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Abstract We study the temperature dependence of the a1

meson-nucleon coupling constant in the framework of the
soft-wall AdS/QCD model with thermal dilaton field. Pro-
file functions for the axial-vector and fermion fields in the
AdS-Schwarzschild metric are presented. It is constructed an
interaction Lagrangian for the fermion-axial-vector-thermal
dilaton fields system in the bulk of space-time. From this
Lagrangian integral representation for the ga1NN coupling
constant is derived. The temperature dependence of this cou-
pling constant is numerically analyzed.

1 Introduction

The AdS/CFT correspondence is one of the most impor-
tant discoveries in modern theoretical physics. This princi-
ple states the equivalence of two different physical theories,
a gravitational theory in the bulk of AdS space-time and a
quantum field theory on the boundary of this space-time.
Moreover, the duality between these theories is the strong-
weak duality, which means that it relates the strong coupling
sector of the second theory to the weak coupling sector of the
first one [1–5]. Further, this duality was adapted to describe
the low-energy dynamics of QCD and called AdS/QCD [6–
10]. There are two approaches in AdS/QCD: top-down and
bottom-up ones. The bottom-up approach is based on the
direct application of the holographic duality, while the top-
down approach to based on the duality between the open
and closed string amplitudes. The models of the bottom-up
and top-down approaches are widely applied to predict phe-
nomenological quantities in particle physics. These models
have a use for solving the problems of the nuclear medium
and particle interactions in it. Holographic soft-wall model
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[8,11–13], which is one of two main models in the bottom-up
approach, also is valuable for the studies of hadron interac-
tions in the nuclear medium.1 This medium is formed as
a result of the heavy-ion or proton collisions up to ener-
gies when the confinement–deconfinement phase transition
occurs. Temperature dependencies of the quantities describ-
ing the hadrons in the nuclear medium are investigated in the
framework of different approaches and models. The holo-
graphic soft-wall model was applied for solving different
kinds of problems in the medium: determining of the tem-
perature influence on in-medium quantities such as screening
mass [14], hadron form factors [15–20], quarkonium [21],
decay constants [22], transport coefficients [23], anisotropy
in such medium [24] and so on. In the holographic models,
the temperature of the medium is taken into account utilizing
the black hole temperature in the dual AdS-Schwarzschild
background [25,26]. It applied different modifications of the
original holographic thermal models to solve phenomenolog-
ical problems. The thermal sot-wall model was modified in
the approach developed in the Refs. [15–17,27], by consid-
ering the dilaton field, which is responsible for the chiral and
conformal symmetries breaking in the model, as a thermal
one, since this field is in the thermal medium. As this field is
related to the chiral condensate, the thermalization of the dila-
ton field in such a way physically means that the authors take
into account the temperature dependence of the chiral quark
condensate in the medium in the dilaton field as well. As a
check of this idea, the authors of Refs. [15–17] investigated
the hadron form factors, transition, and electromagnetic form
factors of nucleons in the framework of this model and found
valid results for them. Continuing these investigations in the
Ref. [28] the authors have considered the temperature depen-
dence of the vector meson - nucleon coupling constant. It was
observed that the value of this constant decreases on temper-

1 More precisely, in the nucleon medium.
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ature increasing and vanishes at the temperature close to the
confinement–deconfinement phase transition temperature. It
is interesting to check whether this situation takes place for
the other meson sectors of the model or does not. Here we
aim to consider the lightest axial-vector meson, namely the
a1 meson, and study the temperature dependence of the a1

meson-nucleon coupling constant.
The paper is organized as follows: In Sect. 2 we briefly

review the basic definitions in the soft-wall model having
thermal dilaton field and present profile function for the ther-
mal a1 meson in this model. In Sects. 3 and 4 the temperature-
dependent profile functions for the nucleon and scalar field
are briefly derived. In Sect. 5 the integral expressions for
the ga1NN coupling and F2

a1
decay constants are obtained.

In Sect. 6 the temperature dependence of these constants is
numerically analyzed. In the conclusion section, we discuss
the obtained results.

