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Abstract A recent attempt to arrive at a quantum ver-
sion of Raychaudhuri’s equation is looked at critically. It
is shown that the method, and even the idea, has some inher-
ent problems. The issues are pointed out here. We have also
shown that it is possible to salvage the method in some lim-
ited domain of applicability. Although no generality can be
claimed, a quantum version of the equation should be useful
in the context of ascertaining the existence of a singularity in
the quantum regime. The equation presented in the present
work holds for arbitrary n+1 dimensions. An important fea-
ture of the Hamiltonian in the operator form is that it admits a
self-adjoint extension quite generally. Thus, the conservation
of probability is ensured.

1 Introduction

Although general relativity is the most successful theory of
gravity so far, the existence of a singularity in a classical
spacetime is inevitable in this theory as demonstrated by the
Penrose-Hawking singularity theorems [1,2]. Physical laws
break down and the spacetime geometry is pathological at a
singularity. Therefore, for a complete physical description of
the spacetime structure, these singularities must be looked at
more critically.

A general expectation is that quantum effects which come
into the picture in strong gravity regime may alleviate this
problem. As there is no universally accepted quantum theory
of gravity, quantum effects have to be explored in specific
gravitational systems. Prescriptions for resolving singular-
ities are there in the literature, such as in string theoretical
framework [3–7], loop quantum gravity [8–12] and other dif-
ferent approaches to quantum gravity [13–17]. But all of them
suffer from some issue or the other [18–20].
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A key ingredient in the classical singularity theorems is
the focusing theorem which is a consequence of the Ray-
chaudhuri equation [21,22]. Application of Raychaudhuri’s
equation in quantum settings may be useful in deciding the
existence or resolution of the singularities at the quantum
level. A quantum version of Raychaudhuri’s equation was
developed by Das [23] using Bohmian trajectories and it
was argued that focusing of geodesics does not occur when
the quantum potential is included. The implications of this
equation in cosmological and black hole spacetimes were
discussed in [24,25]. The Raychaudhuri equation has been
useful in showing the avoidance of singularities in loop quan-
tum cosmology [26–29]. This is possible due to the existence
of repulsive terms which arise due to quantum effects. Sim-
ilar analysis in other contexts can be found in the references
[30–32]. The Raychaudhuri equation has also been studied
in the spacetime described by the qmetric [33]. This qmetric
includes a zero point length by construction [34,35]. In [33]
it has been established that this existence of the zero point
length can help us avoid geodesic convergence.

The idea of presenting a geodesic congruence as a dynami-
cal system was suggested by Alsaleh et al. [36]. Their method
is an attempt to reveal what a back to basics endeavour can
do. They identify a suitable dynamical variable ρ, write down
Raychaudhuri’s equation in terms of this variable, construct
a Lagrangian so that the Raychaudhuri equation is arrived at
as the Euler-Lagrange equation from that Lagrangian. Now
the quantization scheme is straightforward. One has to write
down the momentum (�) canonically conjugate to the pro-
posed dynamical variable, construct the classical Hamilto-
nian, promote ρ and its conjugate momentum to operators
such that the canonical quantization scheme ([ρ̂, �̂] = i h̄) is
satisfied and thus write down the Hamiltonian operator. The
Schrödinger equation follows. Unfortunately one equation in
their work contains an error, and the resulting quantization
is not quite correct in general. Their scheme works only in
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(2 + 1) dimensions. Also there are other deep-rooted prob-
lems in the scheme, which are pointed out in this paper.

The motivation of the present work is to find a “correct”
quantum version of the Raychaudhuri equation following the
approach as that of Alsaleh et al. [36]. We arrive at an equation
which is valid for an arbitrary dimension. This is done with
the help of a more rigorous approach by using the well-known
Helmholtz conditions [37–42] regarding the Lagrangian for-
mulation of a problem. This helps us in writing down a viable
Lagrangian as the starting point. We also point out other more
serious problems, which may not be cured so easily.

