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Abstract Braneworld scenarios consider our observable
universe as a brane embedded in a five-dimensional bulk.
In this work, we consider thick braneworld systems in the
recently proposed dynamically equivalent scalar–tensor rep-
resentation of f (R, T ) gravity, where R is the Ricci scalar
and T the trace of the stress–energy tensor. In the general
f (R, T ) case we consider two different models: a brane
model without matter fields where the geometry is supported
solely by the gravitational fields, and a second model where
matter is described by a scalar field with a potential. The
particular cases for which the function f (R, T ) is separable
in the forms F (R) + T and R + G (T ), which give rise to
scalar–tensor representations with a single auxiliary scalar
field, are studied separately. The stability of the gravitational
sector is investigated and the models are shown to be stable
against small perturbations of the metric. Furthermore, we
show that in the f (R, T ) model in the presence of an extra
matter field, the shape of the graviton zero-mode develops
internal structure under appropriate choices of the parame-
ters of the model.

1 Introduction

Braneworld scenarios consider our observable universe as
a brane embedded in a 5D bulk. They were first consid-
ered in Refs. [1–4] and then in a diversity of scenarios
engendering standard and modified gravity. More recently,
thick braneworld systems were constructed in the proposed
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f (R, T ) gravity [5], with R the Ricci scalar and T the trace
of the stress–energy tensor; see, e.g., Refs. [6,7]. Analytic
background solutions were obtained and the full linear per-
turbations were explored, especially the metric [6] and scalar
perturbations [7]. It was shown explicitly that under specific
situations, the gravity sector of this new braneworld scenario
is linearly stable [6]. Due to the rich internal structure of
f (R, T ) gravity, more interesting background braneworld
solutions as compared to general relativity coupled to a
canonical scalar field were found [7]. It was shown that
there is no tachyon state in this model and only the mass-
less tensor mode can be localized on the brane, which recov-
ers the effective four-dimensional gravity. Thick branes were
re-examined in f (R, T ) gravity [8], where the equation of
motion for the scalar field and the f (R, T ) field equation for
a conformally flat brane and Robertson-Walker brane were
derived. The localization of the scalar field on the f (R, T )

thick brane was also explored, for a specific f (R, T ) form.
In Ref. [9], it was shown that the cosmological param-

eters obtained from 5D f (R, T ) gravity are in agreement
with recent constraints from type Ia supernovae data, baryon
acoustic oscillations and cosmic microwave background
observations, favoring such an alternative description of the
universe dynamics. In this context, f (R, T ) gravity was also
investigated in the so-called configurational entropy (CE)
context [10]. It was shown, by means of this information-
theoretical measure, that a stricter bound on the parameter
of f (R, T ) brane models arises from the CE. It was further
found that these bounds are characterized by a valley region
in the CE profile, where the entropy is minimal. It was argued
that the CE measure can open a new role and an important
additional approach to select parameters in modified gravity.
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The search of thick brane solutions is an extremely active
branch of research and a plethora of scenarios have recently
been extensively explored, in particular, within modified
gravity. As far as we know, the first work on branes in f (R)

theory appeared in Ref. [11] and more recently in [12–19]
with distinct motivations. Moreover, after the reviews on
modified gravity [20,21], several works on thick branes on
extended models have investigated issues of current interest;
see, e.g., Refs. [22–31] and references therein. For instance,
in Ref. [22] the authors studied thick brane solutions in a
6D spacetime in modified f (R) gravity; Ref. [23] consid-
ered a modified mimetic model controlled by the presence of
the scalar torsion; 5-dimensional braneworld scenarios were
analyzed in the scalar–tensor representation of the general-
ized hybrid metric-Palatini gravitational theory [24]; brane
structure and gravitational resonances of thick branes gener-
ated by a mimetic scalar field in f (R) gravity were studied
in [25]; 5-dimensional f (T, B) teleparallel modified gravity
braneworld scenarios, where asymptotically, the bulk geom-
etry converges to an AdS5 spacetime whose cosmological
constant is produced by parameters that control torsion [26];
a novel approach was analyzed in [27] in modified gravity
with Lagrange multipliers, where the linear stability of the
models were explored; the case of flat and bent branes with
internal structure in mimetic gravity in the presence of two
real scalar fields [28]; the study in [29] to show that includ-
ing a Lagrange multiplier unveils an alternative approach to
induce brane structure using a single scalar field, tracing out
new avenues of research in braneworld scenarios, naturally
leading to interesting results for the localization of matter
fields in the brane; the investigation of thick branes gener-
ated by a scalar field in mimetic gravity theory [30], where
the presence of two auxiliary superpotentials is considered to
change the second order field equations into first order equa-
tions; and also, the study of fermion localization in branes in
another scenario in teleparallel f (T, B) gravity [31].

The recent results on thick braneworld solutions devel-
oped in Refs. [24,29] in modified gravity motivate us to fur-
ther study the issue, searching for new scenarios and solu-
tions. In particular, in this work we will focus in the recently
proposed dynamically equivalent scalar–tensor representa-
tion of f (R, T ) gravity which clarifies the two extra scalar
degrees of freedom of the theory via the introduction of two
gravitational scalar fields [32]. The present work is outlined
in the following manner: in Sect. 2, we introduce the general
model, the source matter distribution and the equations of
motion in the case of a five-dimensional line element appro-
priated to study braneworld models in the presence of a sin-
gle extra dimension of infinite extent. We also investigate the
stability of the gravitational sector. In Sect. 3, we derive two
solutions in the general f (R, T ) case, the first without mat-
ter and the second in the presence of a source matter field.
We then move on to Sect. 4, where two interesting new pos-

sibilities are considered, one with f (R, T ) = f (R)+ T and
the other with f (R, T ) = R + f (T ). These cases are of
particular interest since they describe braneworld scenarios
that fall within the class of models with stable gravitational
sector [6] and may unveil a new route for the study of thick
branes in modified gravity in the presence of the trace of the
stress–energy tensor [5]. Finally, in Sect. 5, we conclude and
discuss possible lines of future research in the subject.

2 Action and field equations

The action that describes f (R, T ) gravity [5] in 4+1 dimen-
sional gravity is given by

S = 1

2κ2

∫
�

√−g f (R, T ) d5x + Sm (gMN , χ) , (1)

where κ2 = 8πG5, G5 is the 5-dimensional Newtonian con-
stant, � is a 5-dimensional spacetime manifold on which we
define a set of coordinates xM , g is the determinant of the
metric gMN , f is an arbitrary function of the Ricci scalar
R = gMN RMN , where RMN is the Ricci tensor, and the
trace T of the stress–energy tensor TMN , Sm is the matter
action defined as Sm = ∫ Lmd5x , where Lm is the mat-
ter Lagrangian density considered minimally coupled to the
metric gMN , and χ collectively denotes the matter fields.