2 Soft-wall model at finite temperature

According to AdS/CFT correspondence the quantum field
theory at finite temperature on the boundary of the space-
time is described by the AdS-Schwarzschild background in
the bulk, which has following metric:

ds2 = gMNdx
MdxN

= e2A(z)
(
f (z)dt2 − dxidx

i − dz2

f (z)

)
, (2.1)

where the A(z) and f (z) functions have explicit form:

A(z) = log(R/z), (2.2)

f (z) = 1 − z4

z4
h

. (2.3)

R is the AdS radius and x = (t,−→x ) are the set of Minkowski
coordinates. The z coordinate is chosen in the 0 ≤ z ≤ zh
interval in order to describe the confinement phase of the
medium. The black hole Hawking temperature T is related
by the position of the black hole horizon zh :

T = 1

4π
|d f
dz

|z=zh = 1

π zh
. (2.4)

This temperature in the dual QCD theory corresponds to the
temperature of hadronic matter.

The main idea of this model is to consider the dilaton field
ϕ(x) as one depending on the temperature of the medium
[15–17]. To this end, the z coordinate was replaced by the
Regge-Wheeler tortoise coordinate r , which was introduced
in Ref. [29]. The relation between these coordinates in the
finite temperature limit is following one:

r = z

[
1 + t4

5
+ t8

9
+ O(t12)

]
, (2.5)

where t = z/zh . An explicit form of the dilaton field is found
from the idea of sameness of the temperature dependencies
of the dilaton field and quark condensate �(T ). The last one
is known from chiral perturbation theory, and we have the
dilaton field of the form2:

ϕ(r, T ) = K 2(T )r2 = (1 + ρ(T ))k2r2. (2.6)

The thermal addition term ρ(T ) has a form:

ρ(T ) = δT1

T 2

12F2 + δT2

(
T 2

12F2

)2

+ O(T 6), (2.7)

where the constant parameters δT1,2 denote

δT1 = −N 2
f − 1

N f
, (2.8)

δT2 = −N 2
f − 1

2N 2
f

. (2.9)

Here N f is the number of quark flavors. F is the decay con-
stant in the chiral limit at zero temperature. In Refs. [16,17]
authors find that there is a relation between the soft-wall
AdS/QCD model dilaton parameter k and the pion decay
constant F in the chiral limit

F = k

√
3

8
, (2.10)

which is right at zero and finite temperatures.

2.1 Profile function for a1 meson at finite temperature

Let us at first briefly present the a1 meson at zero temperature
following to Ref. [8]. The gauge field sector of the model
consists of the AL ,R gauge fields, which are coming from
the SU (2)L ,R symmetries of the SU (2)L × SU (2)R flavor
symmetry group of the model. V = 1

2 (AL + AR) vector and
A = 1

2 (AL − AR) axial-vector fields are composed of these
gauge fields, and the bulk action for the gauge sector can be
written in terms of the composite fields:

S = − 1

4g2
5

∫ ∞

0
d5xe−ϕ(z)√gTr [F2

L + F2
R)]

= − 1

2g2
5

∫ ∞

0
d5xe−ϕ(z)√gTr [F2

V + F2
A]. (2.11)

Here g is g = detgMN , ϕ(z) = −k2z2 is the dilaton field,
X is scalar field. FV,A are the field strength tensors of the
vector and axial-vector fields. Here we shall deal with the
only axial-vector field, the strength tensor of which has a
form:

FMN
A = ∂M AN − ∂N AM − i√

2
[AM , AN ]. (2.12)

2 We shall give more explanation in Sect. 4.
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For further calculations the axial gauge A5 = 0 is chosen.
Fourier components Aμ(q, z) of the axial-vector field sat-
isfies the boundary conditions A(q, ε) = 1, ∂z A(q, z =
zm) = 0 at ultraviolet and infrared boundaries, respectively.
Transverse part (∂μAμ = 0) of the axial-vector field will
be decomposed into the Kaluza–Klein modes Aμ(q, z) =∑

n=0 Anμ(q)An(z) and the equation for this part has the nor-
malizable solutions for the discrete values of the 4D momen-
tum q2 = m2

n . Equation of motion leads to the following
equation for the An(z) mode profile function [8]:

∂z

(
e−B(z)∂z An(z)

