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Abstract In this work, we first calculate equations of
motion for particles in the Kerr-Sen-de Sitter black hole
spacetime. Then, in the eikonal regime, we analytically
obtain the quasi-normal resonant modes of massless neutral
scalar field perturbation and find its imaginary part to be char-
acterized by the surface gravity of a near-extremal Kerr-Sen-
de Sitter black hole with the Cauchy horizon approaching the
event horizon. We further show that the Penrose strong cos-
mic censorship conjecture is thus respected in this spacetime
with dilaton scalar field and axion pseudoscalar field.

1 Introduction

Classical general relativity (GR), as a theory with a deter-
ministic nature, can predict the future directed evolution of
a spacetime. The Penrose strong cosmic censorship (SCC)
conjecture [1] asserts that the Cauchy horizons (CH) do
not form, as beyond which generic asymptotically flat ini-
tial data should be future-inextendible. Thus, SCC should
be respected or else GR loses. In the principle of SCC, the
Cauchy horizon of a black hole cannot stably exist, as the
perturbations of the fields become singular there. As a result,
the Cauchy horizon will become a singularity if SCC holds.
In Christodoulou-Chruściel’s modern version of SCC [2], it
is stated that it should not be generally possible to extend
the metric of the black hole spacetime continuously to cross
the CH with the Christoffel symbol which is locally square-
integrable, even as the weak solution of the field equations.
Because of the exponential blueshift effect in the interior of
the black hole upon the signal sent by an exterior observer,
the CH should be unstable. Therefore, an asymptotically flat
charged Reissner–Nordström or a rotating Kerr black hole
with a Cauchy horizon respects SCC [3–5].
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However, for a black hole immersed in the Universe with
a positive cosmological constant, the faith of SCC becomes
fuzzy [6,7]. Usually, the strength of the perturbative field
outside the black hole can be measured by the quasi-normal
modes (QNMs) with complex frequencies whose imaginary
part indicates the decay rate of the modes [8–10]. As that the
massless scalar QNMs corresponding to the perturbations
exterior to the event horizon exponentially decay sufficiently
rapidly (known as the competing redshift effect, determined
by the spectral gap corresponding to the imaginary part of
the nonzero dominant QNM [11,12]) due to the existence of
a cosmological horizon, being enough to counterbalance the
blueshift effect (which is governed by the surface gravity of
the black hole [13]), for the Reissner–Nordström-de Sitter
(RNdS) black hole in the near extremal regime (CH being
near the event horizon), the scalar field can be extended across
the CH as the solution of the Klein-Gordon equation in the
spacetime. Thus, SCC was shown to be violated in Ref. [14].
Nevertheless, it was further clarified in Refs. [15–17] that the
claim proposed in Ref. [14] is erroneous. In particular, it was
pointed out that the study in Ref. [14] ignores the fact that
charged black holes must be formed from the gravitational
collapse of self-gravitating charged matter fields (not neutral
matter fields) [15]. It was also shown that the SCC can be
restored if the nonlinear evolution of the charged scalar field
is performed [16].

Along these lines, the Kerr-de Sitter (KdS) black hole
was shown to preserve the SCC against scalar and gravi-
tational perturbations [18]. In the charged KdS case, it was
also proved that the SCC can be respected against massless
neutral scalar field perturbations [19]. Although SCC has
been inspected extensively for spherically black holes per-
turbed by scalar, fermion, electromagnetic, and gravitational
field perturbations (see, for example, Refs. [20–25,25–37]),
the investigations of the rotating cases seem to be limited
[38–42]. Moreover, although the SCC of spacetimes in Ein-
stein gravity has been investigated comprehensively, there is
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much that needs to be done in the modified gravities, being
corrections to GR, following previous trials [43,44].

