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Abstract Some cosmological models based on the grav-
itational theory f (R) = R + ζ R2, and on fluids obey-
ing to the equations of state of Redlich–Kwong, Berthelot,
and Dieterici are proposed for describing smooth transitions
between different cosmic epochs. A dynamical system analy-
sis reveals that these models contain fixed points which corre-
spond to an inflationary, a radiation dominated and a late-time
accelerating epoch, and a nonsingular bouncing solution, the
latter being an asymptotic fixed point of the compactified
phase space. The infinity of the compactified phase space is
interpreted as a region in which the non-ideal behaviors of
the previously mentioned cosmic fluids are suppressed. Phys-
ical constraints on the adopted dimensionless variables are
derived by demanding the theory to be free from ghost and
tachyonic instabilities, and a novel cosmological interpreta-
tion of such variables is proposed through a cosmographic
analysis. The different effects of the equation of state param-
eters on the number of equilibrium solutions and on their sta-
bility nature are clarified. Some generic properties of these
models, which are not sensitive to the particular fluid con-
sidered, are identified, while differences are critically exam-
ined by showing that the Redlich–Kwong scenario admits a
second radiation-dominated epoch and a Big Rip Singularity.

1 Introduction

Despite being a challenging task, the search for a uni-
fied cosmological theory accounting for the entire known
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evolution history of the Universe, or at least providing a
smooth transition between two different cosmic epochs, has
been attempted both through single fluid approaches and by
proposing modifications of the gravity sector beyond gen-
eral relativity [1,2]. In the former case a certain single cos-
mic fluid is adopted to describe two different epochs in the
limits of high and low energy, while the latter framework
postulates some curvature modifications to the Lagrangian
which are dominant at a certain cosmic epoch but dilutes
at others. For example, Born–Infeld-like theories can lead
to an effective description of the cosmic matter interpo-
lating between dark matter and dark energy dominated
epochs as a consequence of the Friedman equations, in
terms of the Chaplygin Gas [3,4] or of the Anton–Schmidt
fluid [5,6]. Other thermodynamically-motivated fluid mod-
els like the Dieterici [7] or the Shan–Chen [8] can as well
exhibit a phase transition from a decelerating to an accel-
erating phase of the universe; the former from a matter-
dominated epoch to a dark energy epoch, and the latter
from an early radiation-dominated epoch to a dark energy
epoch. The Shan–Chen model can also be used for describ-
ing the exponential expansion occurring during the inflation-
ary epoch with the advantage of exhibiting a graceful exit
mechanism, but for a different choice of the free parame-
ters entering its equations of state than in the former analysis
[9].

On the other hand, extended gravity theories in which a
certain curvature invariant is added to, or used to replace, the
Ricci scalar inside the Einstein-Hilbert Lagrangian can pro-
vide as well an evolution between different cosmic epochs
as a consequence of the modified field equations themselves
[10–16]. In spite of the correspondence between modified
gravity theories and non-ideal fluid pictures (i.e. whose pres-
sure and energy density are connected via P = w(ρ)ρ) [17],
the former have the advantage of not violating some of the
energy conditions which instead are broken when exotic flu-
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ids with negative pressure are adopted, and they preserve
causality which would be lost when the adiabatic speed of
sound squared becomes negative.