)
+

(
m2

n − g2
5e

2A(z)v2(z)
)
e−B(z)An(z) = 0. (2.13)

This equation cannot be solved analytically. However, its
solution near the UV boundary (z → 0) can be found for the
mq = 0 (chiral limit) case. In these limits, the equation (2.13)
gets a form, which coincides with the one for the vector field:

∂z

(
e−B(z)∂z An

)
+ m2

ne
−B(z)An = 0 (2.14)

and is solved similarly to the vector field case. Making the
An(z) = eB(z)/2ψn(z) substitution in the equation of motion
in (2.14), this equation will get the Schrödinger-type equation
form and has a solution expressed in the terms of Laguerre
polynomials Ln

m [13]:

ψn(z) = e−k2z2/2(kz)m+ 1
2

√
2n!

(m + n)! L
m
n (k2z2). (2.15)

Since the UV boundary value of the Aμ(q, z) function cor-
responds to the wave function of the axial-vector meson on
this boundary, we may accept that the UV asymptotic solu-
tion (2.15) is the wave function of the a1 meson. For the
a1 meson, which is the lightest axial-vector meson, we take
m = 1 in this solution:

An(z) = k2z2

√
2

n + 1
L1
n(k

2z2). (2.16)

As the zero-temperature equation (2.14) for the axial-
vector meson in the aforementioned limits has the same form
as one for the vector field, the thermalization procedure with
the thermal dilaton field for the vector field in the Ref. [15] is
applicable for the axial-vector field case as well. Now let us
briefly present formulas from this thermalization of vector
field applied in Ref. [15]. In the profile function for the vec-

tor field 
n(r, T ) a substitution φn(r, T ) = e− BT (r)
2 
n(r, T )

with BT (r) = ϕ(r, T ) − A(r) is useful and in the rest frame
the equation for φn(r, T ) obtains a form of Schrödinger equa-
tion:[

− d2

dr2 +U (r, T )

]
φn(r, T ) = M2

n (T )φn(r, T ). (2.17)

Here U (r, T ) is the effective potential, which is written in
the sum of the temperature-dependent and zero-temperature

terms:

U (r, T ) = U (r) + �U (r, T ). (2.18)

TheU (r) and �U (r, T ) potentials were found in the follow-
ing:

U (r) = k4r2 + (4m2 − 1)

4r2 ,

�U (r, T ) = 2ρ(T )k4r2. (2.19)

Here m = N + L − 2. N is number of partons in the meson
and N = 2 for our case. L is the angular momentum and
L = 1 for our case. The meson mass spectrum M2

n in (2.17)
is written in the sum of discrete zero-temperature part M2

n (0)

and continuous finite-temperature part �M2
n (T ):

M2
n (T ) = M2

n (0) + �M2
n (T ),

M2
n (0) = 4k2

(
n + m + 1

2

)
,

�M2
n (T ) = ρ(T )M2

n (0) + Rπ4T 4

k2 ,

R = (6n − 1)(m + 1). (2.20)

Finally, the solution of equation (2.17) for the bulk profile
φn(r, T ) was found in the following form [15]:

φn(r, T ) =
√

2
(n + 1)


(n + m + 1)
Km+1rm+ 1

2 e− K2r2
2 Lm

n (K 2r2), (2.21)

which coincides with the zero-temperature solution found
in Ref. [13] on replacing r → z, K (T ) → k.

Thus, in the chiral limit and near the UV boundary, as the
finite-temperature profile function of the axial-vector field
can be taken the (2.21) solution, and the thermal An(z, T ) in
r coordinate will have the form below:

An(r, T ) = K 2z2

√
2

n + 1
L1
n(K

2r2). (2.22)

3 Nucleon profile function at finite temperature

In the bottom-up approach of the holographic QCD to
describe the left and right-handed components of the nucle-
ons, two fermion fields (N1, N2) are introduced in the bulk
of AdS space, which are not interrelated [30–33]. Following
Ref. [16], here we present briefly the solution of the equation
of motion for the fermion fields interacting with the thermal
dilaton field. Action for such fermion field N (x, r, T ) in the
background (2.1) and in terms of the r coordinate will be
written as