The perspective is to find a quantum version of geodesic
flow equation primarily following basic canonical approach
very similar to the formulation of Wheeler–DeWitt quanti-
zation scheme. Certainly the idea was to obtain a full quanti-
zation of the geodesic congruences. As we will see later, the
scheme practically works for some simple minisuperspaces.
This is appropriate as a starting point, for the reason that
in a gravitational system, the quantum regime is normally
investigated in a minisuperspace. A quantum description is
unavoidable in the high energy scale, i.e., beyond the Planck
scale of energy. Observational signature will have to be ascer-
tained by the analysis of primordial perturbations, and does
not feature in the present work.

The paper is organized as follows. In Sect. 2 we briefly
discuss the Helmholtz conditions regarding the inverse prob-
lem of the Lagrangian formulation of a dynamical system.
In Sect. 3 the idea of considering geodesic congruence as a
dynamical system is discussed and it is shown that one can
generalize this concept to arbitrary dimensions. This section
also contains a caveat regarding the scheme and discusses
about the limited area of possible application of the scheme.
Section 4 describes the canonical quantization of the system.
The issues of operator ordering and self-adjoint extension(s)
of the quantum Hamiltonian are also discussed in this section.
The final Sect. 5 contains some discussions and concluding
remarks. Some possible arena for applications are also dis-
cussed in the final section.

2 The Helmholtz conditions

In this section, we briefly review the Helmholtz conditions
[37–42] regarding the Lagrangian formulation of a system.
Let us consider a system with d degrees of freedom. This
system is described by d second order differential equations
of the form,

Fi (t, x j , ẋ j , ẍ j ) = 0, (1)

where dot denotes derivative with respect to t and i, j =
1, 2, ..., d.

The necessary and sufficient conditions which must be
satisfied by equation (1) for being the Euler–Lagrange equa-
tion corresponding to a Lagrangian L(t, x j , ẋ j ), are known
as the Helmholtz conditions. These conditions are [42]:

∂Fi
∂ ẍ j

= ∂Fj

∂ ẍi
, (2)

∂Fi
∂x j

− ∂Fj

∂xi
= 1

2

d

dt

(
∂Fi
∂ ẋ j

− ∂Fj

∂ ẋi

)
, (3)

∂Fi
∂ ẋ j

+ ∂Fj

∂ ẋi
= 2

d

dt

(
∂Fj

∂ ẍi

)
, (4)

for all i, j = 1, 2, ..., d.
In the next section we will see how one can utilize these

conditions in the context of the representation of a geodesic
congruence as a dynamical system.

3 Geodesic congruence as a dynamical system

We consider a hypersurface orthogonal timelike geodesic
congruence in an (n+1)-dimensional spacetime. Let hαβ be
the induced metric on the n-dimensional hypersurface which
is orthogonal to the timelike unit velocity vector uμ of the
congruence. If the congruence is considered as a dynamical
system, one can define the dynamical degree of freedom as
in [36],

ρ(λ) = √
h, (5)

where h = det(hαβ) and λ is the affine parameter.
The dynamical evolution of h is given by [43],

1√
h

d
√
h

dλ
= θ, (6)

where θ = ∇μuμ is the expansion scalar of the congruence.
Therefore, we have,

ρ′ ≡ dρ

dλ
= ρθ, (7)

where a prime indicates a differentiation with respect to the
affine parameter λ. It should be pointed out here that there is
an erroneous extra factor of 2

n on the right hand side of this
equation in the work of Alsaleh et al. [36]. This reduces to
the correct result only for n = 2.

In this case, the Raychaudhuri equation which dictates the
evolution of the congruence, is given by [21,22],

dθ

dλ
+ 1

n
θ2 + 2σ 2 + R = 0, (8)

where 2σ 2 = σαβσαβ and σαβ = ∇(νuμ) − 1
n hαβθ is the

shear tensor. R = Rμνuμuν with Rμν being the Ricci tensor.
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As the congruence is hypersurface orthogonal, the rotation
tensor ωμν = ∇[νuμ] = 0 [43].