In this paper, we will merge the fluid and the modified
gravity approaches and propose some cosmological models
in which the gravity sector is accounted for by a Lagrangian
of the type f (R) = R + ζ R2, while the matter content
is assumed to obey to some non-ideal equations of state
with a well-established thermodynamical foundation known
under the names of Redlich–Kwong, (modified) Berthelot,
and Dieterici fluid separately. The former assumption will
allow us to account for the early-time dynamics, while the
latter for the present-day epoch. Both these two models
have been investigated separately in a number of literature
works [18–27]. Here, we will obtain a cosmological dynam-
ics with a rich variety of different behaviors like a non-
singular bounce, two de Sitter-like epochs (thanks to the
non-linear equation of state of the cosmic fluid in which
w(ρ) is not a constant), possibly two radiation-dominated
epochs, and possibly a phantom regime (the latter only in the
Redlich–Kwong scenario). The comparison between three
different realizations of the equation of state parameter func-
tion w(ρ) (for example which can be either always regular
or admitting singularities, which can blow up or not at small
or high energy densities, etc.) will give us the opportunity of
enlightening which of our findings hold only when a partic-
ular fluid modeling is considered, and which instead seem
to be a general characteristic of the cosmological dynam-
ics. We must mention here that previously there have been
some attempts to unify early and late time cosmology under
certain forms of f (R) gravity [28–30]. However, it is worth-
while to remark also that the modifications utilized in those
works are completely ad-hoc, lacking any motivation from
the field theory point of view. The only modifications to
the Einstein-Hilbert Lagrangian with some field theoretical
motivations are the quadratic gravity theories. It has been
known for some time that gravity Lagrangian containing
additional quadratic curvature invariant terms are renormal-
izable [31,32]. Therefore in this work we do not intend to go
beyond quadratic modifications. In particular we consider
only the simplest case, namely, an R2 correction term, along
with fluids having a well-defined thermodynamic founda-
tion.

We will tackle the technical difficulties arising in a fourth-
order gravity theory like this one by adopting the set of dimen-
sionless variables constructed in [33] which allows to cast the
dynamical equations into a system of autonomous first-order
equations suited for a dynamical system analysis. Such tech-
nique constitutes a powerful mathematical tool for describ-
ing the qualitative evolution of the the cosmological model
under investigation not only in modified gravity [33–43],
but also in multi-interacting fluid models [25,44–51], and
in exact or perturbed anisotropic and inhomogeneous cos-

mological models [52–58], just to mention a few examples.
However, we will also propose a novel cosmologically trans-
parent interpretation for those variables which was still lack-
ing in the literature by deriving the physical restrictions they
should obey to for avoiding tachyonic and ghost instabilities
and connecting them to the cosmographic parameters, such as
the deceleration, jerk and snap parameters which can be astro-
physically constrained. Remarkably, we will show that such
physical restrictions still allow the existence of a region in the
phase space in which the energy density of the matter field
is equal to the energy density of the curvature, which may
be relevant for addressing the coincidence problem. Further-
more, our choice of variables will be useful also for showing
that certain regions of the phase space are free from any of the
five known types of cosmological singularities without the
need of using the dominant energy balance formalism [59].
Moreover, after compactifying the phase space we will show
that the region at infinity does not have only a geometrical
meaning but it is such that the cosmic fluid equation of state
reduce to the ideal behavior P ∝ ρ in which the interactions
between the fluid constituents are suppressed.

One of the most severe shortcomings of the standard cos-
mological modeling is the Hubble tension, which is the dis-
crepancy between the large and small scale estimates of
the Hubble constant from supernova and cosmic microwave
background data. Assuming that these predictions are not
affected by any systematics, as to gravitational lensing effects
on the cosmic microwave background angular spectrum [60]
or to calibration and reddening issues for supernovae [61–
63], an appropriate theoretical framework should be con-
structed for taming it. Several different proposals have been
formulated, but none of them still seem fully satisfactory.
For example the presence of a Proca field would reduce
the Hubble tension [64], but there are no laboratory evi-
dences of massive electrodynamic effects, and furthermore
gauge invariance is lost in this theory [65]. Also, interac-
tions between dark energy and dark matter may alleviate the
tension [66], but thermodynamical considerations based on
the Le Chatelier-Braun principle suggests that dark energy
should decay into dark matter [67] while the fact that the
structure formation era should precede the accelerating phase
would require otherwise [68]. Our present work is intended
as a rigorous dynamical study of a unified cosmic history
model, combining two important frameworks one each from
the study of early and late-time universe. Although we do
not address the issue of H0 tension here, an interesting scope
for further investigation would be whether a unified cosmic
history model, like the one we presented here, can provide an
alternative to introducing ad-hoc interactions in the dark sec-
tor when it comes to alleviating the H0 tension. Indeed this
is not the first time that modified gravity and other ingredi-
ents are merged together. For example, anisotropic models in
which the Copernican principle is relaxed have already been
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considered in Einstein–Aether gravity [69] also with a cou-
pling to a scalar field [53], in braneworld cosmologies [70],
or in f (R) gravity [71], just to cite a few examples. On the
other hand, for a recent phenomenological proposal which
may tame some observational challenges invoking two free
parameters and requiring only a modification of the gravity
sector in terms of a torsional Lagrangian see [72].