S =
∫

d4xdre−ϕ(r,T )√gN̄ (x, r, T )D±(r)N (x, r, T ), (3.1)

123
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where the D±(r) covariant derivative contains a temperature-
dependent part as well:

D±(r) = i

2

M

[
∂M − 1

4
ωab
M [
a
b]

]
∓ [μF (r, T )

+UF (r, T )] . (3.2)

The “mass” μF (r, T ) of the N (x, r, T ) thermal fermion field
is related to the μF mass at zero-temperature:

μF (r, T ) = μF f
3

10 (r, T ), (3.3)

and μF defined in the following equation

μF = NB + L − 3

2
. (3.4)

Here NB = 3 is the number of partons in the composite
fermion corresponding to the nucleon, and L is the orbital
angular momentum. The temperature-dependent potential
UF (r, T ) for the fermion field is related to the dilaton field
and the f (r, T ) blackening function:

UF (r, T ) = ϕ(r, T )/ f
3

10 (r, T ). (3.5)

Non-zero components of the spin connection ωab
M are given

by equation:

ωab
M = (δaMδbr − δbMδar ) r f

1
5 (r, T ). (3.6)

The σ MN = [

M , 
N

]
in the (3.2) derivative is the commu-

tator of the Dirac 
M matrices in the curved space-time,
and these matrices are related to the reference frame 
a

matrices by the 
M = eMa 
a relation. Inverse vielbeins are
eMa = r × diag{ 1

f (r) , 1, 1, 1,− f (r)}. Reference frame 
a

matrices are chosen as 
a = (γ μ, −iγ 5). For the fifth
component of the fermion field we choose an axial gauge
N5(x, r, T ) = 0 and decompose N (x, r, T ) into the left- and
right-chirality components:

N (x, r, T ) = N R(x, r, T ) + NL(x, r, T ), (3.7)

where the chiral components are defined as N R(x, r, T ) =
1−γ 5

2 N (x, r, T ), NL(x, r, T ) = 1+γ 5

2 N (x, r, T ).
Kaluza-Klein decomposition for these components is

written in terms of the profile functions 

L ,R
n (r, T ), which

are temperature-dependent as well:

NL ,R(x, r, T ) =
∑
n

N L ,R
n (x)
L ,R

n (r, T ). (3.8)

For the nucleons we consider the L = 0 case and the total
angular momentum will be J = 1

2 . It is useful to write the



L ,R
n (r, T ) profiles with the prefactors e− 3

2 A(r):


L ,R
n (r, T ) = e− 3

2 A(r)FL ,R
n (r, T ). (3.9)

After the substitution of these profile functions into the equa-
tions of motion in the rest frame of nucleon (p = 0), the fol-

lowing equations for the FL ,R
n (r, T ) profile functions were

obtained in the Ref. [16]:

[
∂2
r +UL ,R(r, T )

]
FL ,R
n (r, T ) = M2

n (T )FL ,R
n (r, T ). (3.10)

The spectrum M2
n (T ) is divided into the temperature-

dependent part, which is continuous, and the “cold” part,
which is quantized. The quantized part

M2
n (T ) = 4K 2(T )

(
n + m + 1

2

)

= 4k2 (1 + ρ(T ))

(
n + m + 1

2

)
(3.11)

at T = 0 coincides with the known zero-temperature spec-
trum [8]. The effective potentials UL ,R(r, T ) in Eq. (3.10)
are written in the sum of zero- and finite-temperature parts:

UL ,R(r, T ) = UL ,R(r) + �UL ,R(r, T ),

�UL ,R (r, T ) = 2ρ(T )k2
(
k2r2 + m ∓ 1

2

)
. (3.12)

Here

m = NB + L − 3

2
. (3.13)

Finally, solutions to the equations (3.10), which are profile
functions for the boundary thermal nucleons, were found in
the form [16]:

FL
n (r, T ) =

√
2
(n + 1)


(n + mL + 1)
KmL+1rmL+ 1

2 e− K2r2
2 LmL

n

×
(
K 2r2

)
,

FR
n (r, T ) =

√
2
(n + 1)


(n + mR + 1)
KmR+1rmR+ 1

2 e− K2r2
2 LmR

n

×
(
K 2r2

)
, (3.14)

where mL ,R = m ± 1
2 . The 
n(r, T ) and Fn(r, T ) profile

functions obey normalization conditions:∫ ∞

0
dre− 3

2 A(r)
L ,R
m (r, T )
L ,R

n (r, T ))

=
∫ ∞

0
dr FL ,R

m (r, T )FL ,R
n (r, T ) = δmn . (3.15)

With the replacements r → z and K (T ) → k the (3.14)
functions coincide with the profiles at zero temperature case
(see Ref. [13]).

