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Abstract The following paper is motivated by the recent
works of Kremer [Gen Relativ Gravit 36(6):1423–1432,
2004; Phys Rev D 68(12):123507, 2003], Vardiashvili (Infla-
tionary constraints on the van Der Waals equation of
state, arXiv:1701.00748, 2017), Jantsch (Int J Mod Phys D
25(03):1650031, 2016), Capozziello (Phys Lett A 299(5–
6):494–498, 2002) on Van-Der-Waals EOS cosmology. The
main aim of this paper is to analyze the thermodynamics
of a Non-linear system which in this case is Van-Der-Waals
fluid EOS (Capozziello et al., Quintessence without scalar
fields, arXiv:astro-ph/0303041, 2003). We have investigated
the Van-Der-Waals fluid system with the generalized EOS
as p = w (ρ, t) ρ + f (ρ) − 3η (H, t) H (Brevik et al.,
Int J Geom Methods Mod Phys 15(09):1850150, 2018). The
third term signifies viscosity which has been considered as
an external parameter that only modifies pressure but not the
density of the liquid. The w(ρ, t) and f (ρ)are the two func-
tions of energy density and time that are different for the 3
types of Vander Waal models namely one parameter model,
two parameters model and three parameters model (Ivanov
and Prodanov, Eur Phys J C 79(2):118, 2019; Elizalde and
Khurshudyan, Int J Mod Phys D 27(04):1850037, 2018).
The value of EOS parameter (wEOS) (Capozziello et al.,
Quintessence without scalar fields, arXiv:astro-ph/0303041,
2003; Obukhov and Timoshkin, Russ Phys J 60(10):1705–
1711, 2018) will showdifferent values for different models.
We have studied the changes in the parameters for differ-
ent cosmic phases [Kremer, Phys Rev D 68(12):123507,
2003; Capozziello et al., Phys Lett A 299(5–6):494–498,
2002; Capozziello et al., Quintessence without scalar fields,
arXiv:astro-ph/0303041, 2003]. We have also studied the
thermodynamics and the stability conditions for the three
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models in viscous condition [Obukhov and Timoshkin, Russ
Phys J 60(10):1705–1711, 2018; Panigrahi and Chatterjee,
Gen Relativ Gravit 49(3):35, 2017; Panigrahi and Chatterjee,
J Cosmol Astropart Phys 2016(05):052, 2016; Chakraborty et
al., Evolution of FRW Universe in Variable Modified Chap-
lygin Gas Model, arXiv:1906.12185, 2019]. We have dis-
cussed the importance of viscosity (Brevik and Grøn, Astro-
phys Space Sci 347(2):399–404, 2013) in explaining accel-
erating universe with negative pressure (Panigrahi and Chat-
terjee, Gen Relativ Gravit 49(3):35, 2017).Finally, we have
resolved the finite time future singularity problems [Bre-
vik et al., The effect of thermal radiation on singularities
in the Dark Universe, arXiv:2103.08430, 2021; Odintsov
and Oikonomou, Phys Rev D 98(2):024013, 2018; Odintsov
and Oikonomou, Int J Mod Phys D 26(08):1750085, 2017;
Frampton et al., Phys Rev D 85(8):083001, 2012; Framp-
ton et al., Phys Lett B 708(1–2):204–211, 2012; Framp-
ton et al., Phys Rev D 84(6):063003, 2011] and discussed
the thermodynamics energy conditions [Visser and Barcelo,
Energy conditions and their cosmological implications. In:
Cosmo-99, pp 98–112, 2000; Chattopadhyay et al., Eur Phys
J C 74(9):1–13, 2014; Arora et al., Phys. Dark Universe
31:100790, 2021; Sharma and Pradhan, Int J Geom Methods
Mod Phys 15(01):1850014, 2018; Sahoo et al., Astronomis-
cheNachrichten 342(1–2):89–95, 2021; Yadav et al., Mod
Phys Lett A 34(19):1950145, 2019; Sharma et al., Int J
Geom Methods Mod Phys 17(07):2050111, 2020, Moraes
and Sahoo, Eur Phys J C 77(7):1–8, 2017; Hulke et al.,
New Astron 77:101357, 2020; Singla et al., Gravit Cos-
mol 26(2):144–152, 2020; Sharif et al., Eur Phys J Plus
128(10):1–11, 2013] with those models.
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1 Introduction

The standard model in cosmology predicts several phases
during the entire life-time of the universe. FLRW as well as
other models present some interior cosmic phases that are
necessary to resolve the cosmological problems. The cos-
mic inflation is one of them. The idea of cosmological infla-
tion has been brought in physics to resolve the cosmologi-
cal problems (viz. Vacuum energy density problem [32–34],
magnetic monopole problem, cosmic Horizon problem and
flatness problem). This theory of cosmological inflation has
been established with both dark energy [35,36] as well as
with geometry. It was assumed that inflation is basically a
phase transition between the primordial Planck scaled cos-
mology and present universe late time acceleration phase.
Critical analysis of this phenomenon provides us with the
knowledge of the decelerated phase of universe which is fol-
lowed by inflation and reheating and further another phase
transition to produce late time acceleration. The phase after
reheating is followed by radiation dominated pressure. Other
accelerated phases have been assumed to be controlled by
negative pressure [17,23,24,37–39] which is quite impos-
sible with Einstein action and thus the alternative gravity
[23–31] has been introduced. From Raychaudhuri equation
we understand that strong energy condition is violated for
accelerated expansion of universe with attractive gravity or
positive pressure. Therefore, several steps have been taken
in physics. Non-linearity and Inhomogeneity in cosmic fluid
are some of them [7,40].

Cosmic fluid viscosity is another fundamental problem in
cosmology. Local dissipation is the main cause to assume
large scale global fluid dissipation. The negative pressure
problem in universe evolution can be resolved with the intro-
duction of viscosity. In some literature it is also assumed that
the negativity in cosmic fluid pressure can be brought with the
introduction of viscosity before cosmic inflation. Thus, posi-
tive viscosity becomes an important factor for inflation. Neg-
ative viscosity [14] is another idea used to introduce excess
energy effect in cosmic fluid. Single fluid negative viscosity
[14] violates the second law of thermodynamics and thus it
brings the necessity of introduction of multi-fluid system in
cosmology. The positive viscosity in cosmic fluid is exces-
sively available in literature but negative viscosity is quite
rare. The inhomogeneity in fluid [41–49] is mainly brought
in physics with viscosity that modifies the pressure and con-
tributes itself in the overall evolution.