The modified field equations of the theory can be obtained
by taking a variation of Eq. (1) with respect to the metric
gMN , which yields

∂ f

∂R
RMN − 1

2
f (R, T ) gMN − (∇M∇N − gMN�)

∂ f

∂R

= κ2TMN − ∂ f

∂T
(TMN + �MN ) , (2)

where ∇M denotes covariant derivatives and � ≡ ∇M∇M is
the d’Alembert operator, both written in terms of the metric
gMN . The stress–energy tensor TMN is defined in terms of
the variation of the matter Lagrangian densityLm in the usual
way, i.e.,

TMN = − 2√−g

δ
(√−gLm

)
δgMN

, (3)

and �MN is a tensor defined in terms of the variation of the
stress–energy tensor TMN with respect to the metric gMN as

�MN = gPQ δTPQ

δgMN
. (4)

The explicit form of the tensor �MN can only be obtained
after the form of the stress–energy tensor TMN is defined (or,
equivalently, the form of the matter Lagrangian Lm).

A dynamically equivalent scalar–tensor representation of
the action in Eq. (1) can be obtained via the introduction of
two auxiliary fields α and β as

123



Eur. Phys. J. C (2021) 81 :981 Page 3 of 14 981

S = 1

2κ2

∫
�

√−g

[
f (α, β) + ∂ f

∂α
(R − α)

+∂ f

∂β
(T − β)

]
d5x + Sm (gMN , χ) . (5)

The action (5) depends on three independent variables,
namely, the metric gMN and the two auxiliary fields α and
β. Taking the variations of Eq. (5) with respect to α and β

yields the two equations of motion

fαα (R − α) + fαβ (T − β) = 0, (6)

fβα (R − α) + fββ (T − β) = 0, (7)

respectively, where the subscripts α and β denote partial
derivatives with respect to these fields and fαβ = fβα as
we assume the function f (α, β) is well-behaved and thus
satisfies the Schwartz theorem. The system of Eqs. (6) and
(7) can be recast in a matricial form MX = 0 as

MX =
(
fαα fαβ

fβα fββ

) (
R − α

T − β

)
= 0. (8)

The solution of the system of Eq. (8) will be unique if and
only if the determinant of the matrix M is non-vanishing.
The condition detM �= 0 yields a constraint between the
second-order derivatives of f in the form fαα fββ �= f 2

αβ .
If this condition is satisfied, the solution for the system of
Eqs. (6) and (7) is unique and given by α = R and β =
T . One can now verify that inserting these considerations
back into Eq. (5), one recovers the original action in Eq. (1),
thus confirming the consistency of this transformation and
proving the equivalence between the two representations.

If one now defines two scalar fields ϕ and ψ and a scalar
interaction potential V (ϕ, ψ) in the forms

ϕ = ∂ f

∂R
, ψ = ∂ f

∂T
, (9)

V (ϕ, ψ) = ϕR + ψT − f (R, T ) , (10)

the auxiliary action (5) can be rewritten in the equivalent
scalar–tensor representation as

S = 1

2κ2

∫
�

√−g [ϕR + ψT − V (ϕ, ψ)] d5x

+Sm (gMN , χ) . (11)

The action in Eq. (11) depends on three independent vari-
ables, namely, the metric gMN and the two scalar fields ϕ

and ψ . Taking the variation of Eq. (11) with respect to these
variables, one obtains respectively

ϕRMN − 1

2
gMN (ϕR + ψT − V ) − (∇M∇N − gMN�) ϕ

= κ2TMN − ψ (TMN + �MN ) , (12)

Vϕ = R, (13)

Vψ = T, (14)

where the subscripts ϕ and ψ denote partial derivatives with
respect to these fields, respectively. Notice that Eq. (12) could
be obtained directly from Eq. (2) by introducing directly the
definitions in Eqs. (9) and (10).

We remark that, in the formalism described by Eqs. (9)–
(14), one can see that the standard case, f (R, T ) = R is
recovered for ϕ = 1 and ψ = 0, giving V (ϕ, ψ) = 0. In
this situation, there is no variation with respect to the fields ϕ

and ψ , so Eqs. (13) and (14) do not exist, and the problem is
described by Eq. (12), which becomes RMN − gMN R/2 =
κ2TMN .

2.1 Matter distribution

Let us now consider matter to be described by a single dynam-
ical scalar field χ with an interaction potential U (χ). The
matter action that describes this distribution of matter is given
by

Sm = −
∫

�

√−g

[
1

2
∂ Pχ∂Pχ +U (χ)

]
d5x . (15)

Taking a variation of Eq. (15) with respect to the scalar field
χ and using the definition of the stress–energy tensor TMN

provided in Eq. (3) yields

TMN = −gMN

[
1

2
∂ Pχ∂Pχ +U (χ)

]
+ ∂Mχ∂Nχ. (16)

The explicit form of TMN obtained in Eq. (16) allows one to
finally compute the associated form of�MN via the definition
in Eq. (4). Taking the variation of Eq. (16) with respect to the
inverse metric gMN one obtains

�MN = gMN

[
1

2
∂ Pχ∂Pχ +U (χ)

]
− 5

2
∂Mχ∂Nχ. (17)

Furthermore, an equation of motion for the field χ can now
be obtained by taking a variation of Eq. (11) with respect to χ .
This equation of motion will not only feature terms arising
from the matter action Sm but also terms arising from the
gravitational sector, as it depends explicitly on the trace of
TMN in Eq. (16). The resultant equation of motion takes the
form(

3ψ

2κ2 + 1

)
�χ + 3

2κ2 ∂aχ∂aψ =
(

5ψ

2κ2 + 1

)
Uχ , (18)

where the subscript χ denotes a derivative with respect to the
scalar field χ .