4 Bulk vacuum expectation value of scalar meson field

Action for the pseudo-scalar X field in AdS/QCD has a form:

S =
∫ ∞

0
d5x

√
ge−ϕ(z)Tr{|DX |2 − m2

5|X |2}. (4.1)

123
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In terms of the r tortoise coordinate and with the thermal
dilaton field, this action looks slightly changed:

SX =
∫

d4xdr
√
ge−ϕ(r,T )Tr

[
|DX |2 + 3|X |2

]
, (4.2)

where DX is the covariant derivative including the inter-
action with the gauge fields AL ,R . In terms of the vector
MM and the axial-vector AM fields terms this derivative
will be written as: DMX = ∂M X − i AM

L X + i X AM
R =

∂M X − i [MM , X ]− i{AM , X}, AM
L ,R = AM(a)

L ,R ta , and FMN
L ,R

are the field strengths of these fields. The X field transforms
under the bifundamental representation of the flavor sym-
metry group SU (2)L × SU (2)R of the model and performs
the breaking of this symmetry by Higgs mechanism [30–
32,34,35]. E. o. m. for this field, which is obtained from the
action (4.1), has a solution:

〈X〉 = 1

2
v(z), (4.3)

where

v(z) = 1

2
Mqaz + 1

2a
�z3, (4.4)

where a = √
Nc/(2π) (Nc = 3) is the normalization param-

eter [30–32]. According to the bulk/boundary correspon-
dence dictionary, the parameters Mq and � are identified
with the u, d quark mass matrix and with the chiral conden-
sate � =< 0|q̄q|0 > correspondingly. For the finite temper-
ature case, the quark condensate in the solution (4.4) depends
on temperature and, the z coordinate should be replaced by
the tortoise one in it. Then, in the solution (4.4) the replace-
ment � → �(T ) will be done and it accepts a form:

v(r, T ) = 1

2
Mqar + 1

2a
�(T )r3. (4.5)

In the Ref. [36] an explicit form of the temperature depen-
dence of the quark condensate �(T ) was defined using two-
loop chiral perturbation theory at finite temperature in the
following:

�(T ) = �

[
1− N 2

f − 1

N f

T 2

12F2 − N 2
f − 1

2N 2
f

(
T 2

12F2

)2

+ O(T 6)

]

= �[1 + �T + O(T 6)], (4.6)

where N f is the number of quark flavor and F is the decay
constant. The dilaton field φ(r) is responsible for the dynam-
ical breaking of the chiral symmetry in AdS/QCD. The chiral
condensate formed as a result of this symmetry breaking in
the boundary QCD. Both constants have dependence only
on temperature, so, in Refs. [15–17] authors supposed that
the temperature dependence of the �(T ) quark condensate
should be the same as the temperature dependence of the
dilaton parameter K 2(T ):

K 2(T ) = k2 �(T )

�
. (4.7)

In addition, it was conjectured that known zero-temperature
relation between the quantities quark condensate �, number
of flavors N f , condensate parameter B and the pseudo-scalar
meson decay constant F in the chiral limit

� = −N f BF
2 (4.8)

holds for the finite temperature case as well:

�(T ) = −N f B(T )F2(T ). (4.9)

Then, according to the (2.6) and (4.7) relations the �(T )

dependence will be written in the following form [35]:

�(T ) = � [1 + ρ(T )] . (4.10)

Let us note, that the relation (4.10) is correct up to T 6 degree
of the temperature. The F(T ) and B(T ) dependencies have
been studied in the Ref. [36].