Dark energy is the most successful alternative gravity
model that has discussed the negative pressure and cosmic
inflation problems. There are three different types of dark
energy models (viz. fluid model, scalar field, holographic
model). These models are also successful to discuss the
vacuum energy problem, late time acceleration as well as
the finite time future singularity problems [15–20,40]. Dark

energy also substituted with modified gravity with higher
order correction of Einstein action. Phantom [42], Quintom,
Quintessence [6,6,35,36,50], K-Essence, tachyon [36,51]
and DBI-Essence models are included into scalar field mod-
els. Holographic models [22,37,51–53] include the IR-UV
cutoff of cosmological constants. Example of fluid Dark
energy model is Chaplygin gas [11,12,61]. Here we have
used the non-linear fluid system to substitute the results of
Dark energy and modified gravity [28].

Non-linearity in the fluid of cosmology is nothing but the
modification of equation of state with higher order correc-
tion [1–5]. This correction might provide the solution of
the negative pressure problem, late time acceleration and
cosmic acceleration problems [6,8]. Several literatures are
available to analyze the non-linear models. The non-linear
models (EOS) can also produce inflation and late time accel-
eration with the help of viscosity [7,10].The Van-Der-Waals
gas model is one of the most generalized non-linear models.
Van-Der-Waals gas equations can produce the equation of
states according the following derivations [9].

The Van-Der-Waals model equation of state belongs to the
Van-Der-Waals gas law in general thermodynamics. From
that gas law we may write as follows.
(
p + a

V 2

)
(V − b) = C.

Here C = Constant.
Now from above equation we get,

1

ρ

(
p + aρ2

)
(1 − bρ) = C.

Here we considered 1
V ∝ ρ. So, we get again,

p = Cρ

(1 − bρ)
− aρ2.

HereC, a and b have different values for three models which
will be subsequently discussed in the next section onwards.
These values can be derived in terms of critical density, crit-
ical pressure as well as critical volume. In several literatures
the coefficient of energy density of the above EOS is con-
sidered to be a function of energy density and the coefficient
can be substituted with w (t, ρ) = C

1−bρ . The details will be
discussed in next section.

This paper is aimed to discuss the generalized form of
the non-linear models with introduction of equation of state
discussed in the above paragraph. Here we have discussed
the basics of the three different types of EOS (three differ-
ent form of the EOS derived from the above paragraph) with
different parameters (viz. w, γ, ρc, α and β) [3]. In gen-
eral,cosmology is controlled by the phase conditions pro-
vided by the EOS parameter but here our derivation has
proved that the cosmic phases can be defined with other
parameters also. These parameters together provide the nec-
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essary conditions of inflation and late time accelerations
[5,6]. The fluid thermodynamics of cosmology has been dis-
cussed for these non-linear models [11–13].

In view of the literature survey presented above, we have
attempted a thermodynamic analysis for Van-der-Waals EOS
considering of viscous cosmology. Rest of the paper is orga-
nized as follows. In Sects. 2 and 3 we discussed the ther-
modynamics of the Van-Der-Waals models with viscosity. In
Sects. 4 and 5 we have discussed the basics of thermody-
namics energy conditions as well as the resolution of finite
time future singularity problems for the models. In Sect. 6
we have discussed the scalar field theory and discussed the
inflation conditions. In Sects. 7 and 8 we have discussed ther-
modynamics stability for viscous and non-viscous conditions
respectively.

2 Overview of Van-der-Waals model of cosmic fluid

As already mentioned we will be using the van-der-Waals
fluid with the form of EOS as discussed in paper of Brevik,
I [7].

pm = w (ρ, t) ρ + f (ρ) − 3η (H, t) H, (1)

where w (ρ, t) and f (ρ) [9] are two functions of ρ, Pm is
the modified pressure due to the viscosity which reduces
the actual pressure of the fluid. The EOS parameter w (t, ρ)

is assumed according to the EOS discussion given in the
introduction section. The function f (ρ) is taken instead of
ρ2 for generalization purpose (although we have considered
f (ρ) = constant × ρ2 in later discussion). The third term
of the equation of state equation 1 has been taken to estab-
lish the viscous case where the coefficient of viscosity is a
function of time and Hubble parameter. This term actually
converts it inhomogeneous where the second density depen-
dent function makes it non-linear.

We have taken the form η = η (t) (3 H)n and η (t) = τ

as discussed in the work of [7].

2.1 Signification of these three different models

We have established a generalized non-linear equation of
state from Van-Der-Waals fluid formalism that later trans-
formed into three different models with different number of
parameters [3].The main significance behind these parame-
ter is that they act like the EOS parameter [3]. In non-linear
fluid models the EOS parameter provides smooth curves to
discuss the cosmological phase transitions [6,33,40]. It is
efficient to discuss the conditions for quintom phases [54] to
provide inflationary phase transition. This continuity estab-
lished with the modification of these parameters result into
multi-parameter Van-Der-Waals like EOSs [1–10]. The EOS
parameter can provide the necessary conditions for inflation

as well as radiation dominated universe, dark matter domi-
nated universe but it fails to discuss the conditions of decel-
erating phase (after inflation), graceful exit and the reheating
phase [1]. The decelerating nature of the expanding universe
is the necessary cause to start the late time acceleration of
universe and that’s why graceful exit from cosmic inflation is
necessary [10]. The multi-parameters (viz. w, γ, ρc, α and
β) models [2–4] or non-linear models can provide the proper
cause/conditions for these interior phases. The non-linear
fluid can produce negative pressure and also obey strong
energy conditions with negative viscosity [14]. Although
negative viscosity [14] is quite unnatural in the view of gen-
eralized second law of thermodynamics but we can introduce
negative viscosity with multi-fluid system. The viscosity has
been discussed with a well-established form of coefficient
where we have mentioned the results only for two values
of power (n = 1 and 3) as discussed [7]. The two-different
structure has been used to discuss the system under constant
and variable viscosity (for n = 1 viscosity is constant and
for n = 3 it is variable). The corresponding scalar field of
these non-linear models can discuss the nature of vacuum
fields during several cosmological phases. Thus, non-linear
fluids can act as a substitute of exotic energy or dark energy
in universe evolution [5,6].

2.2 Possible three different formats of non-linear model

Depending upon the choice of w (ρ, t) and f (ρ) [7] we may
differentiate the generalized form of that model into three
types. They are one parameter model, two parameters model
and three parameters models. The details of those models
are taken from the works [3,7] and is summarized in Table 1.
It may be noted, to resolve the issue of dimensions of the
denominators of the models i.e. the term (3 − ρ) for one
parameter model and (1 − βρ) for three parameters model,
we have substituted the following.

3 − ρ → 3 − ρ

ρc
.

And

1 − βρ → 1 − β
ρ

ρc
.

This approach will not affect our basic focus of study of
non-linear equation of state.

Here we have assumed for one parameter modelw (t, ρ) =
8w

3− ρ
ρc

where C
b = 8w, b = 1

3 and a = 3; for two parameters

model w (t, ρ) = γ

1− 1
3ρc

ρ
where C = γ, b = 1

3ρc
and a =

9γ
8ρc

and for three parameters model w (t, ρ) = γ

1− βρ
ρc

where

C = γ, b = β and a = α. This can be written in
terms of critical values of the variables and they are C =
c2
s
c2 , b = 1

3vc and a = 3pcv2
c . Here cs = sound speed, c =
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light speed, pc = cri tical pressure, vc = cri tical
volume [5,10].

