
Eur. Phys. J. C (2021) 81:969
https://doi.org/10.1140/epjc/s10052-021-09770-w

Regular Article - Experimental Physics

Model compression and simplification pipelines for fast deep
neural network inference in FPGAs in HEP

Simone Francescato2 , Stefano Giagu1 , Federica Riti3 , Graziella Russo1 , Luigi Sabetta1,a , Federico
Tortonesi1

1 Department of Physics, Sapienza University and INFN Sezione di Roma, 00185 Rome, Italy
2 Department of Physics, Harvard University, Cambridge, MA 02138, USA
3 Department of Physics, ETH Zürich, 8092 Zurich, Switzerland

Received: 22 June 2021 / Accepted: 22 October 2021 / Published online: 3 November 2021
© The Author(s) 2021, corrected publication 2021

Abstract Resource utilization plays a crucial role for
successful implementation of fast real-time inference for
deep neural networks (DNNs) and convolutional neural net-
works (CNNs) on latest generation of hardware accelera-
tors (FPGAs, SoCs, ACAPs, GPUs). To fulfil the needs
of the triggers that are in development for the upgraded
LHC detectors, we have developed a multi-stage compres-
sion approach based on conventional compression strategies
(pruning and quantization) to reduce the memory footprint
of the model and knowledge transfer techniques, crucial to
streamline the DNNs simplifying the synthesis phase in the
FPGA firmware and improving explainability. We present the
developed methodologies and the results of the implementa-
tion in a working engineering pipeline used as pre-processing
stage to high level synthesis tools (HLS4ML, Xilinx Vivado
HLS, etc.). We show how it is possible to build ultra-light
deep neural networks in practice, by applying the method
to a realistic HEP use-case: a toy simulation of one of the
triggers planned for the HL-LHC.

1 Introduction

In this work, we explore the implementation of deep con-
volutional neural networks in FPGAs, leveraging on several
model compression and simplification techniques (quantiza-
tion, knowledge distillation, input-fragmentation).

We adopt as use-case a Level-0 trigger system of one of
the Large Hadron Collider (LHC) experiments for the high
luminosity phase of the LHC (HL-LHC), whose trigger logic
will be implemented on FPGAs. Starting from the expected
specs, we have implemented a toy simulation of the detec-
tor and trigger response that includes realistic effects related

a e-mail: l.sabetta.g@gmail.com (corresponding author)

to resolution and noise. We train state-of-the-art deep neural
network architectures on these examples for different tasks
(identification and prediction of the particle parameters),
optimizing with respect to physics performance. The learned
knowledge of these models (Teachers) is then transferred to
light and simple architectures (Students) using Knowledge
Distillation by soft labels [1–3]. During the training of the
Student models, pruning and quantization techniques are also
applied.

We demonstrate that it is possible to reach marginal occu-
pation of the FPGAs resources and sub microseconds latency
in muon reconstruction and identification, with minimal per-
formance loss.

2 Related work

Machine Learning (ML) inference on FPGAs has received
increasing interest in the context of high energy physics (see
for example: [4–7]). In this work, we get inspiration from
these and other similar studies, evolving and extending them
with the novel idea of exploiting knowledge transfer methods
to achieve high level of simplification in the Neural Network
model architectures, crucial to meet the tight constraints due
to the limited hardware resources and latency in practical
HEP real-time applications.

3 Datasets

Networks able to be deployed as trigger algorithm in a typ-
ical HEP experiment at the LHC have been investigated as
benchmark scenario for this work. Trigger systems typically
collect information from specific detector sub-systems and

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09770-w&domain=pdf
http://orcid.org/0000-0001-5315-9275
http://orcid.org/0000-0001-9192-3537
http://orcid.org/0000-0002-1466-9077
http://orcid.org/0000-0002-5105-8021
http://orcid.org/0000-0002-0865-5891
mailto:l.sabetta.g@gmail.com


969 Page 2 of 10 Eur. Phys. J. C (2021) 81 :969

regions and analyze them in order to infer properties of poten-
tial interesting particles.