5 ga1NN coupling constant

Action for the interaction between the axial-vector, fermion
and scalar fields in the soft-wall model with the thermal
dilaton will be written employing interaction Lagrangian
L(x, z, T ):

S =
∫ ∞

0
d4xdz

√
ge−ϕ(z,T )L(x, z, T ). (5.1)

In terms of the r tortoise coordinate, this action will be written
without the exponent factor:

S =
∫ ∞

0
d4xdr

√
gL(x, r, T ). (5.2)

The meson-nucleon coupling constant, which we want to
investigate here, can be derived from the bulk interaction
action involving the gauge, bulk scalar and fermion fields.
Let us list here possible interactions at the lowest order of the
fields. Corresponding Lagrangian terms should be Hermitian
scalars under the existing symmetries in the model, namely
gauge, chiral and 5D “Lorentz” symmetries. The minimal
gauge coupling term in 5D Lagrangian is usual one [13,30–
32,38,39]:

L(0) = 1

2
[�1


M AM�1 − �2

M AM�2]. (5.3)

Another well-known interaction term, which obeys the sym-
metries mentioned above, is the bulk magnetic gauge cou-
pling [13,28,30–33,38,39]:

L(1) = i

2
k1[�1


MN FMN�1 + �2

MN FMN�2]. (5.4)

Triparticle interaction of the bulk spinors, gauge and scalar
fields was constructed in the Ref. [38,40] and is similar to
Yukawa coupling term introduced in [30–32]:

123
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L(2) = gY [�1X
M AM�2 + �2X
†
M AM�1]. (5.5)

According to AdS/CFT correspondence, the generating func-
tional in the gauge field theory is equivalent to the exponential
of an on-shell action in the gravity theory (is called GKP-W
relation) [21–23]:

ZAdS[φ0] =
〈
ei

∫
dxφ0(x)O(x)

〉
gauge

= ei Sgravi t y [φ0] (5.6)

where ZAdS[φ0] is the generating functional with the source
φ0 coupled with an operator O(x) and Sgravi t y is an on-
shell action with boundary condition φ → φ0 at the UV
boundary. In our case, the axial-vector current (Jμ) is an
operator and its holographic dual is the axial-vector field Aμ.
The holographic principle will give us the following relation
between these quantities:

〈Jμ〉 = −i
δZQCD

δA0
μ

∣∣∣
A0

μ=0
. (5.7)

Here ZQCD = ei Sint is the generating functional for the
boundary QCD, A0

μ = Aμ(q, z = 0) = Aμ(q) is a bound-
ary value of the axial-vector field. In the boundary QCD the-
ory, the four-dimensional axial-vector current of nucleons is
defined as follows:

Jμ(p′, p) = gu(p′)γ 5γμu(p). (5.8)

For the nucleon-a1 meson interaction the g constant is the
ga1NN coupling constant and it can be determined from the
equivalence of the right-hand sides of Eqs. (5.7) and (5.8).
After integrating out the space-time coordinates from the 5D
action integral, we obtain integral expressions for the gi (r, T )

constants corresponding to the L(i) Lagrangian terms:

g0(r, T ) = 1

2

∫ ∞

0

dr

r4 A0(r, T )(|F1R(r, T )|2

−|F1L(r, T )|2), (5.9)

g1(r, T ) = k1

2

∫ ∞

0

dr

r3 ∂z A0(r, T )(|F1R(r, T )|2

+|F1L(r, T )|2), (5.10)

g2(r, T ) = 2gY

∫ ∞

0

dr

r4 A0(r, T )v(r, T )

×(F1R(r, T )F1L(r, T )). (5.11)

Temperature dependence of each gi (r, T ) constant can be
studied numerically. In addition, we can investigate the tem-
perature dependence of the a1 meson decay constant, which
was defined in the Ref. [8] for the ’cold’ case by the holo-
graphic formula:

F2
a1

= 1

g2
5

[
v′′(0)

]2
. (5.12)

For the finite-temperature case this decay constant will be
calculated with the thermal profile An(r, T ) in Eq. (2.8):

F2
a1

(T ) = 1

g2
5

[
A′′
n(r, T )|r=0

]2 (5.13)

and the temperature dependence of this constant also can be
investigated numerically.