In this paper, we will investigate the SCC for the Kerr-
Sen black hole [45] with a positive cosmological constant,
i.e., the Kerr-Sen-de Sitter (KSdS) black hole [46–48]. Com-
pared with the Kerr-Newman-de Sitter black hole, the KSdS
black hole has distinct characteristics. It is algebraically type
A and possesses an additional dilaton scalar field and dual
axion pseudoscalar field [49]. The physical motivation of our
study is that the KSdS spacetime is a solution of low-energy
effective field theory describing heterotic string theory. As
discussed in Ref. [50], the Universe may work as described
by the string theory rather than the Einstein-Maxwell theory.
The solution, involving an antisymmetric tensor gauge field
as well as a nontrivial dilaton field, is qualitatively different
from black holes in the ordinary Einstein–Maxwell gravity
theory. We wonder whether these fields affect the validity of
the SCC. The paper is organized as follows. As there are no
existing equations of motion for particles in the KSdS space-
time in the literature, we will derive them in Sect. 2. In Sect. 3,
we will first calculate the Lyapunov exponent of the null cir-
cular geodesics around the near-extremal KSdS black hole,
obtaining its relation with the surface gravity of the black
hole. Then in Sect. 5 we will conduct the calculation of the
condition of violating the SCC and use the relation between
the QNMs and the null circular orbits in the eikonal limit to
analytically show whether the SCC can be respected by the
near-extremal KSdS black hole perturbed by the scalar per-
turbation. Our conclusion and discussion will be provided in
the last section.

2 Geodesics of particles around the KSdS black hole

The effective action of the four-dimensional heterotic string
field theory in the low-energy limit can be written as [45]

Ibulk =
∫
M

�

(
R + 4 + e−ψ + eψ(1 + χ2)

L2 − 1

2
∇aψ∇aψ

−1

2
e2ψ∇aχ∇aχ − e−ψF

)
+ χ

2

∫
M

F ∧ F, (1)

where a nonzero positive cosmological constant is included,
as � = 3/L2, with L the dS radius. R is the Ricci scalar, ψ is
the dilaton scalar field, and χ is the axion pseudoscalar field,
which is related to a three-form antisymmetric tensor Habc

by H = −e2ψ � dχ . F = dA is the electromagnetic field
tensor with A the gauge potential, and we have denoted F ≡
FabFab. Varying the bulk action, the equations of motion
read

Rab − 1

2
Rgab − 4 + e−ψ + eψ(1 + χ2)

2l2
gab

= 8π
(
TA
ab + TB

ab + TDIL
ab

)
, (2)

∇a F̃
ac + 1

2

(
H̃abcFab − Aa∇b H̃

abc
)

= 8
√

2π j c, (3)

Ebc
B = 1

32π
∇a H̃

abc = 0, (4)

Eψ = 1

16π

(
∇2ψ + 1

8
e−ψ F2 + 1

6
e−2ψ H2

)
= 0, (5)

TA
ab = e−ψ

32π

(
FacFb

c − 1

4
gabF

2
)

, (6)

TB
ab = e−2ψ

32π

(
Hacd Hb

cd − 1

6
gabH

2
)

, (7)

TDIL
ab = 1

16π

(
∇aψ∇bψ − 1

2
gab∇cψ∇cψ

)
. (8)

Here we have defined

F̃ = e−ψ F, H̃ = e−2ψ H . (9)

In the Boyer–Lindquist coordinates, the KSdS black hole
solutions deriving from the above equations of motion read
[46–48]

ds2 = −�r

�

(
dt

I
− a

I
sin2 θdφ

)2

+ �

(
dr2

�r
+ dθ2

�θ

)

+�θ sin2 θ

�

(
adt

I
− (r2 + 2br + a2)

I
dφ

)2

, (10)

A = qr

�

(
dt − a sin2 θ

�
dϕ

)
, (11)

ψ = ln

(
r2 + a2 cos2 θ

�

)
, (12)

χ = 2ba cos θ

r2 + a2 cos2 θ
, (13)

where

�r =
[

1 − �
(
r2 + 2br

)
3

]
(r2 + 2br + a2) − 2mr,

�θ = 1 + �a2

3
cos2 θ,

I = 1 + �a2

3
,

� = r2 + 2br + a2 cos2 θ,

b = q2/(2m).

b is the twisted parameter, and M, q, a are individually the
mass, U (1) charge, and angular momentum per unit mass of
the black hole.

The spacetime is pathological unless there are three pos-
itive roots for the blackening factor �r : the Cauchy hori-
zon whose boundary is determined by the initial data, the
event horizon, and the cosmological horizon, with coordi-
nate radii r−, r+, and rc. Moreover, we have r− ≤ r+ ≤ rc.
To guarantee the regularity of the horizons we must have
0 � a � a + b � m. The black hole becomes extremal

123



Eur. Phys. J. C (2021) 81 :967 Page 3 of 8 967

when a + b = m. The Killing vector field which generates
the inner and outer horizons is given by

ξa± =
(

∂

∂t

)a

+ �±
(

∂

∂ψ

)a

, (14)

in which

�± = − gtφ
gφφ

∣∣∣∣
r=r±

= a

r2± + 2br± + a2

relates to the angular velocities of the inner and outer hori-
zons. Note that if there is no rescaling factor 1/I for the term
dt in the metric (10), the angular velocities will be

�± = aI

r2± + 2br± + a2
.