2.2 Metric and equations of motion

To investigate branes, we consider that the spacetime mani-
fold is described by the 5-dimensional line element

ds2 = e2A(y)ημνdx
μdxν + dy2, (19)
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where A (y) is called the warp function, ημν =
diag (−1, 1, 1, 1) is the 4-dimensional Minkowski metric,
where greek indices run from 0 to 3, and y represents an
extra infinite 5th dimension. Furthermore, let us assume that
the gravitational scalar fields ϕ, ψ and the matter scalar
field χ are constant through the 4-dimensional spacetime
and depend solely on the extra dimension y, i.e., ϕ = ϕ (y),
ψ = ψ (y), and χ = χ (y). We see that the three scalar
fields ϕ, ψ , and χ act as source fields to generate brane con-
figurations in the present braneworld scenario, also guided
by the warp function A and the potentials V and U . Given
the isotropy of the 4-dimensional part of the metric, Eq. (12)
will yield only two independent field equations. Inserting
Eqs. (19) into Eqs. (12)–(14) and (18), along with the forms
of TMN and �MN from Eqs. (16) and (17) one obtains the
system

3ϕ
(

2A′2 + A′′) + 3ϕ′A′ + V

2
+ ϕ′′

= −
(

κ2 + 5ψ

2

)
U −

(
κ2 + 3ψ

2

)
χ ′2

2
, (20)

6ϕA′2 + 4ϕ′A′ + V

2

= −
(

κ2 + 5ψ

2

)
U

+
(

κ2 + 3ψ

2

)
χ ′2

2
, (21)

Vϕ = −20A′2 − 8A′′, (22)

Vψ = −5U − 3

2
χ ′2, (23)

(
3ψ

2κ2 + 1

) (
4A′χ ′ + χ ′′) + 3

2κ2 χ ′ψ ′ =
(

5ψ

2κ2 + 1

)
Uχ ,

(24)

where the prime denotes a derivative with respect to the
coordinate y. It is important to note that in the system of
Eqs. (20)–(24) only four of these five equations are indepen-
dent. This feature can be demonstrated by taking the deriva-
tive of Eq. (21) with respect to y, using Eq. (20) to cancel
the term dependent on A′′, using Eq. (22) to cancel Vϕ , using
Eq. (23) to cancel Vψ , and finally using Eq. (21) itself to
cancel the terms dependent on A′, thus obtaining Eq. (24) as
a result.

To recover the standard case easily, one can substitute
Eq. (20) by the difference between Eqs. (20) and (21), in the
form

3ϕA′′ − ϕ′A′ + ϕ′′ = −
(

κ2 + 3ψ

2

)
χ ′2, (25)

and use this equation instead of Eq. (20) to investigate the
problem. As we commented below Eq. (14), the equations
for the standard case, f (R, T ) = R, are obtained with ϕ = 1

and ψ = 0, and V (ϕ, ψ) = 0. Thus, Eqs. (22) and (23) do
not exist and the above equation becomes

A′′ = −1

3
κ2χ ′2. (26)

Also, the Eq. (21) takes the form

A′2 = −1

6
κ2U + 1

12
κ2χ ′2, (27)

and Eq. (24) simplifies to

χ ′′ + 4A′χ ′ = Uχ , (28)

which is the equation for the field χ . As it is known, only two
of these three equations are independent. In this situation,
considering κ2 = 2 as usual, by introducing an auxiliary
function, W (χ), associated to the potential which is now
defined by

U (χ) = 1

2
W 2

χ − 4

3
W 2, (29)

one can obtain first order equations, in the form

χ ′ = Wχ A′ = −2

3
W. (30)

In f (R, T ) gravity, it was shown in Ref. [6] that first order
equations can be obtained in models in which f (R, T ) =
R + γ T . It is interesting to see that, in the action of Eq. (11)
this model is obtained with ϕ = 1, ψ = γ , and V = 0.

2.3 Brane stability

The study of small perturbations of the metric was previously
done in Ref. [6] in the usual representation, given by f (R, T )

in the action in Eq. (1). There, the authors have shown that
by taking

ds2 = e2A(y) [
ημν + Hμν(x, y)

]
dxμdxν + dy2, (31)

where Hμν(x, y) is a small perturbation around a Minkowski
background metric ημν , the gravity sector of the brane is lin-
early stable for f (R, T ) = F(R) + G(T ). In the scalar–
tensor representation described by Eqs. (9)–(14), this situa-
tion is equivalent to the case V (ϕ, ψ) = P(ϕ) + Q(ψ). By
following Ref. [6], one gets the stability equation
[
− d2

dz2 + u(z)

]
H̄μν(z) = p2 H̄μν(z), (32)

where the variable z was defined as dz = e−A(y)dy
to make the metric conformally flat, and one considers
the transverse traceless components of metric fluctuation
Hμν , which is written in terms of H̄μν as Hμν(x, z) =
e−i p·x e−3A(z)/2ϕ−1/2 H̄μν(z). In the above equation, the sta-
bility potential has the form

u (z) = α (z)2 − dα

dz
, (33)

123



Eur. Phys. J. C (2021) 81 :981 Page 5 of 14 981

where the function α (z) is defined as

α (z) = −3

2
Az − 1

2

d

dz
(ln ϕ) . (34)

The Schrödinger-like equation in Eq. (32) can be factorized
in the form S†SH̄μν = p2 H̄μν , where

S = d

dz
+ α (z) S† = − d

dz
+ α (z) . (35)

The aforementioned factorization ensures that p2 ≥ 0, so the
gravity sector of the brane is stable.

The above expression allows us to calculate the massless
graviton state, represented by the zero mode, p2 = 0. By
taking SH̄ (0)

μν = 0, we get

H̄ (0)
μν = Nμν

√
ϕ (z)e3A(z)/2, (36)

where Nμν is a normalization factor. Notice that, in the stan-

dard case, ϕ = 1 and the zero mode is H̃ (0)
μν = Ñμνe3A(z)/2.

The normalization factors Nμν can be obtained via the inte-
gration of the zero mode as
∫

H̄ (0)
μν dz = Nμν

∫
ϕe2Ady = 1, (37)

which guarantees that the 4-dimensional gravity can be
recovered on the brane.

3 Solutions in the general case

Let us now focus attention on the presence of solutions in
some specific cases of general interest and on the stability
of the gravitational sector. We consider, in particular, the
simpler case with χ = 0, and another one, in which the
matter field χ also plays a role.