As an example case, it is possible to think at the hardware
level muon trigger system of the ATLAS experiment [8]. The
system aims to collect all the particle hit information from
the fast RPC detectors in a given sector (i.e. a solid angle
region of the detector) and tries to find a muon candidate
– a collection of hits identified as a track in the detector –
and measure its properties. The interesting quantities are the
muon track spatial parameter inside the experiment (typically
represented in terms of pseudorapidity η) and the transverse
momentum of the muon pT.

One can think to arrange the RPC detector strips into
image-like objects, to be used as input for ML models,
specifically convolutional architectures, particularly suitable
to find patterns like the muon tracks in this test scenario.

Using published estimates of the particle rate during the
so-called future Phase-II of the ATLAS experiment [9],
together with well-known detector geometry and resolution
as well as its magnetic field map, it is possible to generate toy
events with muon tracks in the RPC system together with a
random hit background, emulating the expected particle rate
conditions in the future phases of the experiment during the
HL-LHC.

The background is generated only accounting for the aver-
age hit rate in the spectrometer RPCs, therefore it does not
consider correlated backgrounds. We did not aim to perfectly
reproduce the experimental conditions, but to give a proof of
principle of the compression and simplification chain in the
context of a high energy physics experiment. An example of
a toy event is reported in Fig. 1. Each bin of the vertical axis
corresponds to a detector layer (from the bottom: 3 detector
layers for the inner trigger station, 4 for the middle and 2
for the outer station). The horizontal axis linearly maps the
pseudorapidity η of the RPC strips in a given range, corre-
sponding to physical edges of the detector subsystem. The
number of bins on the horizontal axis is set to 384, a real-
istic average number of ATLAS RPC strips. This provides
a convenient representation for the RPC hits data, in which
an infinite momentum muon appears in the image as a ver-
tical pattern of pixels, independently of the pseudorapidity
η, while lower momentum muons appear ideally as tilted
pixel patterns with slopes inversely proportional to the muon
pT. A total of 700 thousand images with muons in the range
3–20 GeV pT (half of which with just background and no
muon) has been generated and used in this work, properly
divided in training, validation and testing sets (450k images
for training, 50k images for validation 200k images for test-
ing). We checked that the generated sample size is enough
to allow a stable training results by increasing the number of
training events without observing significant differences in
the results.

Fig. 1 Example of RPC event image used to train the CNN: an event
with one low-pT muon (pT � 6 GeV, η � 0.3, η index � 110) plus
background noise due to pileup and cavern background. The image
shows the complete 9 × 384 strips toy detector; each row corresponds
to one of the nine RPC layers, while the η index is a rescale of the
pseudorapidity

4 Teacher model

In the context of Knowledge Distillation (discussed in
Sect. 5.2) we started from the development of a relatively
complex model which we will refer to as “Teacher”. As
Teacher model we decided to deploy a ML-based approach
using a conventional CNN architecture that fits well the muon
identification task. All the models defined thereafter have
been built using TensorFlow and Keras [10,11].

In particular, the chosen CNN model is based on state-
of-the-art floating-point CNN implementation, a simplified
version of the VGG architecture [12].

The Neural Network architecture is illustrated in Fig. 2
and its structure detailed in Table 1. The model is composed
of two convolutional blocks and two dense layers. The first
convolutional block is constituted of two Convolutional bi-
dimensional (Conv2D) layers with 10 filters each, followed
by a Max-Pooling layer of pooling size (1,2). The second
block is made of three Conv2D layers with 17 filters each and
a Max-Pooling layer of pooling size (2,2). For all Conv2D
layers we use square filters (3,3), the activation function is
ReLU and the padding is put to “same”. This means that

123



Eur. Phys. J. C (2021) 81 :969 Page 3 of 10 969

Fig. 2 Schematic view of the network architecture that has been
adopted. The numbers next to “Conv 2D” and to “Dense” represent
respectively the number of filters and the number of neurons of that
layer

a zero-padding is added to the borders of the layer input
to perform the convolution centering the filters on each of
the image pixels, even the ones belonging to the borders.
After the convolutional kernel, a flatten layer bridges to two
dense layers with 10 neurons each and a ReLU activation
function. A linear activation is used for the output layer, in
order to describe continuous values in output. The network
is trained to predict a two-component vector (pT, η index).
The Mean Squared Error (MSE) is chosen as loss function
and minimized using the Adam algorithm [13].