The surface gravity, defined by ξb±∇bξ
a± = κ±ξb±, can be

obtained as

κ± = −1

2
lim
r→r±

√
−g11

g00

∂

∂r
ln

(
−g00

)

= �′
r

2I
[
a2 + r(2b + r)

]
∣∣∣∣∣
r=r±

. (15)

From the symmetries of the spacetime, which are charac-
terized by the Killing vectors ∂t and ∂φ , we have the con-
served energy E and conserved angular momentum Lz ,

E = −gtμ ẋ
μ, (16)

Lz = gφμ ẋ
μ. (17)

The general form of the Hamilton–Jacobi equation for the
particle, from which we can obtain the geodesics, reads [51]

∂S

∂λ
= −1

2
gμν ∂S

∂xμ

∂S

∂xν
, (18)

with λ the affine parameter relating to the proper time τ by
τ = μλ (the specific value of μ does not have significance,
so we can set it to be unity) and S the Jacobi action. Using
the constants of motion, we may set the Jacobi action in a
separable form as

S = −1

2
μ2λ − Et + Lzφ + Sr (r) + Sθ (θ). (19)

Then we have

dSr/dr = �−1
r Vr (r), (20)

dSθ /dθ = √
�(θ), (21)

where

Vr (r) = [(
r2 + 2br + a2) I E − aI Lz

]2 − �r
[
μ2r2 + K

]
, (22)

�(θ) = Q − cos2 θ
(
a2 (

μ2 − E2) + L2
z sin−2 θ

)
, (23)

Q = K − I 2 (aE − Lz)
2 . (24)

Vr (r), �(θ) are individually the radial effective potential
and the longitudinal effective potential. Q is the separation
constant and K is the fourth integral constant of geodesic
motion besides the conserved energy, angular momentum,
and Hamiltonian H = −μ2/2 [51].

The first-order differential form of the particle’s motion is
encoded in the equations

�ṙ = √
Vr (r), (25)

�θ̇ = √
�(θ), (26)

� ṫ = −a
(
aE sin2 θ − Lz

)
−

(
r2 + 2br + a2

)
�−1

r Pr ,

(27)

�φ̇ = −
(
aE − Lz sin−2 θ

)
− a�−1

r Pr , (28)

where the dot over a symbol means a derivative relative to
λ. For the massless photons on the equatorial circular orbit,
these equations reduce to

ṙ = ±V1/2
r (r), (29)

(r2 + 2br)φ̇ = −I Pθ + aI Pr
�r

, (30)

(r2 + 2br)ṫ = −aI Pθ +
(
r2 + 2br + a2

)
I Pr

�r
, (31)

where

Vr (r) = (r2 + 2br)−2
[
P2
r − �r

(
m2r2 + K

)]
, (32)

Pr = I E
(
r2 + 2br + a2

)
− aI Lz, (33)

Pθ = I (aE − Lz) , (34)

K = I 2 (aE − Lz)
2 . (35)

3 Lyapunov exponent of null circular geodesics around
the near-extremal KSdS black hole

To characterize the instability timescale of the massless par-
ticle on the circular orbit, we use the Lyapunov exponent γ ,
which is related to the effective potential and the coordinate
time by [52,53]

γ =
√

V ′′
r

2ṫ2 , (36)

where the prime denotes the derivative with respect to the
radial coordinate. We now use analytical techniques to cal-
culate the Lyapunov exponent of the null circular orbit around
the near-extremal KSdS black hole. It is not difficult to know
that the circular orbit of the particle around the KSdS black
hole is located on the equatorial plane [54]. The radius ro of
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the null circular orbit is determined by the radial effective
potential through the restrictions

Vr (r = ro) = 0, (37)

V ′
r (r = ro) = 0. (38)

Substituting the expression of the effective potential Eq. (32)
into these equations, we obtain

�r (r = ro) =
[(
r2
o + 2bro + a2

)
�o − a

]2

(a�o − 1)2 , (39)

�′
r (r = ro) = 4(ro + b)�o · [(

r2
o + 2bro + a2

)
�o − a

]
(a�o − 1)2 , (40)

where we have denoted �o ≡ E/Lz . Note that �o is the
angular velocity of the photon on the null circular orbit as
�o = φ̇/ṫ .