3.1 Solution without matter (χ = 0)

We start our analysis with the simplest possible case of a
brane model without the matter field χ , i.e., solely supported
by the gravitational scalar fields ϕ and ψ . In this case, one
assumes χ = 0 and U = 0 for the matter scalar field and
potential. Under these assumptions, Eq. (24) is automatically
satisfied. Furthermore, from Eq. (23) one verifies thatVψ = 0
and thus the potential V must be solely a function of ϕ, i.e.,
V (ϕ, ψ) = V (ϕ). This result allows one to use the chain
rule to write Vϕ as a function of V ′ (y) and ϕ′. Under these
considerations, Eq. (25) and the equation of motion for ϕ in
Eq. (22) become respectively

3ϕA′′ + ϕ′′ − A′ϕ′ = 0, (38)

A′′ + 5

2
A′2 + 1

8

V ′

ϕ′ = 0. (39)

Equations (38) and (39) are a system of two independent
equations for the three unknowns A, ϕ and V . Thus, the
system is under-determined and one can still impose one
constraint to close the system. Since we are interested in
thick-brane solutions, we chose to set an explicit form for
the warp function A as

A (y) = A0 log [sech (ky)] , (40)

where A0 and k are constant parameters and A0 in particular
must be positive-defined. The system of Eqs. (38) and (39)
thus take the following form

ϕ′′ + k A0 tanh (ky) ϕ′ − 3k2A0 sech2 (ky) ϕ = 0, (41)
V ′

ϕ′ = 4k2A0

[
2sech2 (ky) − 5A0 tanh2 (ky)

]
, (42)

respectively.
Equations (41) and (42) form a system of two coupled

differential equations for ϕ and V . Due to their complexity,
these equations do not feature analytical solutions and must
be solved numerically. In particular, one starts by solving
Eq. (41) for ϕ and then inserts the result into Eq. (42) to
solve to V . These solutions must satisfy a set of boundary
conditions at the origin that guarantee that they are even, i.e.,
ϕ (0) = ϕ0, V (0) = V0, where ϕ0 and V0 are constants, and
ϕ′ (0) = 0 and V ′ (0) = 0. The numerical solutions for this
case are plotted in Fig. 1, where we have considered A0 = 1,
k = 1 and V0 = 1 for simplicity. The solutions for ϕ grow
outwards from y = 0 attaining a constant asymptotic value
as y → ±∞. The solutions for V start growing outwards
from y = 0 forming a small potential well but eventually
reverse their growth and decrease outwards to attain a lower
asymptotic value at y → ±∞.

For this model without matter, since f (R, T ) depends
only on R, we can see from Sect. 2.3 that the gravity sector of
the brane is stable. Therefore, we can use Eqs. (33) and (36) to
calculate the stability potential u and the graviton zero mode
H (0)

μν , which are plotted in Fig. 2. The potential u vanishes
at y = 0, decreases outwards achieving two global minima
at some |y| = ymin, and then proceeds to increase attaining
two global maxima at some |y| = ymax, with ymin < ymax,
this presenting a double potential well. The general behavior
of the potential u (y) is not affected by different choices of
the free parameters: changes in ϕ0 and V0 do not induce
any modifications in the potential, and changes in A0 and k
produce simple rescalings of the potential without changing
its general shape. Since the potential vanishes at y = 0, the
graviton zero mode H (0)

μν presents a single peak on the brane,
and thus the brane does not develop an internal structure.

3.2 Solution with matter (χ �= 0)

Let us now consider solutions for thick branes in the presence
of a matter scalar field χ . Equations (21)–(25) form a system

123
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Fig. 1 Solutions for ϕ (y) (left plot) and V (y) (right plot) resulting from the integration of Eqs. (41) and (42) with A0 = 1, k = 1, and V0 = 1,
for different values of ϕ0

Fig. 2 Stability potential u (y) (left panel) and graviton zero mode H (0)
μν (right panel) for the model proposed in Sect. 3.1 for k = 1, A0 = 1,

ϕ0 = 1, and V0 = 1. These results remain unchanged for different values of ϕ0 and V0

of five equations, of which only four are independent, to the
six unknowns A, ϕ, ψ , V , χ , and U . Furthermore, as will
be shown later in this section, since in this case there are no
restrictions in the form of V , i.e., it will be a general function
of two variables ϕ and ψ , there are in fact two degrees of free-
dom associated with this unknown, and thus one has effec-
tively a total of seven degrees of freedom hidden in the six
unknowns. This means that the system is under-determined
and one can impose three constraints to close the system.
Note however that setting an explicit form of the potential
would reduce the number of degrees of freedom by two, and
consequently only one extra constraint could be imposed. In
this case, we will impose explicit forms of the matter field χ

and the potential U as

χ (y) = χ0 tanh (ky) , (43)

U (χ) = 1

2
W 2

χ − 4

3
W (χ)2 , (44)

where χ0 and k are arbitrary constants and the functionW (χ)

is called the super-potential of χ and is given by the form

W (χ) = χ − 1

3
χ3. (45)

The motivation behind the choices made in Eqs. (43) and (44)
resides in their wide use in the literature due to their close

connection to the standard case in General Relativity. On the
other hand, as the model in study features a non-vanishing
Ricci scalar R and trace of the stress–energy tensor T , from
Eqs. (22) and (23) one verifies that Vϕ and Vψ are non-zero,
and thus the potential V will depend explicitly in both scalar
fields ϕ and ψ . As a consequence, the derivative of V with
respect to y will be given by the chain rule

V ′ (y) = Vϕ (y) ϕ′ + Vψ (y) ψ ′. (46)

This result shows that there is a degeneracy associated to the
potential V (y): one can use Eq. (22) to obtain Vϕ (y) as a
function of A, then use Eq. (23) to obtain Vψ (y) as a function
of y, and replace these results into Eq. (46). One is thus left
with a system of three independent equations, the equation
of motion for χ in Eqs. (24), (25), and the potential equation
just derived in Eq. (46) for the four unknowns A, V , ϕ and
ψ .