Using Eq. (7), Raychaudhuri’s equation (8) can be written
as,

ρ′′

ρ
+ ρ′2

ρ2

(
1

n
− 1

)
+ 2σ 2 + R = 0. (9)

We want this equation as the Euler–Lagrange equation corre-
sponding to a Lagrangian. For that, we compare this equation
(9) with equation (1) and we have,

F = ρ′′

ρ
+ ρ′2

ρ2

(
1

n
− 1

)
+ 2σ 2 + R. (10)

It is easy to verify that with this F , conditions (2) and (3) are
trivially satisfied but to satisfy the condition (4) we need n =
2. So a Lagrangian formulation with this F , given by Eq. (10),
is possible only in (2 + 1)-dimensions. This expression for
F is used in the work Alsaleh et al. [36]. Therefore, their
calculations are valid only for n = 2.

Now, we discuss how one can generalize this idea to (n +
1)-dimensions for an arbitrary n. To achieve this, we multiply
equation (9) by an integrating factor which in turn leads to
the existence of a Lagrangian for the (n + 1)-dimensional
system under consideration. For a comprehensive discussion
on this method we refer to the work of Casetta and Pesce [40]
and references therein. If we multiply F in equation (10) by

ρ
2
n −1, then the new F̃ ,

F̃ = ρ

(
2
n −1

) [
ρ′′

ρ
+ ρ′2

ρ2

(
1

n
− 1

)
+ 2σ 2 + R

]
, (11)

satisfies all the Helmholtz conditions if we demand that
2σ 2 + R is a function of ρ only. Now, one can construct
a Lagrangian as,

L = 1

2
ρ

(
2
n −2

)
ρ′2 − V [ρ]. (12)

A variation of this Lagrangian, with respect to the dynamical
variable ρ, yields

δL = −ρ

(
2
n −1

) [
ρ′′

ρ
+ ρ′2

ρ2

(
1

n
− 1

)]
δρ − δV

+ d

dλ

(
ρ

(
2
n −2

)
ρ′δρ

)
. (13)

Therefore, to get the equation F̃ = 0 from the least action
principle we need,

δV [ρ]
δρ

= ρ

(
2
n −1

) (
2σ 2 + R

)
. (14)

It should be mentioned at this stage that V [ρ] here is the
potential corresponding to the system representing the con-
gruence and has to be constructed using the gravitational field
equations. It is not quite the potential, if any, in the matter
sector alone.

The Euler–Lagrange equation corresponding to this
Lagrangian is,

∂L

∂ρ
= d

dλ

(
∂L

∂ρ′

)
. (15)

If we now assume that V is a function of ρ alone (instead
of being a functional) in equation (12), equation (15) implies,

ρ

(
2
n −1

) [
θ ′ + 1

n
θ2 + R + 2σ 2

]
= 0. (16)

This indeed leads to Raychaudhuri’s equation (since ρ
2
n −1 �=

0). This generalization is valid in general (n+1)-dimensions
and reduces to the expressions discussed in [36] for n = 2.

Actually, the above calculation depends on a simplifica-
tion that is not valid in general. Equation (9) tells us that V [ρ]
is actually a functional, and not a simple function of ρ, as
σ 2 contains ρ′ and R may contain terms having up to the
second derivative, ρ′′. However, this calculation can still be
implemented for some simple cases, where ρ is a function
of a single variable, so that all its derivatives are functions of
that variable and in principle can be written as a function of ρ.
The simplest example is certainly the spatially isotropic and
homogeneous cosmology. We shall show this for a spatially
flat universe. The method is also likely to work for some spa-
tially homogeneous anisotropic models like Bianchi I. In all
these cases, ρ is a function of the cosmic time t only, and thus
derivatives of ρ can be written as a function of ρ. Thus the
functional V [ρ] can be treated as a function, V = V (ρ). For
inhomogeneous cosmologies, the method will not work, as
V will remain a functional. The total derivative with respect
to the affine parameter λ in equation (15) will lead to partial
derivatives with respect to spatial coordinates as well.