In the near-extremal case where the Cauchy horizon
approaches the event horizon, the location of the corotating
circular orbit for the massless particle approaches the event
horizon of the black hole [55], such that we have

ro − r+ 	 1, (41)

�′
r (r = ro) − �′

r (r = r+) 	 1. (42)

The latter further gives

�o − �+ 	 1. (43)

Based on these facts, we define two dimensionless parame-
ters

x ≡ ro − r+
r+

, (44)

y ≡ �o − �+
�+

. (45)

Using them, we have the near-horizon expansions of �r

(r = ro) and �′
r (r = ro) as

�r (r = rc) = r+�′
r (r = r+) · x

+1

2
r2+�′′

r (r = r+) · x2 + O
(
x2

)
, (46)

�′
r (r = rc) = �′

r (r = r+)

+r+�′′
r (r = r+) · x + O (x) . (47)

According to Eqs. (44), (45), (46), and (47), we can rewrite
Eqs. (39) and (40) as

a2
[
a2y + 2br+x + 2r2+x)

]2

[
a2 + r+(2b + r+)

]2

=
[
r+�′

r (r = r+) · x + 1

2
r2+�′′

r (r = r+) · x2
]

· (a�o − 1)2 [1 + O(x, y)], (48)

a
[
a2y + 2br+x + 2r2+x)

]
[
a2 + r+(2b + r+)

]

= [
�′

r (r+) + r+�′′
r (r+) · x] · (a�o − 1)2

4ro�o
· [1 + O(x, y)].

(49)

Then we can obtain the expressions of the parameters x and
y in terms of black hole parameters as

x = 2
√

2a�′
r

r�′′
r

√
8a2 − (2b + r)2�′′

r

− �′
r

r�′′
r

∣∣∣∣∣
r=r+

, (50)

y = r(2b + r)2�′
r√

2a3
√

8a2 − (2b + r)2�′′
r

+ 2(b + r)�′
r

a2�′′
r

− 4
√

2(b + r)�′
r

a�′′
r

√
8a2 − (2b + r)2�′′

r

∣∣∣∣∣
r=r+

. (51)

With the specific expressions of x and y, we now calculate the
Lyapunov exponent for the near-horizon null circular orbit.
The second-order derivatives of the effective potential can be
specified as

V ′′
r (r = ro)

=
I 2L2

z

{[
�o

(
r2
o + 2bro + a2

) − a
]2 − �ro (a�o − 1)2

}′′

(r2
o + 2bro)2

= I 2L2
z

(r2
o + 2bro)2

{
4�o

(
a2�o − a + �o

(
2b2 + 6bro + 3r2

o

))

−(a� − 1)2�′′
ro

}

= I 2L2
z

[
8a2 (b + r+) 2 − r2+ (2b + r+) 2�′′

r (r+)
]

r2+(2b + r+)2
(
a2 + 2br+ + r2+

)2

·[1 + O(x, y)], (52)

where we have denoted �ro = �r (r = ro) and used the
relation

[
�o

(
r2
o + 2bro + a2) − a

]2 − �ro (a�o − 1)2

=
{[

�o
(
r2
o + 2bro + a2) − a

]2 − �ro (a�o − 1)2
}′ = 0,

(53)

yielded from Eqs. (37) and (38).
For the derivative of the coordinate time with respect to

the affine parameter on the null circular orbit, we have

ṫ−1(r = ro)

= r2 + 2br

I 2Lz
{−a (a�o − 1)

+ r2 + 2br + a2

�r

[
�o

(
r2 + 2br + a2) − a

]}−1
∣∣∣∣∣
r=ro

= r2
o + 2bro

I 2Lz (1 − a�o)

[
a + r2

o + 2bro + a2

√
�r (r = ro)

]−1

= (r+ + 2b)�′
r (r+)

I 2Lz
√

16a2 − 2(r+ + 2b)2�′′
r (r+)

· [1 + O(x, y)], (54)
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where in the second step we have used the relation (39), in the
third step we have used Eq. (46), and in the last step Eqs. (45)
and (50).