Our paper is organized as follows: in Sect. 2 we will review
the field equations of the class of models we want to analyze
and exhibit the equations of state of the cosmic fluids we are
adopting mentioning their basic features, and we will as well
introduce a formalism in which both curvature and matter
effects are combined into an effective picture. Sect. 3 con-
stitutes the main part of our work: in 3.1 we will recast the
equations governing the dynamics of our models as a sys-
tem of autonomous first order equations in terms of a set of
dimensionless variables on which we will also derive appro-
priate physical restrictions; in 3.2 we will identify the cos-
mologically meaningful equilibrium solutions, explain for
which ranges of the matter equation of state parameters they
can arise pointing out possible bifurcations among them for
particular types of matter contents, and report their stability
showing that radiation-dominated, de Sitter-like and power
law cosmologies can arise; in 3.3 we will compactify the
phase space and perform the analysis at infinity showing
that a nonsinglar bounce occurs; in 3.4, 3.5 and 3.6 we will
investigate the dynamics in the invariant submanifolds both
numerically by plotting the trajectories in the phase spaces,
by deriving analytically their stability, and by finding analyt-
ical results for the phase orbits in some specific cases; in 3.7
we will relate the dimensionless variables we have adopted
to the deceleration, jerk and snap cosmographic parameters
which can be astrophysically measured. Then, in Sect. 4 we
will explain why some regions of the phase space are not
affected by any cosmological singularity, and in Sect. 5 we
will summarize the patterns that have emerged in our analysis
by discussing which cosmological features we have discov-
ered are sensitive to the particular modeling of the fluid, and
which instead seem to be a general property. We will con-
clude in Sect. 6 by discussing the cosmological relevance of
our analysis and by putting the present work in the perspec-
tive of possible future projects. In “Appendix A” we review
the applicability of the fluid models considered in this paper
for the description of real gases beyond the cosmological
context. The analytical computations of the stability of the
isolated fixed points and of the invariant submanifolds are
reported in the “Appendices B, C, D, E” which make use of
both the standard notion of linear stability and of a much
more advanced technique like the “ center manifold analy-
sis”.

2 Basic equations of quadratic gravity

The action of quadratic gravity in the Ricci scalar1 reads as
[78]

S = 1

2κ

∫
d4x

√−g f (R) + Sm , (1)

with2 f (R) = R+ζ R2 and κ = 8πG,G being the Newton’s
gravitational constant. ζ is a positive parameter quantifying
the deviation of the quadratic gravity from the general rela-
tivistic Einstein-Hilbert Lagrangian at high curvature. These
contributions are supposed to play an important role in the
early universe driving the inflationary dynamics but dilut-
ing at later epochs [18–24]. This model constitutes a specific
realization of a scalar-tensor theory of gravity because mod-
ifications in the gravity sector can be re-interpreted in the
Brans–Dicke language as a new degree of freedom associ-
ated to a propagating scalar field [17]. Moreover, Sm is the
aggregate matter action responsible for all the fluid content of
the Universe. In this paper we will assume the cosmic matter
to be a perfect fluid (it is fully characterized by its pressure
P and energy density ρ) obeying to a nonideal equation of
state (pressure and energy density are not directly propor-
tional to each other). To be more specific, we will consider
some fluid models which constitute examples of evolving
dark energy and/or unification of exotic and regular matter
since in this latter case the sign of the pressure can change
at different cosmic epochs as a consequence of the evolu-
tion of the energy density. Thus, our model is intended to
study the evolution from inflationary to dark energy epoch
by involving both quadratic corrections in the curvature and
some nonideal fluid.