5 Model compression and simplification

Several different and somehow competing constraints have
origin from the particular experimental condition:

– Fit within the FPGA resources: the ML model obvi-
ously needs to fit within the resources of the specific
hardware (a Virtex UltraScale+ 13 [14]). While this is
the minimum requested, a lower occupancy would allow
to use in parallel either the same algorithm, or also dif-
ferent algorithms with different specific targets, a much
needed feature in nowadays HEP experiments triggers.

– Latency: due to the high event-rate of the experiment, to
keep-up the algorithm needs to run in less than ∼400 ns.

– Efficiency: the Level-0 RPC muon trigger has to recon-
struct muons with a momentum resolution that allows to
select muons with efficiency > 90% for pT > 20 GeV
as far as concerns single-lepton triggers, and to select
muons with pT > 10 GeV for multi-lepton triggers with
a rate smaller than approximately 40 kHz [9]. To take
into account this requirement, we choose a threshold of
10 GeV in this study as nominal pT trigger threshold, to
define the energy scale where to measure the resolution
of the trigger turn-on and the plateau efficiency.

– Fake Efficiency: We define “Fake Efficiency” the per-
centage of background events (i.e. events with no muons)
that pass the nominal 10 GeV trigger threshold. Fake
Efficiency needs to be less than ∼ 2‰ in order for the

background rate not to overflow the maximum data band-
width.

These key-points have been the red thread which guided the
choices taken in the development of this project and regulated
the trade-off between compression and performance.

5.1 Compression by fragmentation of the input

In order to reduce the algorithm complexity, as first step in the
data processing pipeline, we applied a procedure of pruning
of the input information that we have called Fragmentation
of the Input.

The number of parameters of the model, the number of
loop cycles and therefore time interval the Neural Network
needs to process an event (i.e. latency) in our framework are
dominated by the size of the input images.

Since on average the horizontal curvature of low-pT

muons inside the image is ∼ 30 pixels, we progressively
fragmented the initial image into smaller ones, drastically
reducing the model number of multiplications with minimal
loss in performance. We split each image of the dataset into
9 × 32 pixels images scanning over the x-axis with variable
stride. Then, the 9×32 image with the highest number of non-
empty pixels is selected, being the most likely to contain the
muon track (the background is indeed uniformly distributed
through the image). The target quantity muon η is shifted as
follow:

ηsmall = η − ηibin

η
f
bin − ηibin

(1)

with ηibin , η f
bin being respectively the initial and final pixel η

of the image sector considered. ηsmalll is used as target for
the CNN instead of η, since it represents the position of the
muon in the sub-image which is the only predictable quantity
once a single specific sector is selected. After the Network
prediction, the output is reconverted to a global η.

Figure 3 shows the result of this procedure in terms of frac-
tion of images which contain at least a certain fraction of the
true muon track as a function of the stride. Since we verified
that our network is able of reconstruct images which contain
as low as 50% of the track with no significant reconstruc-
tion efficiency loss, 16 pixels has been reasonably chosen as
stride.

The 9×32 images have been further compressed: feeding
them to an Average-Pooling (pool size (1,2)) layer, the final
image comes out as a 9 × 16 pixels with no significant infor-
mation loss from the previous step. The Input Fragmentation
procedure results in a reduction of the original image size
by a factor of 24, with enough information for the model to
produce correct predictions. Figure 4 shows the same event
shown in Fig. 1 after the Fragmentation.

123



969 Page 4 of 10 Eur. Phys. J. C (2021) 81 :969

Fig. 3 Stride comparison. When splitting the original 9 × 384 image
into smaller 9 × 32 ones with fixed stride, inevitably part of the muon
track gets lost. The blue, yellow, green and red points represent the
fraction of 9 × 32 images which include respectively the 50, 80, 90 and
100% of the muon track

Fig. 4 Same event of Fig. 1 after the Fragmentation procedure
described in Sect. 5.1 (muon ηsmall � 0.88). The black (grey) pix-
els of the bottom image represent the result of two (one) turned-on
contiguous pixels after the Average-Pooling step

5.2 Compression by knowledge distillation

Knowledge Distillation (KD) is a rather recent model com-
pression and acceleration technique that has been devel-
oped to be able to deploy large deep-learning models on
devices with limited resources (for example mobile phones

and embedded devices). The general idea of KD is to effec-
tively build a small Student model from a large one with
strong capability, called Teacher model. The Teacher model
is used to teach the Student model by transferring to it a
significant amount of knowledge during the training phase
[1–3].