Finally, the Lyapunov exponent of the null circular orbit
around the near-extremal KSdS black hole can be obtained
as

γ = �′
r (r+)

2I r+
[
a2 + r+(2b + r+)

]

·
√
r2+(2b + r+)2�′′

r − 8a2(b + r+)2

(2b + r+)2�′′
r − 8a2 · [1 + O(x, y)]

= 1

r+

√
r2+(2b + r+)2�′′

r − 8a2(b + r+)2

(2b + r+)2�′′
r − 8a2

·κ+[1 + O(x, y)], (55)

where the equality is fulfilled when the twisted parameter b
vanishes.

4 Strong cosmic censorship in the near-extremal
Kerr-Sen-de Sitter spacetime

The validity of SCC is closely related to the late time behavior
of the linear field perturbation to the black hole, characterized
by the QNMs. Here we study the massless scalar field as a toy
example for the gravitational perturbations [14]. The QNMs
of the massless scalar are governed by the Klein-Gordon
equation

�� = 0, (56)

together with specific causality boundary conditions which
single out the quantized discrete spectrum of quasi-normal
frequencies. After performing the ansatz

�nlm(t, r, θ, φ) = e−iωt Rnlm(r)�nlm(θ)e−imφ, (57)

with ω being the quasi-normal frequency, and integers n, l,m
(n is the multipole number, or overtone number, l the
spheroidal harmonic index, or the angular momentum of the
scalar perturbation, and m the azimuthal harmonic index)
labeling each mode. In the rotating KSdS case, the radial
ordinary differential equation extracted from Eq. (56) is
(

d2

dr2∗
+ (ω − m�BH(r))2 − VBH(r)

)
R(r) = 0, (58)

where we have defined the tortoise coordinate by

dr∗ = �
(
r2 + 2br + a2

)
�r

dr, (59)

and the potential function satisfies VBH (rc) = VBH (r+) =
VBH (r−) = 0 and �BH ≡ a/(r2 + 2br + a2).

The quasi-normal resonant modes should be purely ingo-
ing at the event horizon of the KSdS black hole and purely

outgoing at the cosmological horizon, that is,

R (r∗ → −∞) ∼ e−i(ω−m�BH(r+))r∗ , (60)

R (r∗ → ∞) ∼ ei(ω−m�BH(rc))r∗ . (61)

As discovered in Ref. [14], there are three families of
QNMs, namely the photon sphere (PS) modes related to
the null circular geodesics, the purely imaginary dS modes
described by the surface gravity at the cosmological hori-
zon of the purely de Sitter spacetime, and the near-extremal
modes dominating the dynamics in the limit that the event
horizon and Cauchy horizon approach each other. Here we
will consider the PS modes of the massless scalar field cou-
pled with the near extremal KSdS black hole in the limit
that the Cauchy horizon approaches the event horizon. In the
eikonal limit with l = |m|  1, using the WKB method
[56,57], the quasi-normal frequencies of the PS modes can
be found to relate with the null circular geodesics through
the relation [53,58]

ωWKB ≈ m�+
o − i

(
n + 1

2

)
γ +, (62)

where

�+
o ≡ φ̇

ṫ

∣∣∣∣
r=r+

= a

r2+ + 2br+ + a2
(63)

is the angular velocity of the photon on the corotating null
circular orbit with a Lyapunov exponent γ + evaluated by
Eq. (55). We obtain the fundamental mode when the overtone
number n = 0.

The fate of the SCC depends on the relation between the
spectral gap α and the surface gravity κ− at the Cauchy hori-
zon, with which we can define a control parameter

β ≡ α/κ−, (64)

with α ≡ − Im(ωWKB) [59,60]. In fact, we have [61,62]

|� − �0| ≤ Ce−αt , (65)

with �0 ∈ C being a constant shift, where � is a linear scalar
perturbation. Thus the spectral gap is the size of the QNM-
free strip below the real axis [14]. In the Einstein gravity, it
has been suggested that SCC is violated if β > 1/2 [14,63,
64]. But in the modified gravity, we should reconsider the
criteria [44]. According to the field equation (2), to judge the
extendibility of the black hole solution beyond the Cauchy
horizon, we need
∫
V
d4x

√−g

[
Gab − 4 + e−ψ + eψ(1 + χ2)

2l2
gab

]
ψ̄

−8π

∫
V
d4x

√−g
(
TA
ab + TB

ab + TDIL
ab

)
ψ̄ = 0 (66)
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to be finite, where ψ̄ is some test function, V ⊂ M with M
the spacetime manifold, and Gab ≡ Rab − Rgab/2. As

∫
V
d4x

√−g

[
Gab − 4 + e−ψ + eψ(1 + χ2)