Furthermore, in light of the Copernican principle, i.e. that
the universe is homogeneous and isotropic, and considering
an almost spatially flat universe, our geometrical model will
be based on the spacetime

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) . (2)

Defining F := ∂ f/∂R, and introducing the Hubble function
H := ȧ/a, where an overdot denotes a derivative with respect

1 In this paper we will restrict ourselves to a modified gravity model
quadratic in the curvature. However, other types of corrections have
been proposed in the literature, either quadratic or beyond it, as in f (T )

theories with torsion [73], f (Q) with non-metricity [74], or f (G) with
a Gauss-Bonnet term [75].
2 In principle the most generic quadratic Lagrangian in curvature should
also contain the terms R2

αβ ≡ Rαβ Rαβ and R2
αβγ δ ≡ Rαβγ δRαβγ δ ,

which can be rewritten in terms of the Euler density E ≡ R2
αβγ δ −

4R2
αβ + R2 and the Weyl curvature invariant C ≡ R2

αβγ δ − 2R2
αβ + R2

3 .
E does not contribute to the equation of motion due to the Gauss-Bonnet
identity whereas C vanishes for FLRW metric [76,77]. Therefore the
action (1) can be taken to be the most generic quadratic Lagrangian in
terms of the curvature for a homogeneous and isotropic universe.
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to the cosmic time, we can write the field equations for a flat
Friedman universe under the action (1) as [10–12]:

3(1 + 2ζ R)H2 = ρ + ζ

(
R2

2
− 6H Ṙ

)
, (3a)

(1 + 2ζ R)Ḣ = ζ(H Ṙ − R̈) − ρ + P

2
, (3b)

where we have adopted units such that κ = 1, and the Ricci
scalar is related to the Hubble function via

R = 6(ȧ2 + aä)

a2 = 6(2H2 + Ḣ) . (4)

The field equations should be complemented by the Bianchi
identity

ρ̇ = −3H(ρ + P) (5)

which governs the energy conservation of the cosmic fluid.
Furthermore, combining (3a) with (3b) we get

2Ḣ + 3H2 = − 1

F

(
P − RF − f

2
+ F̈ + 2H Ḟ

)
, (6)

which will be invoked in what follows for providing a trans-
parent physical interpretation to the various quantities gov-
erning the cosmological dynamics. In fact, the joint effects
of the matter content and of the modifications to the gravity
sector can be combined into an effective total energy density
and an effective total pressure which read as [13, Eq. (IV.82)]:

ρeff := 3H2 = 1

F

(
ρ + RF − f

2
− 3H Ḟ

)

= 1

1 + 2ζ R

[
ρ + ζ

(
R2

2
− 6H Ṙ

)]
, (7a)

Peff := −(2Ḣ + 3H2) = − 1

F

(
P − RF − f

2
+ F̈ + 2H Ḟ

)

= − 1

1 + 2ζ R

[
P + ζ

(
− R2

2
+ 2R̈ + 4H Ṙ

)]
. (7b)

Along this line of thinking, one can also define an effective
equation of state parameter which encodes information about
both the actual cosmic fluid and the curvature effects as

weff := Peff

ρeff
= −1 − 2Ḣ

3H2 . (8)

For the the description of the matter content of the universe,
we find convenient to follow the approach of [27] and con-
sider the following modelings for the equations of state of
the cosmic fluid separately:

P(ρ) = 1 − (
√

2 − 1)αρ

1 − (1 − √
2)αρ

βρ (Redlich–Kwong [79]), (9a)

P(ρ) = βρ

1 + αρ
[(modified) Berthelot [80]], (9b)

P(ρ) = βρe2(1−αρ)

2 − αρ
(Dietrici [81]). (9c)

The fluid equation of state parameter defined as w := P/ρ

takes respectively the forms:

w(ρ) = 1 − (
√

2 − 1)αρ

1 − (1 − √
2)αρ

β (Redlich–Kwong), (10a)

w(ρ) = β

1 + αρ
[(modified) Berthelot], (10b)

w(ρ) = βe2(1−αρ)

2 − αρ
(Dietrici). (10c)