Another more crucial issue needs to be pointed out here.
The approach of Alsaleh et al. [36] treats ρ as the dynam-
ical variable and Raychaudhuri’s equation, derived from an
action, determines the dynamics. But it is important to note
that Raychaudhuri’s equation (8) is an identity in Riemannian
geometry, very much along the lines of the Bianchi identi-
ties (Gμν

;ν = 0). So it does not have any dynamical content
of its own. We shall also show that the construction of the
potential V clearly indicates this. For a detailed description
on similar issues with the Noether currents, derived from a
given geometry, we refer to the work of Padmanabhan [44].

We shall now see an illustration of the issues mentioned
by making an attempt to construct the potential with the
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simplest example of a spatially flat Friedmann–Robertson–
Walker (FRW) metric given by,

ds2 = −dt2 + a2(t)
[
dr2 + r2dϑ2 + r2 sin2 ϑdφ2

]
. (17)

We have, ρ = √
h = a3, can choose λ = t , and thus get

R = −3 ä
a , where a dot indicates a derivative with respect

to t , the cosmic time. We also have σ 2 = 0 as the given
spacetime is spatially isotropic. Therefore,

ρ′ = dρ

dt
≡ ρ̇ = 3a2ȧ. (18)

From equation (14) we have,

δV = −9äδa = δ

(
9

2
ȧ2

)
− d

dt
(9ȧδa) . (19)

If we invoke the condition, used in a standard variational
principle, that there is no variation on the boundary, we can
ignore the total derivative term, and identify V as

V = 9

2
ȧ2, (20)

and the Lagrangian (12) is,

L = 9

2
ȧ2 − 9

2
ȧ2 = 0. (21)

This triviality is a consequence of the fact that the Ray-
chaudhuri’s equation is an identity in Riemannian geometry
as already pointed out. IfR is expressed in terms of the metric
components (a) and its derivatives, one arrives at a triviality.

A possible way out for a somewhat meaningful interpreta-
tion of this Lagrangian formulation is the following. In Gen-
eral Relativity we can use the field equations to represent
R = Rμνuμuν in terms of the energy-momentum tensor,
Tμν . Therefore, we write from equation (14),

∂V

∂ρ
= ρ

(
2
n −1

) (
2σ 2 + κTμνu

μuν + κ

2
T

)
, (22)

where T is the trace of the energy-momentum tensor. We
have used Einstein’s equations,

Rμν − 1

2
gμνR = κTμν, (23)

and continue with the assumption that all variables are func-
tionally related to ρ so that V can be treated as a function of
ρ. Here R is the Ricci scalar and κ = 8πG with G being the
Newtonian gravitational constant. We can bypass the triv-
iality by proceeding in this way and go on to construct a
non-trivial Lagrangian. We will illustrate this point with the

example already considered - namely spatially flat FRW uni-
verse.

We will consider a scale factor with power law dependence
on t . For a universe described by an FRW metric containing
a distribution of perfect fluid having an equation of state
p = wε, where p, ε are the pressure and density of the fluid
with w being a constant, one has solution for a as,

a = a0(t − t0)
C , (24)

where C, a0, t0 are constants. Here, it follows from equation
(22) that,

∂V

∂ρ
= ρ− 1

3
κ

2
(ε + 3p). (25)

For the scale factor as given by equation (24), we have,

κ

2
(ε + 3p) = D̃

(t − t0)2 = D

a(t)
2
C

= D

ρ
2

3C

, (26)

where D̃, and hence D, are constants. Now, the potential can
be obtained from equation (25) as,

V = kρ
2
3 (1− 1

C ), (27)

where k is a constant. Thus, the Lagrangian is given by (using
equation (12)),

L = 1

2
ρ− 4

3 ρ̇2 − kρ
2
3

(
1− 1

C

)
. (28)

We have used the functional dependence of ρ (through a)
on t to express V as a function of ρ.

Another example where we can construct the potential V
and thus the Lagrangian following the similar procedure is,

a(t) = [
A exp(λt) + B exp(−λt)

] 2
3 . (29)

This is the general solution for the scale factor when
we assume that the jerk parameter of the universe, j ≡( a
ȧ

)3 ...
a
a = 1 [45].