2L2 gab

]
ψ̄

∼
∫
V
d4x

√−g

[
∂� + �2 − 4 + e−ψ + eψ(1 + χ2)

2L2 gab

]
ψ̄

∼ −
∫
V
d4x

√−g(∂ψ̄)� +
∫
V
d4x

√−g�2ψ̄

−
∫
V
d4x

4 + e−ψ + eψ(1 + χ2)

2L2

√−ggabψ̄, (67)

where � is the Christoffel symbol and the expansion Gμν ∼
�2 + ∂� are used, we need � ∈ L2

loc with L2
loc the space

consisting of square integrable functions locally in V [44,65,
66]. For the part of the energy-momentum tensor, we have
∫
V
d4x

√−g
(
TB
ab + TDIL

ab

)
ψ̄

∼
∫
V
d4x

√−g
[
(∂ψ)2 + (∂χ)2

]
ψ̄. (68)

This means that to make the (∂ψ)2 and (∂χ)2 integrable, we
must have ψ ∈ H1

loc and χ ∈ H1
loc, with H p

loc the Sobolev
space of functions in L2

loc and p means the order of the deriva-
tives [66]. As the electromagnetic potential is regular at the
Cauchy horizon, the integral of the energy-momentum for
the electromagnetic field is finitely bounded.

As the integrable requirement is up to H1
loc, we know that

for the KSdS spacetime, the control parameter determining
the fate of the SCC is the same as that in the Einstein case.
In the eikonal limit, according to Eqs. (55), (62) and (64), we
have

β � − Im(ωWKB)

κ+

= 1

2r+

√
r2+(2b + r+)2�′′

r − 8a2(b + r+)2

(2b + r+)2�′′
r − 8a2 , (69)

where we have used the relation κ+ � κ− [7,13,67], and
the information of the dilaton scalar field ψ and axion pseu-
doscalar field χ are encoded into the expression. According
to Eqs. (50) and (52), we know that

r2+(2b + r+)2�′′
r − 8a2(b + r+)2 < 0, (70)

(2b + r+)2�′′
r − 8a2 < 0. (71)

In addition, we have

r2+(2b + r+)2�′′
r − 8a2(b + r+)2

−r2+
[
(2b + r+)2�′′

r − 8a2
]

= −8a2b(b + 2r+) � 0,

(72)

with the equality fulfilled forb = 0. So we obtain the minimal
value of the polynomial
⎛
⎝ 1

2r+

√
r2+(2b + r+)2�′′

r − 8a2(b + r+)2

(2b + r+)2�′′
r − 8a2

⎞
⎠

min

= 1

2
,

(73)

which gives β � 1/2. As a result, the SCC is shown to
be respected by the near-extremal KSdS black hole with a
dilaton scalar field and axion pseudoscalar field. Note that
(2b + r+)2�′′

r − 8a2 < 0 demands

ā >
1

2
+ b̄ − 1

48
(2b̄ + 1)(2b̄2 + 6b̄ + 3)�̄ + O(�̄2), (74)

where ā ≡ a/r+, b̄ ≡ b/r+, �̄ ≡ �r2+ are dimensionless
parameters.

5 Conclusion and discussion

Under perturbations of massless neutral scalar fields, we
investigated the SCC in the near-extremal KSdS spacetime
whose Cauchy horizon approaches the event horizon. To this
end, we first calculated the equations of motion for the pho-
tons and then analytically presented the Lyapunov exponent
of the null circular orbit, expressing it in terms of the sur-
face gravity of the near-extremal black hole. In the eikonal
regime, after analyzing the critical control parameter above
which the SCC is violated, we further proved that, even with
the dilaton scalar field ψ and axion pseudoscalar field χ , the
SCC is respected by the near-extremal KSdS black hole cou-
pled with scalar fields, as the integrable requirement is up to
H1

loc and not affected by the fields.
The present result obtained in the paper is based on analyt-

ical calculations. It is interesting to check it with numerical
methods [68]. We should also mention efforts to consolidate
the validity of SCC, both at the classical level [69] and at
the quantum level [17,70]. For the former case, SCC can be
recovered if the initial data are allowed to be non-smooth; for
the latter, it was shown that the quantum stress tensor at the
Cauchy horizon is sufficiently irregular. It is meaningful to
extend the temporary work to consider the case with generic
initial data on the CH as well as the quantum instability of
the CH in the KSdS spacetime.
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