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Abstract We test an alternative proposal by Bruno and
Hansen (J High Energy Phys 2021(6), https://doi.org/10.
1007/JHEP06(2021)043, 2021) to extract the scattering
length from lattice simulations in a finite volume. For this,
we use a scalar φ4 theory with two mass nondegenerate par-
ticles and explore various strategies to implement this new
method. We find that the results are comparable to those
obtained from the Lüscher method, with somewhat smaller
statistical uncertainties at larger volumes.

1 Introduction

Lattice QCD has been shown to be a powerful tool to deter-
mine scattering quantities from first principles. The standard
approach is the Lüscher method [2], which relates the finite-
volume spectrum obtained from the lattice to the infinite-
volume scattering amplitude. It has been applied to many
physical systems, including results at the physical point—see
Ref. [3] for a review. The formalism has also been recently
extended to three particles with three different but concep-
tually equivalent formulations available in the literature at
present [4–8], see Refs. [9,10] for recent reviews.

In Ref. [1], the authors propose a new strategy to extract
scattering quantities. Henceforth, this will be referred to as
the BH method. This approach is based on the usage of four-
point functions rather than energy levels. The hope is that
this approach can be generalised more easily to multi-hadron
processes.

a e-mail: garofalo@hiskp.uni-bonn.de (corresponding author)

As pointed out by the authors, the case of threshold kine-
matics is particularly favourable as it allows for a direct
extraction of the scattering length, with the πN channel being
one concrete example.

In this letter we test this novel approach in a scalar φ4

theory. Using this theory has proven to be an excellent test
bed for novel scattering studies, as shown in Refs. [11–13].
In order to mimic the πN case, we consider two mass non-
degenerate real scalar particles. We explore the necessary
techniques, and the optimal approach to use the BH method
at threshold. Moreover, we compare to the standard Lüscher
approach and find good agreement.

2 Description of the Model

The Euclidean model used here is composed by two real
scalar fields φi , i = 0, 1 with the Lagrangian

L =
∑

i=0,1

(
1

2
∂μφi∂μφi + 1

2
miφ

2
i + λiφ

4
i

)
+ μφ2

0φ2
1 , (1)

with nondegenerate (bare) massesm0 < m1. The Lagrangian
has a Z2 ⊗ Z2 symmetry φ0 → −φ0 ⊗ φ1 → −φ1, which
prevents sectors with even and odd number of particles to
mix.

To study the problem numerically, we define the theory
on a finite hypercubic lattice with lattice spacing a and a
volume T · L3, where T denotes the Euclidean time length
and L the spatial length. We define the derivatives of the
Lagrangian (Eq. 1) on a finite lattice as the finite differ-
ences ∂μφ(x) = 1

a (φ(x + aμ) − φ(x)). In addition, peri-
odic boundary conditions are assumed in all directions. The
discrete action is given in Ref. [12] for the complex scalar
theory, but it is trivial to adapt to this case. We set a = 1 in
the following for convenience.
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3 Observables

In Ref. [1], Bruno and Hansen derived a relation between
the scattering length a0 and the following combination of
Euclidean four-point and two-point correlation functions at
the two-particle threshold:

CBH
4 (t f , t, ti ) ≡ 〈φ̃0(t f )φ̃1(t)φ̃1(ti )φ̃0(0)〉

〈φ̃0(t f )φ̃0(0)〉〈φ̃1(t)φ̃1(ti )〉
− 1, (2)

with the time ordering t f > t > ti > 0, and φ̃i (t) =∑
x φi (t, x) being field projected to zero spatial momentum.

The relation of CBH
4 to the scattering length reads

CBH
4 (t f , t, ti )

T�t f �t−−−−−→
t�ti�0

2

L3

[
π

a0

μ01
(t − ti )

−2a2
0

√
2(t − ti )

μ01
+ O

(
(t − ti )

0
) ]

, (3)

where μ01 = (M0M1)/(M0 + M1) is the reduced mass. It is
defined in terms of the renormalized masses M0 and M1 of the
two particles. These masses can be extracted as usual from
an exponential fit at large time distances of the two-point cor-
relation functions 〈φ̃i (t)φ̃i (0)〉 ≈ A1,i

(
e−Mi t + e−Mi (T−t)

)

for i = 0, 1. To reduce the statistical error we average over
all points with the same source sink separation.

4 Numerical result

4.1 BH method

We generate ensembles using the Metropolis-Hastings algo-
rithm with bare masses m0 = −4.925 and m1 = −4.85, and
for simplicity we choose λ0 = λ1 = 2μ = 2.5. The list of
ensembles generated in this work with their corresponding
measured values of the masses M0 and M1 are compiled in
Table 1. In this model, as observed in previous investiga-
tions of the scalar theory [13], we do not see relevant effects
of excited states in the two-point correlators, i.e., they are
dominated by the ground state from the first time slice.