Teacher-Student KD in deep neural networks has been
successfully employed in several types of applications with
different level of complexity and Neural Network architec-
tures. In the specific context we are interested, it is possible to
mention three principal benefits arising from implementing
Teacher-Student distillation techniques:

– it allows to deploy very light and streamlined CNN mod-
els that meet the constraints in computational and power
resources imposed by the real-time HEP environments;

– it allows to preserve as much as possible the neural net-
work model performance while reducing resources and
without increasing the size of the training samples;

– providing a simplified architecture for the neural net-
work, in general may simplify the study and optimization
of model performance, for example by making it easier
to understand the dependence of the network response on
the characteristics of the input.

Applying distillation techniques to our specific regression
task, in contrast to the typical classification in which KD has
demonstrated excellent improvements, is more challenging
since in the regression task it is not possible to take advantage
from the softened softmax output of the teacher [1], and also
because the real valued regression outputs are unbounded.
We addressed this challenge by implementing an end-to-end
trainable framework with Adaptation layers for hint learning,
that allows the Student to better learn from the distribution
of neurons in intermediate layers of the Teacher. It has been
indeed demonstrated in [15], that using the intermediate rep-
resentation of the Teacher as hint can help the training process
and improve the final performance of the Student.

Figure 5 reports a schematic view of the implemented
Teacher-Student model relationship. The Student model
receives hints from the Teacher after each of the two convo-
lutional blocks and after the first dense layer. An additional
layer called Adaptation layer is added in these positions to
match the size of the Teacher and Student output (the latter
being smaller) making possible the computation of a distance
between the two. The Adaptation layer is represented by a
Dense layer when it connects two dense layers and a Con-
volutional layer (1x1) when it connects two convolutional
layers.

Since the regression outputs are real valued and not
bounded, the Teacher can provide misleading guidance to
the Student model. To mitigate this effect we bounded
the Teacher contribution to the regression loss, so that the

123



Eur. Phys. J. C (2021) 81 :969 Page 5 of 10 969

Fig. 5 Schematic view of the Student model training, receiving hints from the Teacher model. Adaptation layer are present in each of the hint loss
blocks

Teacher guidance is not provided to the Student once the
quality of the Student surpasses that of the Teacher with a
certain margin.

The explicit definition of the loss is reported in Eq. 2:

L(y, yS, yT )

=
{

‖y − yS‖2 + ∑3
i=1 γi Hi if ‖y − yT ‖2 < ‖y − yS‖2

‖y − yS‖2 Otherwise

Hi = ‖Ai − T H
i ‖2

(2)

with y being the truth labels vector, yS the Student predic-
tions, yT the Teacher predictions, Ai the output of the i-th
Adaptation layer, T H

i the output of the i-th Teacher layer
used as hint, and γi a tuned hyper-parameter, weighting in
respect to the standard MSE the contribution of each hint
term to the total loss.

5.3 Compression by quantization

Since most of the state-of-the-art deep neural network archi-
tectures are built and trained on powerful and power-hungry
devices, the availability of resources or latency constraints at
run-time are sometimes left-behind problems. A very effec-
tive technique to reduce and limit the models footprint is the
quantization of weights and activations: while in fact the typi-
cal choice is to use 32 or 64 bits precision floating-point arith-
metic, it has been demonstrated that it is possible to reduce
the number of bits per weight in order to greatly decrease the
model occupancy and improve its computational efficiency
with marginal loss in performance [16].