Even more complicated cases, where the scale factor or the
variables in the matter sector cannot be written as a function
of the cosmic time t explicitly, can also be dealt with, such as
the one recently given by Shokri et al. [46], where one or more
of the quantities like the scale factor a (hence ρ in the present
context), the scalar field φ and the potential U = U (φ) are
known as a function of t only implicitly. This is possible as in
the spatially homogeneous models, there is essentially only
one independent variable, namely the cosmic time t .

This procedure can also be extended to spatially anisotropic
but homogeneous models where ρ can be expressed as a func-
tion of t alone. For an inhomogeneous cosmological model,
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this simple method will not work, as all the quantities cannot
be expressed as a function of ρ.

We now proceed to construct the Hamiltonian, acknowl-
edging that the method has only a very limited domain of
application.

The canonically conjugate momentum corresponding to
ρ is,

� = ∂L

∂ρ′ = ρ

(
2
n −2

)
ρ′ = ρ

(
2
n −1

)
θ, (30)

and the Hamiltonian is given by,

H = 1

2
ρ

(
2− 2

n

)
�2 + V [ρ], (31)

The Hamiltonian’s equations of motion are,

ρ′ = θρ, (32)

and

ρ

(
2
n −1

) [
θ ′ + 1

n
θ2 + R + 2σ 2

]
= 0, (33)

as expected.

4 Canonical quantization

For a canonical quantization of the system under considera-
tion, ρ and � are promoted to operators such that they satisfy
the canonical commutation relation,

[ρ̂, �̂] = i h̄. (34)

These operators act on the geometric flow state �[ρ, λ]
[36]. In ρ-representation, we have,

ρ̂ = ρ, �̂ = −i h̄
∂

∂ρ
. (35)

The Hamiltonian (31), in terms of the operators, is given
by

Ĥ = − h̄2

2
ρ

(
2− 2

n

)
∂2

∂ρ2 + V [ρ]. (36)

Therefore, the evolution equation for the geometric flow
state � can be written as,

Ĥ� = i h̄
∂

∂λ
�. (37)

This is the equation which dictates the evolution of a timelike
geodesic congruence in the quantized version and is thus the

quantum analogue of the classical Raychaudhuri equation,
which is applicable to only a limited class of geometries, but
definitely for all n.

One expected field of application of this quantized Ray-
chaudhuri equation is the quantized quantum cosmological
models. Such models, particularly the spatially anisotropic
ones in the Wheeler-DeWitt quantization scheme [47,48] can
pose the problem of a non-unitary evolution [49–52]. It has
been shown that with a proper choice of operator ordering the
models can have unitary evolution [53–56]. It was also shown
that, at least for spatially homogeneous models, a self-adjoint
extension is always possible [57]. In the same way one can
show that as the operator (36) is indeed a symmetric operator

with the norm defined as, ||�|| = ∫ ∞
0 dρρ

(
2
n −2

)
�∗�, the

self-adjoint extension is guaranteed via Friedrichs theorem
(see [57,58]).

This can be shown more explicitly as follows. We choose
the operator ordering as,

Ĥ = − h̄2

2
ρ

(
1− 1

n

)
∂

∂ρ
ρ

(
1− 1

n

)
∂

∂ρ
+ V [ρ]. (38)

With the change of variable,

χ = nρ
1
n , (39)

one can write,

Ĥ = − h̄2

2

∂2

∂χ2 + V [χ ], (40)

which is manifestly symmetric with the norm,

||�|| =
∫ ∞

0
dχ�∗�. (41)

Therefore, the Hamiltonian admits a self-adjoint exten-
sion. This resolves the apprehension of arriving at an equa-
tion that dictates a non-unitary evolution of geodesic congru-
ences.

5 Conclusion

The work of Alsaleh et al. [36] on representing a geodesic
congruence as a dynamical system and quantizing the evo-
lution of a timelike geodesic congruence in an (n + 1)-
dimensional spacetime is critically discussed in the present
work. Although this kind of quantization is an important
endeavour, there are several serious issues. The method
apparently looks very promising, but it turns out that it is
not generally applicable. The basic reason behind this is that
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Raychaudhuri’s equation is actually an identity in Rieman-
nian geometry, and naturally is not one to be obtained from a
variational principle as the equation of motion for a geodesic
congruence.