The origin of this degeneracy is the fact that there are
two degrees of freedom associated with the potential V, even
though it is a single unknown. This fact can already be
inferred from Eq. (46), which shows that one can always
consider either Vϕ or Vψ to be independent from V as there
are infinite different combinations of Vϕ and Vψ that yield the
same V . Let us nevertheless prove this degeneracy explicitly:
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Fig. 3 Solutions for ψ (y) (left panel) and ϕ (y) (right panel) resulting from the integration of Eqs. (48) to (50) with A0 = 1, k = 1, and V0 = 1.
In these plots we also consider ϕ0 = 1 for simplicity, but the same plethora of behaviors could be obtained for any other value of ϕ0

consider the system of Eqs. (20)–(24) plus Eq. (46), and take
Vϕ and Vψ as functions of y. Taking the derivative of Eq. (21),
using Eq. (24) to eliminate χ , using Eq. (20) to eliminate ϕ′′,
using Eq. (22) to eliminate A′′, using Eq. (24) to eliminate
U , using Eq. (21) again to eliminate V , and finally using Eq.
(46) to eliminate V ′, one obtains an identity. This proves that
one of the equations in the system of Eqs. (20)–(24) along
with Eq. (46) is not independent, and thus they form a system
of five equations for the eight unknown functions of y: A, ϕ,
ψ , χ , U , V , Vϕ , and Vψ . If at this point one leaves V , Vϕ

and Vψ arbitrary, one is able to introduce three constraints
in the remaining variables to close the system. On the other
hand, if one imposes an explicit form of V (ϕ, ψ), this also
sets the forms of Vϕ and Vψ , and Eq. (46) is identically sat-
isfied, thus leaving us with a system of four equations to five
unknowns, and allowing only for second constraint. Thus, as
we have given explicit forms of χ and U , this degeneracy
in the potential effectively allow us to introduce one extra
constraint to close the system, as long as this constraint is
not the form of V . Similarly to the case without matter, we
chose to impose an explicit form of the warp factor A as

A (y) = A0 log [sech (ky)] , (47)

where A0 is a positive-defined constant. The resultant closed
system of equations can then be written as the subtraction
of Eq. (21) from Eq. (20), the equation of motion for χ in
Eq. (24), and the potential equation in Eq. (46), which take
the respective forms

ϕ′′ = −1

2
k

[
+2A0 tanh (ky) ϕ′ − 6k A0sech2 (ky) ϕ

+ kχ2
0 sech4 (ky) (4 + 3ψ)

]
, (48)

3

4
kχ0sech2 (ky) ψ ′ + 1

18

{
84 − 100χ2

0 tanh2 (ky)

+ 16χ4
0 tanh4 (ky)−k2 (36+27ψ) (1 + 2A0) sech2 (ky)

+
[
84 − 25χ2

0 tanh2 (ky) + 4χ4
0 tanh4 (ky)

]
ψ

}
= 0,

(49)

V ′ = 2k2A0 [4 + 5A0 − 5A0 cosh (2ky)] sech2 (ky) ϕ′

−3

2
k2χ2

0 sech4 (ky) + 5

54

[
−27 + 126χ2

0 tanh2 (ky)

− 75χ4
0 tanh4 (ky) + 8χ6

0 tanh6 (ky)
]
. (50)

Equations (48)–(50) constitute a system of three coupled
differential equations for ϕ, ψ and V that must be solved
numerically subjected to appropriate boundary conditions at
the origin that guarantee the evenness of the solutions, i.e.,
ϕ (0) = ϕ0, ψ (0) = ψ0, and V (0) = V0, where ϕ0, ψ0

and V0 are constants, and also ϕ′ (0) = 0, ψ ′ (0) = 0, and
V ′ (0) = 0. The numerical solutions for this model are plot-
ted in Figs. 3 and 4, where we have again considered A0 = 1,
k = 1, and V0 = 0 for the same reasons as outlined in the
previous model. The scalar field ψ can present at most three
different behaviors depending solely in the value of ψ0: it
may increase outwards from the origin (e.g. for ψ0 = 0), it
may decrease outwards from the origin, attain a minimum
value at some |y| = ymin, and proceed to increase again all
the way up to y → ±∞ (e.g. for ψ0 = 15, or it may have
a global maximum at y = 0 and decrease monotonically
outwards from the origin (e.g. for ψ0 = 30).

It was also verified that for a fixed value of ϕ0 there are
ranges of values of ψ0 for which the behaviors of the scalar
field ϕ and the potential V change dramatically. Consider
as an example the case ϕ0 = 1. For this case, if ψ0 � 0.8
the scalar field ϕ is monotonically decreasing outwards from
the origin, if 0.8 � ψ0 � 1.5 the scalar field ϕ decreases
outwards from the origin, attains two minima at some |y| =
ymin, and increases again outwards, and if ψ0 � 1.5 the scalar
field ψ has a global minimum at the origin and increases
monotonically outwards. Also for ϕ0 = 1, one verifies that
if ψ0 � 0.7 the potential V decreases outwards from the
origin, attains two minima at some |y| = ymin, and proceeds
to grow outwards. At ψ0 ∼ 0.7 the potential V develops
two new minima at some |y| = ȳmin with ȳmin < ymin.
This structure with four minima is maintained for the range
0.7 � ψ0 � 0.95, see Fig. 5 for an explicit example. At

123



981 Page 8 of 14 Eur. Phys. J. C (2021) 81 :981

Fig. 4 Solutions for V (y) resulting from the integration of Eqs. (48)–
(50) with A0 = 1, k = 1, and V0 = 1. In these plots we also consider
ϕ0 = 1 for simplicity, but the same plethora of behaviors could be
obtained for any other value of ϕ0

Fig. 5 Solution for V (y) from the integration of Eq. (50) with A0 = 1,
k = 1, V0 = 1, ϕ0 = 1, and ψ0 = 0.87. The four-minima structure that
the potential V acquires for ϕ0 = 1 and 0.7 � ψ0 � 0.95 is visible

ψ0 ∼ 0.95, the minima at |y| = ymin collapse into saddle
points, and for ψ0 � 0.95 the potential again recovers a
behavior with only two minima at the points |y| = ȳmin.

We have shown that the model investigated in this sec-
tion supports brane solutions. However, V was obtained as a
function of y and, since there are two fields ϕ and ψ involved
in the model, it is not possible to determine the explicit form
of V as a function of ϕ and ψ . Indeed, because of the degen-
eracy of the potential V , the form V (ϕ, ψ) is not unique.
To draw conclusions about the stability of the model, it is
necessary that the potential V is separable in terms of ϕ and
ψ (see Sect. 2.3). Thus, one can exploit the degeneracy of
the potential supposing that V (ϕ, ψ) = P(ϕ) + Q(ψ). In
this case, V ′ (y) = (dP/dϕ) (y) ϕ′ + (dQ/dψ) (y) ψ ′, and
Eq. (46) implies that Vϕ (y) = (dP/dϕ) (y) and Vψ (y) =
(dQ/dψ) (y), which can be done without loss of generality
as Vϕ , Vψ , dP/dϕ and dQ/dψ are functions of y. In other
words, any solution in the general case f (R, T ) obtained

with an arbitrary V (ϕ, ψ) can be recast as a solution of a
separable potential, which implies that the gravity sector of
the brane is stable, as discussed in Sect. 2.3. We then use
Eqs. (33) and (36) to calculate the stability potential u and
the graviton zero mode H (0)