6 Numerical analysis

To visualize the temperature dependence of the terms in the
Eqs. (5.9), (5.10), (5.11) and the constant in the Eq. (5.13) we
have performed numerically an integration over the r vari-
able of these temperature-dependent integrals.The values of
parameters were given in GeV units. We use the values of
the parameters k1, mq , � and gY , which were fixed in the
earlier works. The k1 = −0.98 value of the parameter was
obtained from the fitting of the couplings gπNN = 13.5 and
gρNN = −8.6 of the ground state nucleons in hard-wall
AdS/QCD model in Ref. [30–32]. The numerical values of
the quark condensate and quark mass were taken from Ref.
[34] and are � = (0.213 MeV)3, mq = 8.3 MeV, respec-
tively. The constant gY = 9.182 was fixed to get nucleon
mass mN = 0.94 GeV in the framework of hard-wall [30–
32]. The numerical values of the number of quark flavors N f

and the pseudo-scalar meson decay constant F were taken
from the Refs. [15,36]. We consider ground state of the a1

meson and taken = 0 in the profile function (2.22). In Figs. 1,
2, 3 and -4 we present the numerical results for the tempera-
ture dependencies of the g0, g1, g2 terms and for the ga1NN

coupling constant. As we seen in the section IV, the dilaton
parameter K 2(T ) is defined through the quark condensate
�(T ), which is determined by the N f and F parameters.
So, in order to analyse how the gi terms and the ga1NN con-
stant depend on values of the N f and F parameters, in these
figures we have taken following values of these parameters:
N f = 2, F = 87 MeV; N f = 3, F = 100 MeV and N f = 5,
F = 140 MeV, which were applied in the Refs. [15–17]. In
Fig. 5 we have plotted the temperature dependence of the
squared decay constant F2

a1
of the a1 meson. As is seen

from the graphs, all g(T ), F2
a1

(T ) dependencies decrease
and become zero around the temperature value T = 200
MeV, which is the confinement-deconfinement phase transi-
tion temperature Tc.

7 Conclusion

The numerical analysis here for the ga1NN coupling con-
stant shows that the temperature dependence of this constant
has a similar shape of behavior, as was for the gρNN con-
stant, i.e., the ga1NN constant decreases with increasing the
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Fig. 1 g0(T ) term at N f = 2, F = 87 MeV (orange line); N f = 3,
F = 100 MeV (green line); N f = 5, F = 140 MeV (blue line)

Fig. 2 g1(T ) term at N f = 2, F = 87 MeV (green line); N f = 3,
F = 100 MeV (blue line); N f = 5, F = 140 MeV (orange line)

Fig. 3 g2(T ) term at N f = 2, F = 87 MeV (green line); N f = 3,
F = 100 MeV (blue line); N f = 5, F = 140 MeV (orange line)

temperature and near the Tc temperature it becomes zero.
A similar result was obtained in [41], where authors stud-
ied pion-nucleon coupling constant at finite temperature.3

The shape of dependence almost does not depend on the
values of the N f and F parameters. Also, from a compari-
son of the graphics we observe, that the minimal coupling is
not the leading term in the a1 meson-nucleon interaction. It
should note, the vanishing quantities at the Tc temperature

3 We thank the referee for bringing this work to our attention.

Fig. 4 ga1NN (T ) constant at N f = 2, F = 87 MeV (orange line);
N f = 3, F = 100 MeV (green line); N f = 5, F = 140 MeV (blue
line)

Fig. 5 Temperature dependence of the F2
a1

(T ) decay constant at N f =
2, F = 87 MeV (orange line); N f = 3, F = 100 MeV (green line);
N f = 5, F = 140 MeV (blue line)

were obtained in the works [15–17,25] as well, where was
applied AdS-Schwarzchild metrics.

As was noted in the Ref. [28], the study of couplings near
the Tc temperature may have a use for understanding hadron
matter forming in the early Universe. For completeness of
these investigations, it is reasonable to make a similar anal-
ysis in the scalar (pseudo-scalar) meson sector of this model
and to check the temperature dependency results, which were
obtained here and in the Ref. [28], for the pion-nucleon cou-
pling constant. This question is under consideration.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This study is
theoretical and does not have associated data.]
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