A widespread approach is to compress an already trained
model rounding the parameters to fixed precision values;
procedure that most of the times especially for particularly

aggressive quantization leads to a great degradation of the
accuracy. In our work, to overcome this problem and to
fully investigate end exploit the benefits of KD, we use a
Quantization-Aware Training (QAT) approach: this means
that the quantization is applied before the training of the
model. We report in Sect. 6 how the benefits of KD are more
evident with increasing quantization. All the architectures
we will present are completely quantized (both weights and
activation functions) beside the last layer which uses Floating
Point 32 bits weights (FP32), in order to perform regression
on a continuous output.

6 Performance

In this section, the result of the various techniques described
in Sect. 5 are presented.

It is not obvious to build an unambiguous definition for
a figure of merit against which to measure the performance
of a hardware trigger for an experiment at a hadron collider.
The complex constraints linked to the available data band-
width allocated to each trigger and the presence of multiple
selection chains designed for different physical processes,
lead to competing requests. In order to obtain performance
estimates that are sufficiently general and applicable to dif-
ferent types of physical processes, in this study we decided
to focus on a limited number of proxies related to the perfor-
mance of a generic muon trigger algorithm, able to capture
the fundamental characteristics of the ATLAS muon trigger.
We define the trigger efficiency turn-on curve as a function
of the muon pT considering a nominal transverse momen-
tum trigger threshold for the muon of 10 GeV, which cor-
responds to the planned multi-muon threshold for the muon
in the ATLAS TDAQ TDR [9]. The main proxy to evaluate

123



969 Page 6 of 10 Eur. Phys. J. C (2021) 81 :969

Table 1 Specifics of the CNN models used for the Teacher with input image size of 9 × 384 and for the Teacher and the Student with 9 × 16
images. The numbers reported in the “output shape” column represent respectively the height, width and depth of the output of each layer

Layer type Teacher 9 × 384 Teacher 9 × 16 Student 9 × 16
Output shape Weights Output shape Weights Output shape Weights

Input (9, 384, 1) 0 (9, 16, 1) 0 (9, 16, 1) 0

Conv2D (9, 384, 10) 100 (9, 16, 10) 100 (7, 14, 1) 10

Conv2D (9, 384, 10) 910 (9, 16, 10) 910 (5, 12, 1) 10

MaxPooling2D (9, 192, 10) 0 (9, 8, 10) 0

Activation: ReLU, padding: same Activation: ReLU, padding: same Activation: ReLU, padding: valid

Conv2D (9, 192, 17) 1547 (9, 8, 17) 1547 (3, 10, 6) 60

Conv2D (9, 192, 17) 2618 (9, 8, 17) 2618 (1, 8, 6) 330

Conv2D (9, 192, 17) 2618 (9, 8, 17) 2618

MaxPooling2D (4, 96, 17) 0 (4, 4, 17) 0

Activation: ReLU, padding: same Activation: ReLU, padding: same Activation: ReLU, padding: valid

Flatten 6528 0 272 0 48 0

Dense 10 65290 10 2730 10 490

Dense 10 110 10 110 10 110

Activation: ReLU Activation: ReLU Activation: ReLU

Dense 2 22 2 22 2 22

Model total 73,215 10,655 732

trigger performances is the plateau value of the efficiency
turn-on curve, which is the relevant parameter for the effi-
ciency to select muons from interesting high-pT physics at
the LHC (e.g. W/Z/Higgs/top physics). In addition to the
plateau efficiency, we also considered as additional proxies
the fake efficiency, defined as the probability to reconstruct
an event with no muons as containing a muon with pT above
the nominal threshold, and the pT resolution (”σpT around
threshold”) around the nominal threshold, that is a proxy for
the overall trigger rate driven by low-pT physics.

Figure 6 shows the comparison between using the entire
images as input vs applying the Fragmentation strategy.
While a slight decrease in performance is observed, Input
Fragmentation is essential for the FPGA implementation (as
will be clear in Sect. 7).

Figure 7 shows the advantages of using KD. The improve-
ment is clearly visible both over-threshold (higher plateau
efficiency) and under-threshold (better σpT around thresh-
old, resulting in an efficiency curve that goes faster to zero
when pT → 0).

In Fig. 8 we show the effect of different levels of quanti-
zation on the Teacher model. The quantized model weights
are always (i.e. in this case and for all the models presented
thereafter) fixed point numbers, with 0 bits reserved to the
integer part and nbits for the decimal part. The performance
degradation starts to become visible with less than 5 bits
per weight. The 2-bits model curve (orange) is flat since, no
matter what, the network remains stuck in a local minimum,
always predicting the same value for the pT .