μν , which are plotted in Fig. 6 for
different combinations of the free parameters. Again, one
verifies that the parameter V0 does not induce any changes in
the solutions and that a modification on the parameters k and
A0 simply re-scales the solutions without altering their gen-
eral behavior. In this case, however, the parameters ϕ0 and
ψ0 play a crucial role in defining the shape of the potential
u and consequently the shape of the zero mode H (0)

μν : for a
given value of ϕ0 > 0 set to guarantee the positiveness of the
term proportional to R in the action of Eq. (11), one can tune
the value of ψ0 to control whether the potential u presents
a single potential well, a double potential well, or even a
potential barrier in the brane. Consider e.g. k = 1, A0 = 1,
V0 = 1 and χ0 = 1, and set ϕ0 = 1. For this combination
of parameters, one verifies that if ψ0 � −0.6 the potential u
presents a single potential well on the brane and the graviton
zero mode H (0)

μν presents a single peak on the brane; when
−1.3 � ψ0 � −0.6 the potential u develops a negative local
minimum on the brane which flattens the peak of the zero
mode H (0)

μν on the brane; and finally if ψ0 � −1.3 the poten-
tial u develops a potential barrier on the brane surrounded
by two potential wells at some |y| = ymin which effectively
breaks the graviton zero mode H (0)

μν in two separate peaks,
case for which the brane does support an internal structure.

4 Other possibilites

We now investigate other models, in which the function
f (R, T ) is restricted to be linear in either R or T , and the
stability of their gravity sector is ensured from the beginning.
These models must be analyzed separately from the general
case because they do not satisfy the condition det M �= 0, for
the matrix M defined in Eq. (8), and thus the scalar–tensor
formalism has to be changed. In the following we pursue the
analysis of these cases.

4.1 The case f (R, T ) = F (R) + T

Let us now consider a special case for which the function
f (R, T ) can be decomposed in the form F (R)+T , for some
arbitrary function F (R). The second order partial derivatives
of this function are fRR = FRR , fT T = fRT = 0, and thus
we have fRR fT T − f 2

RT = 0. Therefore, the general method
described in Eqs. (5)–(14) is not well-defined and we have to
analyze this case independently. The action in Eq. (1) takes
the form

S = 1

2κ2

∫
�

√−g [F (R) + T ] d5x + Sm (gMN , χ) . (51)
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Fig. 6 Stability potential u (y) (top panel) and graviton zero mode H (0)
μν (bottom panel) for the model proposed in Sect. 3.2 for k = 1, A0 = 1,

ϕ0 = 1, and V0 = 1, for different values of ψ0

To obtain a dynamically equivalent scalar–tensor representa-
tion for this action we only need one auxiliary field α, since
the degree of freedom associated with the arbitrary depen-
dency of f (R, T ) in T is no longer present. We can thus
write the geometrical part of Eq. (51), i.e, ignoring the mat-
ter action for simplicity as it does not play any role in the
transformation that follows, in the form

S = 1

2κ2

∫
�

√−g

[
F (α) + T + dF

dα
(R − α)

]
d5x . (52)

The action in Eq. (52) now depends on two independent vari-
ables, namely the metric gMN and the auxiliary field α. Tak-
ing a variation with respect to α yields the equation of motion

Fαα (R − α) = 0. (53)

This result implies that the solution of Eq. (53) is unique only
if the function F (α) is at least quadratic in α. In that case,
the unique solution becomes R = α and Eq. (52) reduces to
Eq. (51), thus proving the equivalence of the two represen-
tations. One can now define a scalar field ϕ and a potential
V (ϕ) in the forms

ϕ = dF

dR
, V (ϕ) = ϕR − F(R), (54)

and obtain the equivalent scalar–tensor representation of the
f (R, T ) gravity in the particular case f (R, T ) = F (R)+T
as

S = 1

2κ2

∫
�

√−g [ϕR+T−V (ϕ)] d5x+Sm (gMN , χ) .

(55)

Equation (55) now depends on two independent variables,
the metric gMN and the scalar field ϕ, and one can derive
two equations of motion. Taking the variation of Eq. (55)
with respect to gMN and ϕ respectively yields

ϕRMN − 1

2
gMN (ϕR + T − V ) (56)

− (∇M∇N − gMN�) ϕ = κ2TMN − (TMN + �MN ) ,

Vϕ = R. (57)

Notice that these equations could be obtained directly from
Eqs. (12) and (13) by taking ψ = 1 and V (ϕ, ψ) = V (ϕ),
but this situation can not be obtained as a limit of the general
case because the remaining equation, i.e., Eq. (14), would
force T = 0, whereas in here the matter distribution remains
arbitrary.

Let us now look for solutions in the current case, with the
matter distribution in Eq. (15) and the metric in Eq. (19).
From Eqs. (56), (57) and (18) with ψ = 1, we get the fol-
lowing independent equations

3ϕA′′ − ϕ′A′ + ϕ′′ = −
(

κ2 + 3

2

)
χ ′2, (58)

V ′ (y) = −(20A′2 + 8A′′)ϕ′, (59)(
3

2κ2 + 1

) (
4A′χ ′ + χ ′′) =

(
5

2κ2 + 1

)
Uχ , (60)

where Eq. (58) arrives from the subtraction of the (y, y) com-
ponent from the (t, t) component of the field equations in
Eq. (56) and we have used the chain rule to write Vϕ(ϕ) in
terms of V ′ (y) and ϕ′.

The system of Eqs. (58)–(60) is a system of three inde-
pendent equations to the five unknowns ϕ, A, V , U and χ ,
which implies that one can impose two constraints to deter-
mine the system. We chose to set the forms of χ and U as in
Eqs. (43)–(45). Under these considerations, Eq. (60) decou-
ples from the rest and can be directly integrated to find a solu-
tion for A with an arbitrary integration constant A0 which is
set according to the boundary condition A (0) = 0. The solu-
tion for A (y) is analytical but, given its lengthy expression
and for the sake of clarity, we decided to plot this solution
in Fig. 7 instead of writing its explicit form. Afterwards, this
solution for A is introduced into Eq. (58) which can then be
solved for ϕ subject to the boundary conditions ϕ (0) = ϕ0

123



981 Page 10 of 14 Eur. Phys. J. C (2021) 81 :981

Fig. 7 Solution for A (y) obtained from the integration of Eqs. (58)–
(60) under the assumptions of Eqs. (43)–(45) with χ0 = 1 and k = 1

and ϕ′ (0) = 0 for some arbitrary constant ϕ0. Finally, one
can introduce the solutions for A and ϕ into Eq. (59) and
solve for V considering the boundary condition V (0) = V0.