3 Interior fluid thermodynamics

Now to proceed with our study we need to simplify the above
models with our proper targets. Now as already mentioned
that we aim to introduce the nonlinear inhomogeneous model
[40–42] in the view of Van-der-Waals EOS [3], we have
to simplify the above models such that the nonlinearity in
them is not destroyed. We will simplify these models just
to derive the internal energy as a function of scale factor
[11,12]. Here in this paper we have introduced the viscosity
just to bring the stability in the models [11,12]. Therefore,
from our assumptions the viscosity will not be an interior
property of the cosmic fluid. This is an exterior property that
can only modify the pressure [7,10]. Therefore, the energy
density will remain unchanged as for without viscous cases.
The pressure will be negative due dissipation with viscos-
ity [7]. In the following sections we will show the pressure,
energy density, internal energy, EOS parameter (with mod-
ified pressure), Temperature and entropy and their change
with volume scale factor [11,12]. All those variables will be
plotted with the values of constants for which the unmodified
pressure will be positive. Before going into further details,
let us have a look at the units of the cosmological param-
eters to be studied in the subsequent part of the study. The
scale factor is dimensionless. For the dark energy density,
one may note that the dark energy density is considered to be
less than its critical density ρc = 3M2

pH
2, which is approx-

imately
(
3 × 10−12 GeV

)4 ≈ 10−46 GeV4. In an expanding
universe, the thermodynamic behavior of the dark energy
is important. For thermodynamic analysis, the initial CMB
temperature is TCMB

0 = 2.73K . Pressure of dark energy is
the product of equation of state parameter and density of the
dark energy candidate [39,53,55].

For simplicity of our calculation we considered critical
density ρc = 1, which helped us in the graphical represen-
tation to make the energy density axis to be unit free. (as
we have taken the values of energy density w.r.t. the critical
density scale, i.e. the variable became ρ

ρc
instead of only ρ)

(“Appendix”)
To plot the graph of the other variables we initialized the

values of the variables for V → 0. We plotted the other
variables (viz. pressure, Scalar field kinetic energy and Scalar
field potential) taking those initial values as unit scale. That’s
why all those variables became unitless in the plots. (Scalar
field kinetic energy and potential energy have been given in
Sect. 6) [Appendix]
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In the case of Internal energy, we observed the initial value
of Internal energy becomes zero for V → 0. So, we scale it
in terms of integration constant U0 (“Appendix”).

3.1 One parameter model

The one parameter model can be considered as follows [2–4].

P = 8wρ

3 − ρ
ρc

− 3ρ2 ≈ 8w

3
ρ +

(
8w

9
− 3

)
ρ2. (2)

Now considering p = − (
∂U
∂V

)
and ρ = U

V [11,12] we may
write the following differential equation for internal energy.
Here U = Internal energy and V = Volume scale factor.=
(a (t))3, a (t) is the scale factor of the universe.

By calculation we get

U = (8w + 3) V

(27 − 8w) + (9 + 24w)U0V
8w+3

3

, (3)

where U0 is a positive constant
We get the definition of energy density and pressure [11,

12] as= U
V and p = − (

∂U
∂V

)
S . Then,

ρ = (8w + 3)

(27 − 8w) + (9 + 24w)U0V
8w+3

3

. (4)

And the pressure will be as follows,

p =
8w

(
(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)

3 −
(

(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)

−3

(
(8w + 3)

(27 − 8w) + (9 + 24w)U0V
8w+3

3

)2

. (5)

Thus, we can get the variable pressure and density and there-
fore the EOS parameter which is as follows. (for n = 1 and
3) [7]

wEOS = Pm
ρ

= 8w

3 −
(

(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)

−3

(
(8w + 3)

(27 − 8w) + (9 + 24w)U0V
8w+3

3

)
− 3τ.

(6)

Fig. 1 Graph for internal energy w = − 2
8 , U0 = 0.1 and τ = −5

And

wEOS = Pm
ρ

= 8w

3 −
(

(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)

−3

(
(8w + 3)

(27 − 8w) + (9 + 24w)U0V
8w+3

3

)

−9τ

(
(8w + 3)

(27 − 8w) + (9 + 24w)U0V
8w+3

3

)
. (7)

Now the temperature will become as follows [11,12].

T = exp

(
−

∫ V

V0

dV

V

[
24w

(3 − ρ)2 − 6ρ

])
. (8)

And the entropy will be as follows [11,12].

	S = (8w + 3) (9 + 24w) V
8w+6

3

[
(27 − 8w) + (9 + 24w) V

8w+3
3 U0

]2

× U0

exp
(
− ∫ V

V0

dV
V

[
24w

(3−ρ)2 − 6ρ
]) . (9)

We have plotted the schematics showing the evolution of
internal energy, energy density, pressure and EOS parameters
in Figs. 1, 2, 3 and 4 respectively. It may be noted that here
we have considered the value ofU0 > 0 and viscosity τ < 0.
Which state that we have considered the negative viscosity
in our fluid system. Here w is also negative in value.
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Fig. 2 Graph for energy density (ρ); w = − 2
8 , U0 = 0.1 and τ = −5

Fig. 3 Graph for pressure (p); w = − 2
8 , U0 = 0.1 and τ = −5

3.2 Two parameters model

The one parameter model can be considered as follows [3,7,
10].

P = γρ

1 − 1
3ρc

ρ
− 9γ

8ρc
ρ2 ≈ γρ − 19γ

24ρc
ρ2. (10)

Fig. 4 Graph for EOS parameter; w = − 2
8 , U0 = 0.1 and τ =

−5; τ = − 0.05e

Now considering p = − (
∂U
∂V

)
and ρ = U

V [11,12] we may
write the following differential equation for internal energy.
Here U = Internal energy and V = Volume scale factor.

We get Internal energy as

U = 24 (γ + 1) ρcV

19γ + 24U0ρc (1 + γ ) V 1+γ
. (11)

Here the term U0 is the integration constant which is also a
function of entropy only.

So, we get the definition of energy density and pressure
as = U

V and p = − (
∂U
∂V

)
S . Then,

ρ = 24 (γ + 1) ρc

19γ + 24U0ρc (1 + γ ) V 1+γ
. (12)

And the pressure will be as follows,

p =
γ

(
24(γ+1)ρc

19γ+24U0ρc(1+γ )V 1+γ

)

1 − 1
3ρc

(
24(γ+1)ρc

19γ+24U0ρc(1+γ )V 1+γ

)

− 9γ

8ρc

(
24 (γ + 1) ρc

19γ + 24U0ρc (1 + γ ) V 1+γ

)2

. (13)

Thus, we can get the variable pressure and density and there-
fore the EOS parameter which is as follows. (for n = 1 and
3) [7]
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wEOS = Pm
ρ

= γ

1 − 1
3ρc

(
24(γ+1)ρc

19γ+24U0ρc(1+γ )V 1+γ

)

− 9γ

8ρc

(
24 (γ + 1) ρc

19γ + 24U0ρc (1 + γ ) V 1+γ

)
− 3τ.