Fig. 6 Trigger efficiency comparison. The curves have been realized
with a nominal threshold at 10 GeV. The ideal case would shows as a step
function with efficiency equal to 0 before threshold and to 1 after thresh-
old. Statistical uncertainties computed as binomial confidence intervals
are shown as well. If not visible, they’re smaller than the markers size.
In orange (diamonds) the model taking as input 9 × 384 pixels images.
In indigo (circles) the same model architecture taking as input 9 × 16
pixels images (the model adopted afterward as “Teacher”)

Figures 9 and 10 show the result of quantization for models
with 4 and 3 bits per weight respectively.

123



Eur. Phys. J. C (2021) 81 :969 Page 7 of 10 969

Fig. 7 Efficiency curves (realized as for Fig. 6). Statistical uncertain-
ties computed as binomial confidence intervals are shown as well. If not
visible, they’re smaller than the markers size. Here in indigo (circles)
the performance of the Teacher model. In light green (triangles) the
performance of the Student trained without any help from the Teacher.
In red (squares) the performance of the Student trained with hints from
the Teacher

Fig. 8 Teacher efficiency curves (realized as for Fig. 6) for different
levels of quantization. Each weight is a fixed point number whom integer
part is described using 0 bits and the decimal part using nbits . Statistical
uncertainties computed as binomial confidence intervals are shown as
well. If not visible, they’re smaller than the markers size

Fig. 9 Efficiency curves (realized as for Fig. 6). Statistical uncertain-
ties computed as binomial confidence intervals are shown as well. If
not visible, they’re smaller than the markers size. Here in indigo (cir-
cles) the performance of the Teacher model. In light green (triangles)
the performance of the Quantized Student (4 bits per weight) trained
without any help from the Teacher. In red (squares) the performance of
the Quantized Student (4 bits per weight) trained with hints from the
Teacher

Interestingly we report how the knowledge extracted through
KD increase with increasing quantization aggressiveness.

In Fig. 11 we compare the effect of using a quantized-
Teacher for the training of the students. Noticeably we
observe how using a quantized-Teacher generally leads to
worse results.

In Figs. 12, 13, 14 some quantities relative to physics per-
formance which we used to compare different algorithms are
reported; respectively σpT (resolution) around trigger thresh-
old, Plateau Efficiency and Fake Efficiency. The improve-
ments coming from the KD are clearly visible with all the
adopted metrics. It is also worth to notice that thanks to KD,
for all possible choices for quantization (down to 3 bits) the
CNN is capable of a Fake Efficiency lower than 2‰ (one of
the stringent requirements presented in Sect. 5). Without the
help from the Teacher (whom Fake Efficiency remains 0 for
all level of quantization) the model would otherwise break
the limit imposed by the experimental framework. A curious
feature is represented by the increasing Fake Efficiency for
higher numbers of bits for the Student models. By observing
the wrongly-triggered images, characterized by low-density
of non-empty pixels and accidental vertical patterns, we spec-
ulate the reason for this is that the deeper accuracy reached
by higher precision Students collides with their lower gener-
alization power (caused by their small architecture) causing
a higher fraction of random pattern (ignored by the lower
precision counterparts) to be triggered.

123



969 Page 8 of 10 Eur. Phys. J. C (2021) 81 :969

Fig. 10 Efficiency curves (realized as for Fig. 6). Statistical uncertain-
ties computed as binomial confidence intervals are shown as well. If
not visible, they’re smaller than the markers size. Here in indigo (cir-
cles) the performance of the Teacher model. In light green (triangles)
the performance of the Quantized Student (3 bits per weight) trained
without any help from the Teacher. In red (squares) the performance of
the Quantized Student (3 bits per weight) trained with hints from the
Teacher

Fig. 11 Efficiency curves (realized as for Fig. 6). Statistical uncertain-
ties computed as binomial confidence intervals are shown as well. If
not visible, they’re smaller than the markers size. Red triangles (cyan
diamonds) represent the performance of the 4-bit Student trained with
the hints from the (quantized-)Teacher. Orange circles (blue squares)
represent the performance of the 3-bit Student trained with the hints
from the (quantized-)Teacher