In the following we discuss three different strategies to
extract the scattering length:

1. We attempt a direct fit of Eq. (3) the the data.
2. We include an overall constant in the fit to account for the

O
(
(t − ti )0

)
effect.

3. We make use of a shifted function at fixed ti and t f ,
�tCBH

4 (t f , t, ti ) = CBH
4 (t f , t + 1, ti ) − CBH

4 (t f , t, ti ),
which cancels the constant term. We then determine a0

by fitting to
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Fig. 1 Four-point function of Eq. (3) multiplied by L3/2, for L =
22 and T = 96 with ti = 3 and t f = 16 divided by (t − ti ) black
triangles. the dashed vertical lines represent the fit interval, the black
band represent the result of the fit Eq. (3) and the red band is the same
fit with an extra constant term. The blue circles and band represent the
discrete derivative of the correlator Eq. (4) and the corresponding fit

�tC
BH
4 (t f , t, ti ) ≈ 2

L3

[
π

a0

μ01
− 2a2

0

√
2

μ01

×
(√

t + 1 − ti − √
t − ti

)]
.

(4)

The three methods are compared in Fig. 1 for one of our
ensembles. The black triangles represent the correlator of
Eq. (3) divided by (t − ti ) with ti = 3 and t f = 16. This rep-
resentation is convenient, as it converges towards a constant
when (t − ti ) → ∞. From the monotonic increase of the
data points, it is clear that the effect of the

(
(t − ti )0

)
term

in Eq. (3) is still sizeable even at large time separations. A
fit in the time region [10, 14]—the black band—is reason-
able (χ2/d.o. f ∼ 0.7) but results in large uncertainties. The
quality of the fit deteriorates very quickly if the fit range is
extended: a fit in the time region [6, 14] yields a χ2/dof ∼ 5.

With the second strategy—the red band in Fig. 1—one is
able to start fitting at significantly smaller t-values. The data
are well described with a χ2/dof ∼ 0.2.

For the third approach, we study �tCBH
4 (t). This is shown

in Fig. 1 as blue circles, and the blue band represents the best
fit result with error. The main advantage of the last strategy is
that it allows us to extract the physical information at smaller
t without introducing extra parameters in the fit. Indeed, the
data looks almost constant over the complete t-range avail-
able. Only very close to ti the square root term might become
visible.

For this third strategy, which looks most promising from a
systematic point of view, we also investigate the dependence
on the choice for ti and t f . This is shown in Fig. 2 for the
same ensemble as in Fig. 1. We do not observe any significant
systematic effect stemming from excited state contributions
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Fig. 2 Plot of the discrete derivative of the correlator Eq. (4) for dif-
ferent values of ti and t f . We do not observe any systematic shift and
all correlators are compatible. The points with smaller ti and t f tend to
have smaller error

when changing ti or t f . However, we clearly see significantly
smaller statistical uncertainties with smaller ti and t f values.

4.2 Comparison to the Lüscher method

In this section we compare the BH method described above
with the Lüscher threshold expansion [14,15]. The latter
relates the two-particle energy shift, defined as �E2 =
E2 − M0 − M1, to the scattering length a0 via

�E2 = − 2πa0

μ01L3

[
1 + c1

a0

L
+ c2

(a0

L

)2
]
+O

(
L−6

)
, (5)

with c1 = −2.837297, c2 = 6.375183 and E2 being the
interacting two-particle energy. E2 can be extracted from
C2(t) = 〈φ̃1(t)φ̃0(t)φ̃1(0)φ̃0(0)〉, whose large-t behaviour
is

C2(t)
t�0−−−−→

T−t�0
A2e

−E2
T
2 cosh

(
E2(t − T

2
)

)

+B2e
−(M0+M1)

T
2 cosh

(
(M1 − M0)(t − T

2
)

)
. (6)

Note that the last term is a known thermal pollution due
to finite T in the presence of periodic boundary conditions.
Using M0 and M1 as input determined from the correspond-
ing two-point functions, the only additional parameter is B2.

Alternatively, it is possible to eliminate the second term
defining

C̃2(t) = C2(t)/ cosh

(
(M1 − M0)

(
t − T

2

))
, (7)

and then taking the finite derivative

�t C̃2(t) = C̃2(t + 1) − C̃2(t). (8)
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Fig. 3 Comparison of a0 computed with BH method Eq. (4) with ti =
2 and t f = 10 (blue circles), with ti = 3 and t f = 16 (red triangles) and
Lüscher method Eq. (5) (black squares) in the top panel. In the bottom
panel we plot the correlated difference between Lüscher method and
BH method. The horizontal bands correspond to the weighted average
of each method

The two-particle energies obtained from Eq. (6) are compat-
ible to those from Eq. (8). The results are reported in Table 1,
along with the values for the scattering length a0 computed
from E2 using Eq. (5). We have calculated the correlated dif-
ference between our two estimates of a0 obtained within the
Lüscher method, column 7 and 8 of Table 1. We find that the
difference is always compatible with zero within one sigma,
with the exception of the ensembles L20T48 and L32T96
where it is within two sigma.