(14)

And

wEOS = Pm
ρ

= γ

1 − 1
3ρc

(
24(γ+1)ρc

19γ+24U0ρc(1+γ )V 1+γ

)

− 9γ

8ρc

(
24 (γ + 1) ρc

19γ + 24U0ρc (1 + γ ) V 1+γ

)

−9τ

(
24 (γ + 1) ρc

19γ + 24U0ρc (1 + γ ) V 1+γ

)
. (15)

Now the temperature will become as follows [11,12].

T = exp

⎛
⎜⎝−

∫ V

V0

dV

V

⎡
⎢⎣ γ(

3 − 1
3ρc

ρ
)2 − 9γ

4ρc
ρ

⎤
⎥⎦

⎞
⎟⎠ . (16a)

And the entropy will be as follows [11,12].

	S =
[
24 (γ + 1)

]2
V γ+2ρc[

19γ + 24 (1 + γ ) ρcV γ+1U0
]2

× U0

exp

(
− ∫ V

V0

dV
V

[
γ(

3− 1
3ρc

ρ
)2 − 9γ

4ρc
ρ

]) . (16b)

For this model, we have presented graphically the evolu-
tion internal energy, energy density, pressure and EOS param-
eters in Figs. 5, 6, 7 and 8 respectively. Here we have consid-
ered the value of U0 > 0 and viscosity τ < 0. Which says
that we have considered the negative viscosity in our fluid
system. Here γ is also negative in value but ρc > 0.

3.3 Three parameters model

The one parameter model can be considered as follows [3,9].

P = γρ

1 − βρ
ρc

− αρ2 ≈ γρ + (γβ − α)ρ2. (17)

Now considering p = − (
∂U
∂V

)
S and ρ = U

V [11,12] we may
write the following differential equation for internal energy.
Here U = Internal energy and V = Volume scale factor.

U = (γ + 1) V

(α − βγ ) +U0 (1 + γ ) V 1+γ
. (18)

Here the term U0 is the integration constant which is also a
function of entropy only.

Fig. 5 Graph for internal energy; γ = −2;U0 = 0.5; τ = −1.7

Fig. 6 Graph for energy density; γ = −2;U0 = 0.5; τ = −1.7

So, we get the definition of energy density and pressure
as = U

V and p = − (
∂U
∂V

)
S . Then,

ρ = (γ + 1)

(α − βγ ) +U0 (1 + γ ) V 1+γ
. (19)
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Fig. 7 Graph for pressure; γ = −2;U0 = 0.5; τ = −1.7

Fig. 8 Graph for EOS parameter; γ = −2;U0 = 0.5; τ = −1.7 an
τ = − 0.01e

And the pressure will be as follows,

p =
γ

(
(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)

1 − β
(

(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)

−α

(
(γ + 1)

(α − βγ ) +U0 (1 + γ ) V 1+γ

)2

. (20)

Thus, we can get the variable pressure and density and there-
fore the EOS parameter which is as follows. (for n = 1 and
3) [7]

wEOS = Pm
ρ

= γ

1 − β
(

(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)

−α

(
(γ + 1)

(α − βγ ) +U0 (1 + γ ) V 1+γ

)
− 3τ. (21)

And

wEOS = Pm
ρ

= γ

1 − β
(

(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)

−α

(
(γ + 1)

(α − βγ ) +U0 (1 + γ ) V 1+γ

)

−9τ

(
(γ + 1)

(α − βγ ) +U0 (1 + γ ) V 1+γ

)
. (22)

And the temperature will be [11,12],

T = exp

(
−

∫ V

V0

dV

V

[
γ

(1 − βρ)2 − 2αρ

])
. (23a)

And the entropy will be [11,12],

	S = (γ + 1)2 V γ+2

[
(α − βγ ) + (γ + 1)V γ+1U0

]2

× U0

exp
(
− ∫ V

V0

dV
V

[
γ

(1−βρ)2 − 2αρ
]) . (23b)

Considering the value of U0 > 0 and viscosity τ < 0
we have plotted the internal energy, energy density, pressure
and EOS parameter in Figs. 9, 10, 11 and 12 respectively. It
is clear that we have considered the negative viscosity in our
fluid system. Here w is also negative in value. As in three
parameters model γ is related with w as γ = 8w

3 so, γ < 0.
The values of α = 3 and β = 1

3 . For the considered value of
constants and parameters we get positive change of entropy.

4 Basics of finite time singularity problems and the
thermodynamics energy conditions

For finite time singularity problems, we know the following
types [15–20,40];

• Type I (known as Big Rip): At any finite time, t = ts we
will have a → ∞; ρ → ∞; p → ∞

• Type II (known as Sudden Singularity): At any finite time,
t = ts we will have a → as; ρ → ρs; p → ∞

• Type III: At any finite time, t = ts we will have a → as;
ρ → ∞; p → ∞; it happens only in the EOS type of p
= −ρ – A ρα.
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Fig. 9 Graph for internal energy w = − 2
8 ;U0 = 0.1; τ = −1; γ =

8w
3 ; β = 1

3 ; α = 3

Fig. 10 Graph for energy density; w = − 2
8 ;U0 = 0.1; τ = −1; γ =

8w
3 ; β = 1

3 ; α = 3

• Type IV: At any finite time, t = ts we will have a → as;
ρ → ρs; p → ps Moreover, the Hubble rate and its first
derivative also remain finite, but the higher derivatives,
or some of these diverge. This kind of singularity mainly
comes into play when p = −ρ – f(ρ).

The thermodynamic energy conditions are basically derived
from the well-known Raychaudhuri’s equation. For a congru-
ence of time-like and null-like geodesics, the Raychaudhuri
equations are given in the following forms [28];

Fig. 11 Graph for pressure; w = − 2
8 ;U0 = 0.1; τ = −1; γ =

8w
3 ; β = 1

3 ; α = 3

Fig. 12 Graph for EOS parameter; w = − 2
8 ;U0 = 0.1; τ =

−1 and − 0.01e; γ = 8w
3 ; β = 1

3 ; α = 3

dθ

dτ
= −1

3
θ2 − σμνσ

μν + ωμνω
μν − Rμνu

μuν . (24)

And

dθ

dτ
= −1

3
θ2 − σμνσ

μν + ωμνω
μν − Rμνn

μnν (25)

where θ is the expansion factor, nμnν is the null vector, and
σμνσ

μν and ωμνω
μν are, respectively, the shear and the rota-

tion associated with the vector field uμuν . For attractive grav-
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ity we will have the followings;

Rμνu
μuν ≥ 0 and Rμνn

μnν ≥ 0.

