c . (C.1)

Given the generic form of the isotropic and homogeneous
connection, Eq. (27), one notices that the function j has
no dynamics in the curvature tensors. A natural question is
whether there is a reparametrisation of the time coordinate
that allows to set j = 0. Since this function comes from the
component �0

0
0, consider a transformation of the form,

t ′ = t ′(t), r ′ = r ϕ′ = ϕ.

Equation (C.1) for a = b = c = 0, and �′ 0
0 0 = 0, yields

∂2t

∂t ′2
+ j ·

(
∂t

∂t ′

)2

= 0,

19 We have used a convention where positive value ofN denotes the net
number of upper indices, while negative values denote the net number
of lower indices.
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which can be written as a total derivative,

1

X
∂t ′ (X∂t ′ t) = 0,

for j = 1
X ∂t X , or equivalently X = e

∫
dt j (t) = eJ (t). From

here, one have that

t ′ =
∫

dt eJ (t).

With the above transformation, it can be checked with ease
that the effect of the time reparametrisation is a scaling of the
other three functions of time entering in the connection, and
thus f (t) → f (t ′), g(t) → g(t ′) and h(t) → h(t ′).
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