Fig. 12 σpT computed in a true pT interval around threshold
(7.5 GeV < pT < 12.5 GeV) as a function of the number of bits
per weight. In indigo (circles) the performance of the Teacher model.
In light green (triangles) the performance of the Student trained with-
out any help from the Teacher. In red (squares) the performance of the
Student trained with hints from the Teacher

Fig. 13 Plateau Efficiency computed as the mean efficiency in a true
pT interval well above threshold (pT > 17 GeV) as a function of
the number of bits per weight. In indigo (circles) the performance of
the Teacher model. In light green (triangles) the performance of the
Student trained without any help from the Teacher. In red (squares) the
performance of the Student trained with hints from the Teacher

123



Eur. Phys. J. C (2021) 81 :969 Page 9 of 10 969

Fig. 14 Fake Efficiency for events with no muon tracks but only back-
ground as a function of the number of bits per weight. In indigo (circles)
the performance of the Teacher model. In light green (triangles) the per-
formance of the Student trained without any help from the Teacher. In
red (squares) the performance of the Student trained with hints from
the Teacher. The Teacher Fake Efficiency remains 0 for all level of
quantization

Table 2 Resources occupancies for different FPGA components and
latencies in clock cycles (2.38 ns requested clock in synthesis)

Model (9 × 16) BRAM DSPs FF LUT Latency (cycles)

Teacher 1123 31.7 k 2.4 M 265.6 k 640

Student 32 bit 171 3.8 k 290 k 46 k 249

QStudent 4 bit 11 6 15.0 k 30.0 k 184

QStudent 3 bit 11 0 11.1 k 23.3 k 182

7 Implementation on FPGA

The implementation of the different architectures has been
performed using the HLS4ML library [17], which in combi-
nation with the Vivado HLS package translate a Tensorflow
model into VHDL code.

Table 2 shows synthesis-level estimations for the latency
and the occupancy in terms of FPGA components usage of
different CNNs. The design implementation has been tested
with different clock frequencies to verify the minimum clock
the model is able to sustain with no timing-violation. The
minimum value proved to be 2.38 ns (maximum frequency:
fmax = 420MHz) corresponding to a latency of 435 ns for
the Qstudent 3-bit model. Table 3 shows the same numbers as
percentages relatively to the total FPGA available resources.
While the Teacher architecture wouldn’t even fit, it is clear
that with quantization and compression the occupation of
FPGA resources becomes almost irrelevant.

Table 3 Percentage occupancy relative to the total FPGA available
resources (model xcvu13p-fhga2104-2L-e [14])

Model (9 × 16) BRAM DSPs FF LUT

Teacher (%) 20.9 258.0 69.4 15.3

Student 32 bit (%) 3.2 31.0 8.4 2.7

QStudent 4 bit (%) 0.2 0.05 0.4 1.7

QStudent 3 bit (%) 0.2 0 0.3 1.3

The numbers are referred to models with 9 × 16 pixels
inputs solely, since for 9 × 384 pixels inputs the software
implementation pipeline always crashed during the unrolling
of the outer loops. Given the results for the “Teacher (9×16)”,
we think it is safe to assume that bigger input models would
not fit within the FPGA resources nor the latency constraint.

8 Conclusions

Machine learning alternatives to conventional trigger algo-
rithms require the ability to deploy Deep Neural Networks
highly compressed and with the appropriate simplicity. We
have developed a multi-stage compression approach based on
a mix of conventional compression strategies and knowledge
transfer techniques, crucial to streamline the DNN models
and simplifying the synthesis phase in the FPGA firmware.
The approach has been successfully applied to a realistic
use-case of one of the triggers for the Phase-II of the ATLAS
detector at the LHC, showing that a deep neural network-
based algorithm can be effectively implemented in the trig-
ger FPGA, within the latency requirements of the ATLAS
trigger, and with competitive performance.