To set some nomenclature the energy conditions of general
relativity to be considered here are [28];

(i) Null energy condition (NEC).
(ii) Weak energy condition (WEC).

(iii) Strong energy condition (SEC).
(iv) Dominant energy condition (DEC).

So, for our matter-fluid distribution we may write this con-
dition as follows [21–31,40];

• NEC = ρ+ p ≥ 0.
• WEC = ρ ≥ 0 and ρ+ p ≥ 0.
• SEC = ρ+ 3p ≥ 0 and ρ+ p ≥ 0.
• DEC = ρ ≥ 0 and - ρ ≤ p ≤ ρ.

5 Resolution of finite time future singularity problems
and analysis of thermodynamics energy conditions for
having attractive gravity with the Van-der-Waals fluid
energy density and pressure

We will discuss the resolution of Finite time future singularity
problem [15–20,40] with the above derived models.From the
above models we will also show that the energy densities and
pressures will satisfy the Thermodynamics energy conditions
to represent attractive gravity [21–31,31,40]. Here we will
use the modified pressure as the viscosity is not the interior
property of our fluid but our viscosity will help to obey all
the energy conditions. Hence the thermodynamics energy
conditions will be satisfied with modified pressure of cosmic
fluid. We use viscosity for n = 3 [7].

5.1 One parameter model

In this model we found the pressure and density as follows
[2–4].

pm =
8w

(
(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)

3 −
(

(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)

−3

(
(8w + 3)

(27 − 8w) + (9 + 24w)U0V
8w+3

3

)2

−9τ

(
(8w + 3)

(27 − 8w) + (9 + 24w)U0V
8w+3

3

)2

. (26)

Fig. 13 Graph for DEC; w = − 2
8 , U0 = 0.1 and τ = −5

Fig. 14 Graph for WEC, w = − 2
8 , U0 = 0.1 and τ = −5

And

ρ = (8w + 3)

(27 − 8w) + (9 + 24w)U0V
8w+3

3

. (27)

With the above expressions of pressure and density, we
study the energy conditions andwe get the following graphs
(Figs. 13, 14 and 15).

For the one parameter model, the DEC, WEC and NEC
are plotted in Figs. 13, 14 and 15 and allthe conditions are
satisfied.
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Fig. 15 Graph for SEC; w = − 2
8 , U0 = 0.1 and τ = −5

5.2 Two parameters model

In this model we found the pressure and density as follows
[3,7,10].

pm =
γ

(
24(γ+1)ρc

19γ+24U0ρc(1+γ )V 1+γ

)

1 − 1
3ρc

(
24(γ+1)ρc

19γ+24U0ρc(1+γ )V 1+γ

)

− 9γ

8ρc

(
24 (γ + 1) ρc

19γ + 24U0ρc (1 + γ ) V 1+γ

)2

−9τ

(
24 (γ + 1) ρc

19γ + 24U0ρc (1 + γ ) V 1+γ

)2

. (28)

And

ρ = 24 (γ + 1) ρc

19γ + 24U0ρc (1 + γ ) V 1+γ
. (29)

For two parameter model,the energy conditions are graphi-
cally expressed in Figs. 16, 17 and 18.

For the two parameters model, the DEC, WEC and NEC
are plotted in Figs. 16, 17 and 18 and all conditions are sat-
isfied.

5.3 Three parameters model

In this model we found the pressure and density as follows
[3,9].

Fig. 16 Graph for DEC; γ = −2;U0 = 0.5; τ = −1.7

Fig. 17 Graph for WEC; γ = −2;U0 = 0.5; τ = −1.7

pm =
γ

(
(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)

1 − β
(

(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)

−α

(
(γ + 1)

(α − βγ ) +U0 (1 + γ ) V 1+γ

)2

−9τ

(
(γ + 1)

(α − βγ ) +U0 (1 + γ ) V 1+γ

)2

. (30)
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Fig. 18 Graph for SEC for γ = −2;U0 = 0.5; τ = −1.7

Fig. 19 Graph for DEC; w = − 2
8 ;U0 = 0.1; τ = −1; γ = 8w

3 ; β =
1
3 ; α = 3

And

ρ = (γ + 1)

(α − βγ ) +U0 (1 + γ ) V 1+γ
. (31)

For three parameter model, the energy conditions are shown
in Figs. 19, 20 and 21.

Fig. 20 Graph for WEC; w = − 2
8 ;U0 = 0.1; τ = −1; γ =

8w
3 ; β = 1

3 ; α = 3

Fig. 21 Graph for SEC; w = − 2
8 ;U0 = 0.1; τ = −1; γ = 8w

3 ; β =
1
3 ; α = 3

Therefore, we can observe that the one parameter, two
parameters model and three parameters models satisfy all
energy conditions including SEC i.e. all the conditions for
attractive gravityare obeyed by those three models. Those
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Table 2 Scalar field Kinetic
energy and Potential energy of
the three considered models

One parameter model Two parameters model Three parameters model

Scalar field kinetic energy φ̇ =⎛
⎜⎜⎝

8w

(
(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)

3−
(

(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)

−3

(
(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)2

+ (8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

) 1
2

Scalar field kinetic energy φ̇ =⎛
⎝ γ

(
24(γ+1)ρc

19γ+24U0ρc (1+γ )V 1+γ

)

1− 1
3ρc

(
24(γ+1)ρc

19γ+24U0ρc (1+γ )V 1+γ

)

− 9γ
8ρc

(
24(γ+1)ρc

19γ+24U0ρc(1+γ )V 1+γ

)2

+ 24(γ+1)ρc
19γ+24U0ρc(1+γ )V 1+γ

) 1
2

Scalar field kinetic energy φ̇ =⎛
⎝ γ

(
(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)

1−β

(
(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)

−α
(

(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)2

+ (γ+1)

(α−βγ )+U0(1+γ )V 1+γ

) 1
2

Scalar field potential V (φ) =

1
2

(
(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

−
8w

(
(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)

3−
(

(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)

+3

(
(8w+3)

(27−8w)+(9+24w)U0V
8w+3

3

)2
)

Scalar field potential V (φ) =

1
2

(
24(γ+1)ρc

19γ+24U0ρc(1+γ )V 1+γ

−
γ

(
24(γ+1)ρc

19γ+24U0ρc (1+γ )V 1+γ

)

1− 1
3ρc

(
24(γ+1)ρc

19γ+24U0ρc (1+γ )V 1+γ

)

+ 9γ
8ρc

(
24(γ+1)ρc

19γ+24U0ρc(1+γ )V 1+γ

)2
)

Scalar field potential V (φ) =

1
2

(
(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

−
γ

(
(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)

1−β

(
(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)

+α
(

(γ+1)

(α−βγ )+U0(1+γ )V 1+γ

)2
)

conditions have been discussed with the previously consid-
ered values of constants.