The numerical solutions for ϕ and V in this model are
plotted in Fig. 8 where we have considered χ0 = 1, k = 1,
and V0 = 1, as it was verified that these parameters do not
influence the general behavior of the solutions, functioning
solely as scaling factors. It was verified that the shape of
the potential V varies with the choice of ϕ0, but the shape
of V0 does not affect the shape of ϕ, as expected since the
solutions for ϕ was obtained from an equation that decouples
completely from V . The solution for for ϕ can either attain
a global maximum at y = 0 and decrease outwards, which
happens for ϕ0 � 1, or attain a global minimum at y = 0 and
increase outwards, which happens for ϕ0 � 1. Accordingly,
the shape of the potential V can either be a double barrier
with a small potential well at y = 0 or a double well with
a small potential barrier at y = 0, respectively. Notice how
in this case, since the potential depends solely in one scalar
field, the behaviors of the two quantities ϕ and V are strongly
connected.

Since V depends only on ϕ, the model supports brane
configurations with stable gravity sector, as suggested by the
discussion in Sect. 2.3. This feature allows us to calculate
the solutions for the stability potential u in Eq. (33) and the
gravity zero mode H (0)

μν in Eq. (36), which are plotted in
Fig. 9. It was verified that the parameter V0 does not affect
the results and that χ0 and k function solely as rescaling fac-
tors, and thus these parameters were fixed at V0 = 1, χ0 = 1,
and k = 1. For this choice of parameters, one verifies that
for small values of ϕ0 in the range ϕ0 � 3.5 the potential
u presents a global minimum at y = 0, increases outwards
attaining two global maxima at some |y| = ymax, and pro-
ceeds to decrease outwards again. In the regime ϕ � 3.5,
a local maximum develops at y = 0 separating the global
minimum into two potential wells at some |y| = ymin, with
ymin < ymax. This local maximum increases with ϕ0 but
tends to zero as ϕ0 → ∞, thus never developing a potential
barrier. Consequently, the gravity zero mode H (0)

μν is always
characterized by a single central maximum at y = 0, and the
brane does not develop internal structure.

4.2 The case f (R, T ) = R + G (T )

Consider now another particular case of interest for which the
function f (R, T ) is decomposed in the form R+G (T ), for
a given function G (T ). The second order partial derivatives
of this function are fRR = fRT = 0, fT T = GTT , and thus
again we have fRR fT T − f 2

RT = 0. The general method
described before in Eqs. (5)–(14) is not well-defined and
again we have to analyze this case separately. The action in
Eq. (1) takes the form

S = 1

2κ2

∫
�

√−g [R + G (T )] d5x + Sm (gMN , χ) . (61)

Similarly to the previous particular case, a dynamically
equivalent scalar–tensor representation for this action
requires only one auxiliary field β, as the degree of free-
dom associated with the arbitrary dependency of f (R, T )

Fig. 8 Solutions for ϕ (y) (left panel) and V (y) (right panel) resulting from the integration of Eqs. (58) and (59) with χ0 = 1, k = 1, and V0 = 1.
It can be seen that the behaviors of ϕ and V are strongly correlated
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Fig. 9 Stability potential u (y) (left panel) and graviton zero mode H (0)
μν (right panel) for the model proposed in Sect. 4.1 for k = 1, χ0 = 1, and

V0 = 1, for different values of ϕ0

in R ceases to exist. We can thus write the geometrical part
of Eq. (61), i.e, again ignoring the matter action as it is not
relevant in the transformation that follows, in the form

S = 1

2κ2

∫
�

√−g

[
R + G (β) + dG

dβ
(T − β)

]
d5x . (62)

The action in Eq. (62) now depends on two independent vari-
ables, namely the metric gMN and the auxiliary field β. Per-
forming a variation with respect to β leads to the equation of
motion

Gββ (T − β) = 0. (63)

Thus, the solution of Eq. (53) is unique only if the function
G (β) is at least quadratic in β. If this condition is verified,
the unique solution becomes T = β and Eq. (62) reduces to
Eq. (61), thus proving the equivalence of the two represen-
tations. We can now define a scalar field ψ and a potential
V (ψ) in the forms

ψ = dG

dT
, V (ψ) = ψT − G (T ) , (64)

and obtain the equivalent scalar–tensor representation of the
f (R, T ) gravity in the particular case in which f (R, T ) =
R + G (T ) as

S = 1

2κ2

∫
�

√−g [R + ψT − V (ψ)] d5x + Sm (gMN , χ) .

(65)

Equation (65) now depends on two independent variables, the
metric gMN and the scalar field ψ , and again we can obtain
two equations of motion. Taking the variation of Eq. (65)
with respect to gMN and ψ gives, respectively,

RMN − 1

2
gMN (R + ψT − V )

= κ2TMN − ψ (TMN + �MN ) , (66)

and

Vψ = T . (67)

Again, we note that these equations could also be obtained
directly from Eqs. (12) and (14) by taking ϕ = 1 and
V (ϕ, ψ) = V (ψ), but one can not obtain this situation as a
limit of the general case because the remaining equation, i.e.,
Eq. (13), would force the solutions to have R = 0, whereas
in here the geometry remains arbitrary.