A comparison between the BH and the Lüscher method
is depicted in Fig. 3 for all our ensembles. The values are
compatible with each other, however the BH method gives
systematically larger values for a0. We do not observe a clear
statistical correlation or anti correlation between the BH and
the Lüscher method. We find that the correlation coefficient
varies within the range [− 0.25, 0.6] in all ensembles. We
notice that exponentially suppressed finite-volume errors are
in principle a source of systematic error. However, in Fig. 3,
the determination of a0 does not show any systematic effect
varying L from 20 to 32.

5 Conclusion

In this letter, we have investigated the BH method, proposed
in Ref. [1], using a scalar theory on the lattice. We have indeed
verified that it is a viable method to obtain the scattering
length, and that it produces results that are compatible with
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Table 1 Values of a0, M0, M1 and E2 measured. The column �tCBH
4

corresponds to the value of a0 fitted with Eq. (4) fixing ti = 3 and
t f = 16 or ti = 2 and t f = 10, the column CBH + c is the result of
the fit Eq. (3) adding a constant term. The two-particle energy E2 is
computed from C2 with the fit of Eq. (6) and from �C̃2 with Eq. (8).
The corresponding value of a0 computed with the Lüscher method is
reported in the corresponding columns. We used 2 · 107 configurations

for each ensemble, generated from 200 replicas each of 105 thermalized
configurations, we bin the configurations in blocks of 105 (the entirely
replica) and we resample the resulting 200 configurations with jack-
knife. For the light mass M0 we measured the integrated autocorrelation
time τint ∼ 1.5 , while τint ∼ 0.5 for M1, we skip 1000 configurations
in each replica for thermalization

T L M0 M1 E2 a0 Lüscher a0 BH

C2 �t C̃2 C2 �t C̃2 �tCBH
4 (3,t,16) CBH

4 + c �tCBH
4 (2,t,10)

48 20 0.14675(5) 0.27487(5) 0.4252(3) 0.4253(3) − 0.41(3) − 0.42(3) − 0.35(4) − 0.35(6) − 0.37(2)

64 20 0.14659(5) 0.27480(5) 0.4249(3) 0.4250(3) − 0.41(3) − 0.41(4) − 0.30(4) − 0.29(6) − 0.38(2)

96 20 0.14662(4) 0.27487(4) 0.4251(2) 0.4251(3) − 0.41(2) − 0.41(3) − 0.36(3) − 0.36(4) − 0.38(1)

96 22 0.14604(3) 0.27470(4) 0.4237(2) 0.4237(3) − 0.45(3) − 0.45(5) − 0.34(4) − 0.31(6) − 0.37(2)

96 24 0.14574(4) 0.27458(4) 0.4223(2) 0.4221(3) − 0.39(3) − 0.36(6) − 0.36(5) − 0.41(7) − 0.39(2)

96 26 0.14547(4) 0.27455(3) 0.4218(2) 0.4219(3) − 0.44(5) − 0.47(8) − 0.30(7) − 0.3(1) − 0.36(3)

96 32 0.14521(4) 0.27449(4) 0.4210(2) 0.4213(3) − 0.62(9) − 0.7(1) − 0.2(1) − 0.1(2) − 0.35(5)

128 20 0.14668(3) 0.27484(3) 0.42509(7) 0.4251(3) − 0.409(7) − 0.41(3) − 0.40(3) − 0.39(3) − 0.40(1)

those of the Lüscher method [14]. The most reliable strategy
to analyse the four-point function is found to be the use of
finite differences in time to remove an overall constant term.

We observe a systematic difference between the Lüscher
and BH method. Interestingly, for each ensemble separately
both determinations appear compatible. The systematic trend
becomes evident only after averaging over all runs, as shown
in the bands of Fig. 3. This might be attributed to different
lattice artefacts, since both methods represent different esti-
mators for a0. We are not able to check this hypothesis here,
because we cannot take the continuum limit. However, the
different systematics of the two methods offer in general a
useful opportunity for cross checks.

The statistical error is similar in both approaches. Also
the scaling in L appears to be similar, with maybe a slight
advantage for the BH method. However, any advantage of one
method compared to another one will in general depend on
the theory considered. We conclude that it seems promising
to use the BH method in lattice QCD for instance for πN
scattering, where also the lattice spacing dependence could
be investigated.
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