We will discuss the resolution of finite time future singu-
larity problems [15–20] for Van-der-Waals EOS. We consider
a minimal coupling between Quintessence scalar field with
Van-der-Waals fluid. [40]

3H2 = ρφ + ρ (32a)

where ρφ = scalar f ield densi t y and ρ = Van − der −
Waals f luid densi t y.

The scalar field energy density in terms of volume scale
factor V (t) = (a (t))3; can be written in the following way
from the Klein Gordon equation

ρφ = mVn . (32b)

And
The generalized form of fluid density for all those three

models can be written as follows.

ρ = A

B + CV D
. (32c)

Here A, B, C and D are the constants that depend upon the
parameters of those three models.

So, from the above three relations we may write as follows.

∫
dV

V

[
B + CV D

m
3 BV n + m

3 CVn+D + A
3

]
= t + C1 (32d)

where C1 = constant o f integration → +ve
From Eq. (32d) we can conclude that there is no singular-

ity at t → 0 and t → ts for positive value of C1 (constant).
Thus, we have resolved both initial and finite time singular-
ities.

6 Corresponding scalar field potential and the kinetic
term of scalar field theory

In this section we will show the corresponding scalar field and
potential variation for Van-Der-Waals fluid cosmology [5,6].
We will use the general scalar field theory or Quintessence to
find the scale factor variation of scalar field and its potential.
So, the calculations are as follows.

We know from Quintessence scalar field theory [2,6,9,32–
36,50,56],

ρ = 1

2
φ̇2 + V (φ) and p = 1

2
φ̇2 − V (φ) . (33)

So, we get the kinetic term of scalar field theory and potential
as follows.

φ̇2 = p + ρ

Or, φ̇ = (p + ρ)
1
2 . (34)

And

V (φ) = 1

2
(ρ − p). (35)

Now this potential and kinetic term will get the form for the
models as follows in Table 2.

Now the scalar field kinetic energy and potential energies
are plotted in Figs. 22, 23, 24, 25, 26 and 27.

We have discussed the scalar field potential and the
kinetic energy of scalar field. We can observe that for all
the three models with earlier considered values of constants
and parameters, the potential has much higher value than the
kinetic energy which is a criteria of late time acceleration and
inflation [5,6]. Again, the potentials have decreasing nature
which also provides the proof of slow roll mechanism [35].
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Fig. 22 Graph for kinetic term in fields; w = − 2
8 , U0 = 0.1 and τ =

−5

Fig. 23 Graph for potential term in fields; w = − 2
8 , U0 =

0.1 and τ = −5

Therefore, for the negative viscosity we can explain slow roll
scalar field mechanismproperly with all those three models.

Fig. 24 Graph for kinetic term in fields with modified pressure for
γ = −2;U0 = 0.5; τ = −1.7

Fig. 25 Graph for potential term in fields with modified pressure for
γ = −2;U0 = 0.5; τ = −1.7
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Fig. 26 Graph for kinetic term in fields; w = − 2
8 ;U0 = 0.1; τ =

−1; γ = 8w
3 ; β = 1

3 ; α = 3

Fig. 27 Graph for potential term in fields; w = − 2
8 ;U0 = 0.1; τ =

−1; γ = 8w
3 ; β = 1

3 ; α = 3

7 Thermodynamics stability analysis for this fluid for
unmodified pressure

Here we will now discuss the thermodynamics stability of
those three models with respect to expanding universe. As
we know that the expanding universe fluid pressure and inter-
nal energy should satisfy the following three rules of model

stability. In this section all the calculations have been done
by following the papers of Panigrahi and Chatterjee [11,12].
Calculations have been shown only for unmodified pressures.

Rule I:

(
∂p

∂V

)

S
< 0

Rule II:

(
∂p

∂V

)

T
< 0

Rule III: cV = T

(
∂S

∂T

)

V
> 0.

According those rules of stability for those three models
may be listed as follows.

7.1 One parameter model

From Rule I: Here we have used the rule I for model stability.

(
∂p

∂V

)

S
= −

[
24w

(3 − ρ)2 − 6ρ

]

× U0 (8w + 3)2 (9 + 24w) V
8w
3

3
[
(27 − 8w) + (9 + 24w) V

8w+3
3 U0

]2 .

(36)

From Rule II: Here we have used the rule II for model sta-
bility.

(
∂p

∂V

)

T
= −

[
24w

(3 − ρ)2 − 6ρ

]

×
⎡
⎢⎣

(
(8w + 3) ST

U0 (9 + 24w)

) 1
2
(

8w + 6

6

)
V− 8w+12

6

−1

2

(
(8w + 3) T S−1V− (8w+6)

3

U0 (9 + 24w)

) 1
2

× (8w + 3) (8w + 6) (9 + 24w)U0V
8w+9

3

3T
[
(27 − 8w) + (9 + 24w) V

8w+3
3 U0

]2

+1

2

(
(8w + 3) T S−1V− (8w+6)

3

U0 (9 + 24w)

) 1
2

2 (8w + 3)2 (9 + 24w)2 U 2
0 V

16w+12
3

T
[
(27 − 8w) + (9 + 24w) V

8w+3
3 U0

]3

⎤
⎥⎦ .

(37)
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From Rule III: Here we have used the rule III for model
stability.

cV = T

(
∂S

∂T

)

V

= − (8w + 3) (9 + 24w) V
8w+6

3

[
(27 − 8w) + (9 + 24w) V

8w+3
3 U0

]2

U0

T
.

(38)

7.2 Two parameters model

From Rule I: Here we have used the rule I for model stability.

(
∂p

∂V

)

S
= −

⎡
⎢⎣ γ(

3 − 1
3ρc

ρ
)2 − 9γ

4ρc
ρ

⎤
⎥⎦

× U0 (24)2 (γ + 1)3 ρcV γ

[
19γ + 24ρc(γ + 1)V (γ+1)U0

]2 . (39)

From Rule II: Here we have used the rule II for model sta-
bility.

(
∂p

∂V

)

T
= −

⎡
⎢⎣ γ(

3 − 1
3ρc

ρ
)2 − 9γ

4ρc
ρ

⎤
⎥⎦

×
[(

ρcST

U0

) 1
2
(

γ + 2

2

)
V− γ+4

2

−1

2

(
ρcT S−1V− (γ+2)

cU0

) 1
2

× (24 (γ + 1))2 ρc (γ + 2)U0V γ+1

T
[
19γ + 24ρc (γ + 1) V (γ+1)U0

]2

+1

2

(
ρcT S−1V− (γ+2)

U0

) 1
2

× 2 (24 (γ + 1))3 ρ2
cU

2
0 V

2γ+2

T
[
19γ + 24ρc (γ + 1) V (γ+1)U0

]3

]
.

(40)

From Rule III: Here we have used the rule III for model
stability.

cV = T

(
∂S

∂T

)

V
= − (24 (γ + 1))2 ρcV γ+2

[
19γ + 24ρc(γ + 1)V (γ+1)U0

]2

U0

T
.