To investigate brane configurations, we consider the mat-
ter distribution in Eq. (15) and the metric from Eq. (19). From
Eqs. (66), (67) and (18), we get the following independent
equations

3A′′ = −
(

κ2 + 3ψ

2

)
χ ′2. (68)

V ′ (y) = −
(

5U + 3

2
χ ′2

)
ψ ′, (69)

(
3ψ

2κ2 + 1

) (
4A′χ ′ + χ ′′) + 3

2κ2 χ ′ψ ′ =
(

5ψ

2κ2 + 1

)
Uχ ,

(70)

where Eq. (68) is again obtained from the difference between
the (y, y) and the (t, t) components of the field equations in
Eq. (66) and we have used the chain rule to write V ′ (ψ)

in terms of V ′ (y) and ψ ′. The system of Eqs. (68)–(70) is
a system of three independent equations for five unknowns
ψ , A, V , U and χ , which implies that two constraints can
be imposed to close the system. Similarly to what we did
before, we set the forms of χ and U as in Eqs. (43)–(44).
These ansatze do not decouple the system of Eqs. (68)–(70)
and thus the solutions must be obtained via simultaneous
numerical integrations under appropriate choices of bound-
ary conditions. The property A (0) = 0 is imposed as a
boundary condition for A, and we also impose A′ (0) = 0 to
preserve the parity of the solutions. Furthermore, we impose
ψ (0) = ψ0 and V (0) = V0 for some arbitrary constants ψ0

and V0.
The numerical solutions for ψ and V are plotted in Fig. 10

where we have considered χ0 = 1, k = 1, and V0 = 1, as
these parameters do not influence the general behavior of the
solutions. In this case, we chose not to plot explicitly the
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Fig. 10 Solutions for ψ (y) (left panel) and V (y) (right panel) resulting from the integration of Eqs. (68)–(70) with χ0 = 1, k = 1, and V0 = 1.
It can be seen that the behaviors of ψ and V are strongly correlated

Fig. 11 Stability potential u (y) (left panel) and graviton zero mode H (0)
μν (right panel) for the model proposed in Sect. 4.2 for k = 1, χ0 = 1, and

V0 = 1, for different values of ψ0

solution for A since the behavior is nearly identical to the
previous case already plotted in Fig. 7. Furthermore, since
ψ0 functions simply as a rescaling factor for A, we have
plotted A (y) for a single value ψ0 = 1. Again, we verified
that the value of V0 does not affect the solutions for ψ0, as
the equations from which the solution for ψ0 is computed
is independent of V . On the other hand, the behavior of V
can present numerous different properties and it is strongly
dependent on the choice of ψ0. The solutions for ψ and V can
have at most three different behaviors: in the regime ψ0 < 0,
ψ attains a global minimum at y = 0 and increases outwards,
whereas V presents a double-well structure with a potential
barrier at y = 0; for 0 < ψ0 � 0.26 both ψ and V invert
their behaviors, i.e., ψ attains a global maximum at y = 0
and decreases outwards, whereas V adopts a double barrier
structure with a small potential well at y = 0; and when ψ0 �
0.26, ψ develops a minimum at y = 0, increases outwards to
attain two global maxima at some |y| = ymax, and proceeds to
decrease outwards, while the potential V develops a complex
structure with a triple potential barrier. Again, it is remarkable
that, since the potential becomes a function of a single scalar
field in this particular case, the behaviors of the two quantities
ψ and V become highly correlated.

Let us analyze the stability of this model. Since V depends
only on ψ , we can ensure the stability of the gravity sector
of the brane. We then use Eqs. (33) and (36) to calculate
the stability potential u and the graviton zero mode H (0)

μν

numerically and plot them in Fig. 11. Since this model is
characterized by a constant scalar field ϕ = 1, Eqs. (33)
and (36) imply that the stability potential and the zero mode
are controlled uniquely by the warp function A, which was
shown in Fig. 7 to have the usual behavior. Thus, even though
there is a clear dependency of the stability potential and the
zero mode in the parameter ψ0, in this case this parameter
effectively becomes a simple rescaling factor, similarly to
the parameters χ0 and k. Furthermore, the solutions remain
unaffected by the parameter V0. As a consequence, u only
presents a single well behavior on the brane y = 0 and the
zero mode H (0)

μν is characterized by a single central peak.

5 Conclusions

In this work, we have studied the presence of braneworld
solutions in modified theories of gravity in a 5D bulk in the
presence of an extra spatial dimension of infinite extent. We
have considered the possibility to construct solutions in the
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scalar–tensor formulation of gravity, modified by the pres-
ence of functions of the Ricci scalar R and the trace of the
stress–energy tensor T , in the form f (R, T ). We have first
developed the general procedure to investigate the problem,
which requires the presence of two real scalar fields, ϕ and
ψ , and then studied some specific situations, such as in the
presence of an extra scalar field.

To study the stability of the gravity sector of the models,
we have considered the previous result introduced in [6],
in which the stability is proven when the model is written
in the case where f (R, T ) = F(R) + G(T ). We have then
taken advantage of this result and considered two distinct new
possibilities, with f (R, T ) = F(R)+T and with f (R, T ) =
R + G(T ). In this sense, we adapted the general formalism,
which requires the presence of the two fields ϕ and ψ , to
the case in the presence of a single field, ϕ or ψ . In these
specific cases the gravitational sectors of the brane are also
stable, and in the models studied we have also displayed the
corresponding stability potential and the gravity zero mode.

The results achieved in Sects. 3 and 4 are of particular
interest. In Sect. 3 we have shown that for the general case of
a function f (R, T ) featuring two scalar degrees of freedom
it is possible to obtain solutions for braneworlds presenting
an internal structure. On the other hand, if one chooses par-
ticular forms of the function f (R, T ) for which only one of
the scalar degrees of freedom is present, like it was studied
in Sect. 4, these braneworld solutions with internal structure
are unattainable. This result seems to confirm that internal
structure is a characteristic sourced by a system of two scalar
fields, and none is singly responsible for its development,
which is consistent with the results previously published
for the Bloch brane and the hybrid metric-Palatini gravity
f (R,R). An interesting line of investigation that opens up
with the presence of an internal structure is related to the
possibility of making the extra dimension compact, via the
presence of two branes which includes the interbrane sepa-
ration or radion field and the quasi-scalar–tensor theory with
specific couplings on both the positive and negative tension
branes; see Ref. [33].

The fact that the gravity sector is stable when the func-
tion f (R, T ) is separate in the form displayed above, moti-
vates us to investigate new possibilities, for instance, consid-
ering f (R) as a Born–Infeld or Gauss–Bonnet term, or even
the f (R,R) term considered before in generalized hybrid
metric-Palatini gravity [24], or yet the case of a thick brane in
the presence of Lagrange multipliers studied before in [29].
Another line of investigation of current interest is related
to the possibility of including another scalar field, changing
the field χ to χ1 plus χ2. In this situation, the extra scalar
field may be considered to modify the internal structure of
the braneworld solutions that we have found in the present
work. The new braneworld scenario investigated in this work
may also be of current interest from the cosmological point

of view. One can study cosmological aspects of braneworlds
scenarios with one- and two-brane systems in the presence of
bulk scalar fields following the lines of the interesting review
in Ref. [34]. These issues are presently under consideration,
and we hope to report on them in the near future.
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