We have shown that where ρ = √
h is a function of only

one variable, for instance the cosmic time t , one can express
ρ and its derivatives all as functions of t . Thus we assume that
ρ and its derivatives are “functionally related”. This helps in
writing the functional V [ρ] as a simple function V (ρ). This
simplifies the problem so that one can construct the “correct”
Lagrangian using Helmholtz conditions regarding the inverse
problem of the Lagrangian formulation. We have constructed
the classical Hamiltonian for the system and quantized the
system using canonical commutation relations. This is valid
for an arbitrary n + 1 dimensions, and the results reduce to
those of [36] for n = 2.

This simple method will, as we have shown, lead to a trivi-
ality, consistent with the fact that Raychaudhuri’s equation is
a geometric identity. Now if we try to construct the potential
using Rμνuμuν through Einstein’s field equations, we can
arrive at some non-trivial results. By using Einstein’s equa-
tions, Raychaudhuri’s equation is no longer an identity of
Riemannian geometry, and thus one can bring some mean-
ing out of the Lagrangian formulation.

We then write down the evolution equation for the quan-
tized geodesic congruence in terms of the geometric flow
state �. In the quantum picture this equation plays the same
role that the Raychaudhuri equation does in the classical one.

It definitely deserves mention that all the limitations that
we are talking about, are present at the classical level itself.
The quantization scheme is quite straightforward, and does
not lead to any additional issue.

The present work has an additional feature. We checked
that the self-adjoint extension of the Hamiltonian is quite
possible in this context. This ensures the conservation of
probability. This is in fact a crucial issue for the quantum
description of any physical system.

One should note that some of the important results of the
equation derived by Alsaleh et al. [36] are retained in the
“corrected” version. In the expression of the Hamiltonian
(36) the effective mass is given by,

meff = ρ

(
2
n −2

)
. (42)

For n > 1 this mass diverges as ρ → 0 leading to an infinite
effective potential, and a proper boundary condition would
be �(ρ = 0) = 0 (see [59] for a comprehensive descrip-
tion). Thus, the probability of focusing of the congruence
(implemented by ρ → 0) is vanishingly small.

This analysis can also be extended to null geodesics in
arbitrary dimensions (n > 1). For this, one has to replace

n by n− 1 from the beginning so as to be consistent with the
Raychaudhuri equation for null geodesics [31,43].

This quantization of the geometric flow should be useful in
understanding the existence of singularities in gravitational
systems. As already mentioned, the focusing of time-like
geodesics in spatially homogeneous cosmological systems
without vorticity can be studied with the help of the equation
developed in this work. For instance, all Friedmann models
and most of the anisotropic Bianchi models can be examined
for the singularities in the quantum regime.

An earlier significant attempt towards a quantum version
of the Raychaudhuri equation was by Das, where the classical
geodesics were replaced by Bohmian trajectories [23].

An arena, where the quantized Raychaudhuri equation
should find an immediate application is black hole physics.
The modification of the Raychaudhuri equation in [23] found
an immediate application in the estimation of the Hawking
temperature [60], where corrections to Hawking temperature
of a Schwarzchild black hole are obtained from the Quantum
Raychaudhuri equation, and compared with that obtained
using a “linear” correction and a “linear plus quadratic” cor-
rection arising from the Generalized Uncertainty Principle. It
was found that all of them tend to prevent a catastrophic evap-
oration of the black hole. Very recently there is an attempt
towards a resolution of the black hole singularity in loop
quantum gravity where a modified Raychaudhuri equation
has been used [61].

In the present work, the classical geodesic flows are
not replaced but rather, are quantized themselves. This is
expected to find application in the investigation of the sin-
gularities in the quantum regime for a collapse of homoge-
neous systems, such as the Datt–Oppenheimer–Snyder col-
lapse [62,63].
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