(41)

7.3 Three parameters model

From Rule I: Here we have used the rule I for model stability.
(

∂p

∂V

)

S
= −

[
γ

(1 − βρ)2 − 2αρ

]

× U0 (γ + 1)3 V γ

[
(α − βγ ) + (γ + 1)V (γ+1)U0

]2 . (42)

From Rule II: Here we have used the rule II for model sta-
bility.
(

∂p

∂V

)

T
= −

[
γ

(1 − βρ)2 − 2αρ

]

×
⎡
⎣

(
ST

U0

) 1
2
(

γ + 2

2

)
V− γ+4

2

−1

2

(
T S−1V− (γ+2)

U0

) 1
2

× (γ + 1)2 (γ + 2)U0V γ+1

T
[
(α − βγ ) + (γ + 1)V (γ+1)U0

]2

+1

2

(
T S−1V− (γ+2)

U0

) 1
2

× (γ + 1)4 U 2
0 V

2γ+2

T
[
(α − βγ ) + (γ + 1)V (γ+1)U0

]3

]
.

(43)

From Rule III: Here we have used the rule III for model
stability.

cV = T

(
∂S

∂T

)

V

= − (γ + 1)2 V γ+2

[
(α − βγ ) + (γ + 1)V (γ+1)U0

]2

U0

T
. (44)

Here in this section we can observe that for without viscos-
ity case the stability conditions can’t be satisfied with those
Van-der-Waals models. The Rule I and Rule II are the condi-
tions that can’t be obeyed by the models. That’s why in the
proceeding section we will discuss the same with negative
viscosity.

8 Thermodynamics stability with modified pressure

Here we will now discuss the thermodynamics stability of
those three models with respect to expanding universe for
viscous Van-der-Waals fluid. As we know that the expanding
universe fluid pressure and internal energy should satisfy the
earlier said three rules of model stability.We will show the
results for both n = 1 and 3 [7,11,12]. Here the calculations
for modified pressures have been discussed.
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8.1 One parameter model

From Rule I: Here we have used the rule I for model stability
with modified pressures.
(

∂pm
∂V

)

S
= −

[
24w

(3 − ρ)2 − 6ρ − 3τ

]
A (45)

Andfor n = 3(
∂pm
∂V

)

S
= −

[
24w

(3 − ρ)2 − 6ρ − 6τρ

]
A. (46)

Here A = U0(8w+3)2(9+24w)V
8w
3

3

[
(27−8w)+(9+24w)V

8w+3
3 U0

]2

From Rule II: Here we have used the rule II for model
stability with modified pressures.
(

∂pm
∂V

)

T
= −

[
24w

(3 − ρ)2 − 6ρ − 3τ

]
B (47)

Andfor n = 3(
∂pm
∂V

)

T
= −

[
24w

(3 − ρ)2 − 6ρ − 6τρ

]
B (48)

Here B =
[(

(8w+3)ST
U0(9+24w)

) 1
2 ( 8w+6

6

)
V− 8w+12

6 − 1
2

(
(8w+3)T S−1V− (8w+6)

3

U0(9+24w)

) 1
2

(8w+3)(8w+6)(9+24w)U0V
8w+9

3

3T

[
(27−8w)+(9+24w)V

8w+3
3 U0

]2 + 1
2

(
(8w+3)T S−1V− (8w+6)

3

U0(9+24w)

) 1
2 2(8w+3)2(9+24w)2U2

0 V
16w+12

3

T

[
(27−8w)+(9+24w)V

8w+3
3 U0

]3

⎤
⎥⎦

From Rule III: Here we have used the rule III for model
stability with modified pressures.

cV = T

(
∂S

∂T

)

V

= − (8w + 3) (9 + 24w) V
8w+6

3

[
(27 − 8w) + (9 + 24w) V

8w+3
3 U0

]2

U0

T
(49)

Two parameters model:
From Rule I: Here we have used the rule I for model sta-

bility with modified pressures.

(
∂pm
∂V

)

S
= −

⎡
⎢⎣ γ(

3 − 1
3ρc

ρ
)2 − 9γ

4ρc
ρ − 3τ

⎤
⎥⎦C. (50)

And for n = 3

(
∂pm
∂V

)

S
= −

⎡
⎢⎣ γ(

3 − 1
3ρc

ρ
)2 − 9γ

4ρc
ρ − 6τρ

⎤
⎥⎦C. (51)

Here C = U0(24)2(γ+1)3ρcV γ

[19γ+24ρc(γ+1)V (γ+1)U0]2 .

From Rule II: Here we have used the rule II for model
stability with modified pressures.

(
∂pm
∂V

)

T
= −

⎡
⎢⎣ γ(

3 − 1
3ρc

ρ
)2 − 9γ

4ρc
ρ − 3τ

⎤
⎥⎦ D. (52)

And for n = 3

(
∂pm
∂V

)

T
= −

⎡
⎢⎣ γ(

3 − 1
3ρc

ρ
)2 − 9γ

4ρc
ρ − 6τρ

⎤
⎥⎦ D. (53)

Here D =
[(

ρc ST
U0

) 1
2
(

γ+2
2

)
V− γ+4

2 − 1
2

(
ρcT S−1V− (γ+2)

cU0

) 1
2

(24(γ+1))2ρc(γ+2)U0V γ+1

T [19γ+24ρc(γ+1)V (γ+1)U0]2 + 1
2

(
ρcT S−1V− (γ+2)

U0

) 1
2

2(24(γ+1))3ρ2
cU

2
0 V

2γ+2

T [19γ+24ρc(γ+1)V (γ+1)U0]3

]
.

From Rule III: Here we have used the rule III for model
stability with modified pressures.

cV = T

(
∂S

∂T

)

V

= − (24 (γ + 1))2 ρcV γ+2

[
19γ + 24ρc(γ + 1)V (γ+1)U0

]2

U0

T
. (54)

8.2 Three parameters model

From Rule I: Here we have used the rule I for model stability
with modified pressures:

(
∂pm
∂V

)

S
= −

[
γ

(1 − βρ)2 − 2αρ − 3τ

]
E . (55)

And for n = 3

(
∂pm
∂V

)

S
= −

[
γ

(1 − βρ)2 − 2αρ − 6τρ

]
E . (56)

Here E = U0(γ+1)3V γ

[(α−βγ )+(γ+1)V (γ+1)U0]2 .

From Rule II: Here we have used the rule II for model
stability with modified pressures:

(
∂pm
∂V

)

T
= −

[
γ

(1 − βρ)2 − 2αρ − 3τ

]
F. (57)

And for n = 3

(
∂pm
∂V

)

T
= −

[
γ

(1 − βρ)2 − 2αρ − 6τρ

]
F. (58)
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Here F =
[(

ST
U0

) 1
2
(

γ+2
2

)
V− γ+4

2 − 1
2

(
T S−1V− (γ+2)

U0

) 1
2

(γ+1)2(γ+2)U0V γ+1

T [(α−βγ )+(γ+1)V (γ+1)U0]2 + 1
2

(
T S−1V− (γ+2)

U0

) 1
2

(γ+1)4U2
0 V

2γ+2

T [(α−βγ )+(γ+1)V (γ+1)U0]3

]
.