Acknowledgements This work was supported by the CHIST-ERA
grant CHIST-ERA-19-XAI-009, by INFN and MIUR Italy.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Used data
are available contacting the authors. They will soon be available at:
https://giagu.web.cern.ch/giagu/CERN/model_compression_data/data.
html.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

123

https://giagu.web.cern.ch/giagu/CERN/model_compression_data/data.html
https://giagu.web.cern.ch/giagu/CERN/model_compression_data/data.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


969 Page 10 of 10 Eur. Phys. J. C (2021) 81 :969

References

1. G. Hinton, O. Vinyals, J. Dean (2015). arXiv:1503.02531
2. A. Mishra, D. Marr (2017). arXiv:1711.05852
3. A. Polino, R. Pascanu, D. Alistarh (2018). arXiv:1804.03235
4. T. Boser, P. Calafiura, I. Johnson, Deep Neural Net implementations

with FPGAs, Demonstration at NIPS 2017 (2017). https://nips.cc/
Conferences/2017/Schedule?showEvent=9755

5. J. Duarte et al., J. Instrum. 13(07), P07027 (2018). https://doi.org/
10.1088/1748-0221/13/07/p07027

6. N. Nottbeck, D.C. Schmitt, P.D.V. Büscher, J. Instrum. 14(09),
P09014–P09014 (2019). https://doi.org/10.1088/1748-0221/14/
09/p09014

7. S. Giagu et al., Fast and resource-efficient Deep Neural Network
on FPGA for the phase-II level-0 muon barrel trigger of the ATLAS
experiment. Technical report, CERN, Geneva (2020). https://doi.
org/10.1051/epjconf/202024501021

8. G. Aad et al., JINST 3, S08003 (2008). https://doi.org/10.1088/
1748-0221/3/08/S08003

9. ATLAS Collaboration, Technical design report for the phase-II
upgrade of the ATLAS TDAQ system. Technical Report. CERN-
LHCC-2017-020. ATLAS-TDR-029, CERN, Geneva (2017)

10. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Good-
fellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, Ten-
sorFlow: large-scale machine learning on heterogeneous systems
(2015). https://www.tensorflow.org/. Software available from ten-
sorflow.org

11. F. Chollet et al., Keras (2015). https://keras.io
12. K. Simonyan, A. Zisserman (2015). arXiv:1409.1556
13. D.P. Kingma, J. Ba (2017). arXiv:1412.6980
14. Xilinx, Virtex UltraScale+ FPGA data sheet: DC and AC switching

characteristics. https://www.xilinx.com/support/documentation/
data_sheets/ds923-virtex-ultrascale-plus.pdf

15. P. Romero, N. Ballas, S.E. Kahou, A. Chassang, C. Gatta, Y. Bengio
(2014). arXiv:1412.6550

16. B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, D. Kalenichenko (2017). arXiv:1712.05877

17. T. Aarrestad, et al., 2(4), 045015 (2021). https://doi.org/10.1088/
2632-2153/ac0ea1

123

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1711.05852
http://arxiv.org/abs/1804.03235
https://nips.cc/Conferences/2017/Schedule?showEvent=9755
https://nips.cc/Conferences/2017/Schedule?showEvent=9755
https://doi.org/10.1088/1748-0221/13/07/p07027
https://doi.org/10.1088/1748-0221/13/07/p07027
https://doi.org/10.1088/1748-0221/14/09/p09014
https://doi.org/10.1088/1748-0221/14/09/p09014
https://doi.org/10.1051/epjconf/202024501021
https://doi.org/10.1051/epjconf/202024501021
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://www.tensorflow.org/
https://keras.io
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.6980
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds923-virtex-ultrascale-plus.pdf
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1712.05877
https://doi.org/10.1088/2632-2153/ac0ea1
https://doi.org/10.1088/2632-2153/ac0ea1

	Model compression and simplification pipelines for fast deep neural network inference in FPGAs in HEP
	Abstract 
	1 Introduction
	2 Related work
	3 Datasets
	4 Teacher model
	5 Model compression and simplification
	5.1 Compression by fragmentation of the input
	5.2 Compression by knowledge distillation
	5.3 Compression by quantization

	6 Performance
	7 Implementation on FPGA
	8 Conclusions
	Acknowledgements
	References