From Rule III: Here we have used the rule III for model
stability with modified pressures.

cV = T

(
∂S

∂T

)

V

= − (γ + 1)2 V γ+2

[
(α − βγ ) + (γ + 1)V (γ+1)U0

]2

U0

T
. (59)

All the rules for stability conditions are satisfied for the con-
sidered values of constant. Here we have introduced the neg-
ative viscosity with the modification of pressure. Thus, we
can observe that even Rule I and Rule II have been satisfied
with all those three Van-Der-Waals models.

9 Concluding remarks

In this work, we have investigated the thermodynamics and
energy conditions of cosmological fluid described by Van
der Waals equation of state with viscosity. Viscosity acts as a
dissipating factor. For one, two and three parameter models,
the modified pressure comes out to be negative while internal
energy and energy density came out to be positive. Introduc-
tion of viscosity has made all the models thermodynamically
stable. But the only problem here comes out to be negative
heat capacity. So, to get positive heat capacity we must intro-
duce the idea of multiple fluid system, so that the summation
of heat capacity of all the fluids come out to be positive.

During the introduction of viscosity, we have used the
negative coefficient of viscosity that helped us in satisfying
all the stability conditions as well as thermodynamics energy
conditions with proper inflationary representations. All those
three models have shown similar results after using this kind
of new viscous definition of our cosmic fluid. Although we
know that negative viscosity for a single type of fluid is not
viable in thermodynamics. So, we may conclude that our
results in this paper provide strict predictions about the exis-
tence of multiple fluid mechanism in cosmic evolution. On
the other-hand we have found some idea of multiple fluid dur-
ing the discussion of heat capacity. The negative heat capac-
ity is only possible when the system itself will reduce energy
or degrees of freedom. In other word we may say that the
negative heat capacity provides the proof that the Van-Der-
Waals system must transfer its energy to other system. So,
we may again conclude that the negative viscosity increases
the fluid energy and the negative heat capacity decreases the
fluid energy, which keep the system energy conserved. Thus,

the Van-der-Waals fluid models are capable ofexplaining the
cosmic evolution only when we consider multiple fluid sys-
tem. [ special ref. is in appendix equation (A10)]

In the plots of EOS parameter, we observe that Van-
der-Waals fluid can also discuss the phantom era perfectly
including the resolution of Finite time future singularity
problems.The plots of scalar field potentials and scalar field
kinetic energy provide the proof of slow roll mechanism as
well as negative pressure to provide the accelerating expan-
sion of universe.This outcome is in consistency with the
study of Brevik et al. [45], where inflationary expansion was
described in terms of a Van-der -Waals equation of state
for the cosmic fluid in presence of bulk viscosity. Further-
more, From equation (32d) (three parameters model) we have
observed that there is no singularity at t → 0 and t → ts
for positive value of C1 (constant). Thus, both initial and
finite time singularities have been resolved under the current
model under study. Therefore, with all those results and the
values of parameters and constants we have now solved the
thermodynamics stability problems, finite time future sin-
gularity problems, inflation and negative pressure problem,
initial singularity problem with satisfying the thermodynam-
ics energy conditions and energy conservation principles for
attractive gravity.

While concluding, let us comment on the possibility of
viscous Little-Rip singularity under the current cosmolog-
ical models, whose EOS parameters are given in Eqs. (7),
(15) and (22). The EOS parameters are plotted in Figs. 4, 8
and 12. In this connection, let us consider the work of Brevik
et al. [9], where the authors considered the role of a viscous
(or inhomogeneous (imperfect) equation of state) fluid in a
Little Rip cosmology. In Little Rip cosmology, EOS asymp-
totically tends to −1 from < −1 and thus avoids singularity.
In the present cases, the EOS has not shown any asymptotic
behavior. Thus, under the current cosmological framework,
the presence of viscosity is not found to Little Rip singularity.

While concluding, we would like to mention that our pri-
mary focus of this work was to explain the accelerated expan-
sion of the universe and simultaneous satisfaction of thermo-
dynamics energy conditions with the help of non-linear equa-
tion of state which in this case is adopted in Van-der-Waals
form. Our model proved the presence of negative pressure
which is strictly necessary for the accelerated expansion of
universe. Hence, we can say that the Van-der-Waals equa-
tion of state provides the similar results as obtained from
dark energy models. Experimental evidences of accelerated
universe support our obtained results [56–60,62].
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Appendix

From two fluid interacting system we may write as follows.

ρ̇1 + 3H (ρ1 + p1) = −Q1 (A1)

ρ̇2 + 3H (ρ2 + p2) = Q1. (A2)

Introducing a term 	 where Q1 = 3 H	and 	 =
3η (t) (3 H)n we can write as follows.

ρ̇1 + 3H (ρ1 + p1m) = 0 (A3)

ρ̇2 + 3H (ρ2 + p2m) = 0 (A4)

where p1m = p1 + 3η (t) (3H)n and p2m = p2 −
3η (t) (3H)n . So, for the system which has negative viscosity
will gain energy.

Now we get,

cV = T

(
∂S

∂T

)

V
=

(
∂U

∂T

)

V

Or,	U = cV	T = Q2 = 3H	1. (A5)

So, we can again write as follows.

ρ̇1 + 3H (ρ1 + p1m) = Q2 (A6)

ρ̇2 + 3H (ρ2 + p2m) = −Q2 (A7)

or we may write this as follows.

ρ̇1 + 3H
(
ρ1 + p′

1m
) = 0 (A8)

ρ̇2 + 3H
(
ρ2 + p′

2m
) = 0 (A9)

where p′
1m = p1m − 	1 = p1 + 3η (t) (3 H)n −

	1 and p
′
2m = p2m + 	1 = p1 − 3η (t) (3 H)n + 	1

Thus, the pressure will be modified with the energy tran-
sition between the multiple fluid systems. Now to satisfy the
second law of thermodynamics we need to conserve the sys-
tem energy. So, we must conclude that 	1 = 3η (t) (3 H)n .
Therefore, we may write again as follows.

cV	T = Q2 = 3H	1 = 9Hη (t) (3H)n (A10)

From the equation (A10) we can observe the direct relation
between heat capacity and energy transition for viscosity.

The variables ρ, p, U has been calculated analytically
and we have tried to study the nature of their evolution. We
have derived those values w.r.t. their initial values so that the
variables become unitless in the graphical representations.
As we haven’t used any pre-established critical values of
those variables, we never used the terms density parameter,
pressure parameter etc. in our work.
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