Therefore, our class of models is based on three free param-
eters (ζ , α, β). Different interplay between these free param-
eters will affect the existence of certain equilibrium config-
urations and certain types of finite-time singularities that we
will classify in this paper with the purpose of constraining
the values that these free parameters can assume by requir-
ing these configurations to be physically meaningful. The
two free parameters entering the equation of state of the
cosmic fluid should be interpreted as: α > 0 is the tem-
perature at which a thermodynamic phase transition occurs
within the fluid, and it sets the strength of the interactions
between the fluid particles since in the limit α → 0 all
these equations of state describe an ideal fluid for which
pressure and energy density are directly proportional to each
other P � βρ. This latter relation also shows the connection
between β and the adiabatic speed of sound inside the fluid.
The interested reader can find a more detailed review of the
thermodynamic foundation of these fluid approaches in the
Appendix of [27], and we will as well mention what the orig-
inal reasons for their introduction for accounting for some
features of real gases were in our Appendix A. More in gen-
eral, these models try to provide a founded thermodynamical
description of an evolving dark energy beyond ad hoc redshift
parametrizations for helping its possible direct detection in
the the far future. In fact, for accounting for both the Planck
and weak lensing datasets, a redshift-dependent modeling of
the dark energy equation of state parameter has been assumed
in the form of w = w0 + w1(1 + z) with w0 and w1 free
parameters [82, Sect.6.3]. However, in this simple frame-
work the analysis of the cosmic microwave background con-
straints on the distance to the last scattering surface is prob-
lematic, and therefore the refined Chevallier-Polarski-Linder
parametrization w = w0 +w1z/(1 + z) has been introduced
[83,84]. The Barboza-Alcaniz w = w0+w1z(1+z)/(1+z2)

is another proposal which can be used in the whole redshift
range z ∈ [1,∞) [85]. Although these frameworks have been
useful for studying the running of the dark energy potential
beyond a cosmological constant, they do not try to estab-
lish the microscopic properties of such an exotic fluid which
remain mysterious, calling for a physically deeper investiga-
tion. Finally, the functional w(ρ) can be interpreted also as
an energy-dependent chameleon field [86,87].
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3 Qualitative analysis of the dynamics of quadratic
gravity with nonideal fluids

In this section, we will derive the dynamical equations gov-
erning the evolution of the universe (2) in the gravity model
(1) including some nonideal fluids by implementing the set
of dimensionless variables considered in [33,36]. Particular
attention will be devoted to the rewriting of the equation of
state parameters (10) as functions of such dimensionless vari-
ables which are suited for a dynamical system analysis. Then,
we will set some further constraints on the values of the free
parameters of our model by requiring it to be free from insta-
bilities. Lastly, we will list the mathematical equilibria and
discuss their cosmological significance (which may provide
tighter restrictions on the free parameters), possible bifurca-
tions among them and their stability. Then, we will provide
a prescription for compactifying the phase space with the
purpose of investigating the dynamics at its infinity, and we
will reconstruct the cosmological evolution on some invari-
ant submanifolds also by analytically finding the equations
of the phase orbits. In this section we also derive a set of
relationships between the dimensionless variables employed
in the dynamical system analysis and the observationally-
relevant cosmographic parameters.

3.1 Derivation of the autonomous first-order dynamical
system in terms of dimensionless variables

The evolution equations to investigate in the R+ζ R2 gravity
are:

3H2 + 18(6H2 Ḣ + 2H Ḧ − Ḣ2)ζ − ρ = 0 , (11a)

6[ ...
H + (ζ + 4)H Ḧ + (4 − 2ζ )Ḣ2] − Ḣ − ρ + P

2
= 0 ,

(11b)

ρ̇ + 3H(ρ + P) = 0 , (11c)

where we have obtained the first two by plugging (4) into
(3a)–(3b). We can note that the first equation, which con-
stitutes the Generalized Friedman equation, is not sensitive
to the specific cosmic fluid modeling P = P(ρ), unlike the
other two dynamical equations. Furthermore, Eq. (6) can be
rewritten in terms of the Hubble function as:

6ζ(2
...
H + 12H Ḧ + 9Ḣ2)

+2(54ζH2 + 1)Ḣ + 3H2 + P = 0 . (12)

Explicitly, for flat Friedman universes filled with the fluids
(9a), (9b), (9c) evolving under the action of quadratic gravity,
we get the following set of dynamical equations, respectively:

• Redlich–Kwong fluid:

3H2 + 18(6H2 Ḣ + 2H Ḧ − Ḣ2)ζ − ρ = 0 , (13a)

6[ ...
H + (ζ + 4)H Ḧ + (4 − 2ζ )Ḣ2] − Ḣ

+[αρ(
√

2 − 1)(β − 1) − β − 1]ρ
2[αρ(

√
2 − 1) + 1] = 0 , (13b)

ρ̇ + 3Hρ

(
1 + 1 − (

√
2 − 1)αρ

1 − (1 − √
2)αρ

β

)
= 0 . (13c)

• (Modified) Berthelot fluid:

3H2 + 18(6H2 Ḣ + 2H Ḧ − Ḣ2)ζ − ρ = 0 , (14a)

6[ ...
H + (ζ + 4)H Ḧ + (4 − 2ζ )Ḣ2]
−Ḣ − (αρ + β + 1)ρ

2(αρ + 1)
= 0 , (14b)

ρ̇ + 3Hρ

(
1 + β

1 + αρ

)
= 0 . (14c)

• Dietrici fluid:

3H2 + 18(6H2 Ḣ + 2H Ḧ − Ḣ2)ζ − ρ = 0 , (15a)

6[ ...
H + (ζ + 4)H Ḧ + (4 − 2ζ )Ḣ2] − Ḣ

+[αρ − βe2(1−αρ) − 2]ρ
2(2 − αρ)

= 0 , (15b)

ρ̇ + 3Hρ

(
1 + βe2(1−αρ)

2 − αρ

)
= 0 . (15c)

These differential equations are third order in the Hubble
function (or equivalently fourth order in the scale factor),
and non-linear in both the Hubble function and the energy
density. Thus, it is convenient to tackle them by adopting
dynamical system techniques and searching possible equilib-
rium configurations for clarifying their cosmological mean-
ing and analyzing their qualitative dynamics [88–91]. Fol-
lowing the formalism of [33,36], we can recast these dif-
ferential equations into a first-order autonomous dynamical
system in terms of the following dimensionless variables:

x := Ḟ

FH
= 12ζ

4H Ḣ + Ḧ

H [1 + 12ζ(2H2 + Ḣ)] , (16a)

y := R

6H2 = 2 + Ḣ

H2 ≡ 1 − 3weff

2
, (16b)

z := f

6FH2 = (2H2 + Ḣ)[1 + 6ζ(2H2 + Ḣ)]
H2[1 + 12ζ(2H2 + Ḣ)] , (16c)

� := ρ

3FH2 = ρ

3H2[1 + 12ζ(2H2 + Ḣ)] . (16d)

We introduce also the following auxiliary quantity:

q(y, z) := F

RF ′

= 1 + 12ζ(2H2 + Ḣ)

12ζ(2H2 + Ḣ)
≡ y

2(y − z)
. (17)
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It is clear from (16) that these dynamical variables are unde-
fined when H = 0. Therefore, this particular choice of
variables pushes any possible fixed point corresponding to
Minkowski solutions and bounce (a cosmological bounce is
an alternative to the inflationary paradigm3) or turnaround
scenarios to the infinity of the phase space. Taking into con-
sideration fixed points at infinity requires a global phase
space analysis (see e.g. [37,38] in the context of f (R) grav-
ity), which we will investigate separately in Sect. 3.3. Also,
we do not expect any moment of maximum expansion at
which ȧ = 0 = H since we are considering a flat ever-
expanding universe filled with the effective fluid (8). How-
ever restricting to a domain of the full solution space consist-
ing of only ever expanding (or ever contracting) solutions,
this choice of variables is very advantageous when looking
for a physical interpretation of the solutions and connecting
with the cosmological observables. Therefore, the expansion
normalized dynamical variables in (16) are appropriate for
the consideration of this paper.

The first-order autonomous dynamical system governing
the evolution of the cosmological variables (16) is:4

dx

dN
= −2z − x2 + (1 − y)x − (3w(ρ) + 1)� + 2 , (18a)

dy

dN
= y(xq(y, z) + 4 − 2y) , (18b)

dz

dN
= z(4 − x − 2y) + xyq(y, z) , (18c)

d�

dN
= �(1 − x − 2y − 3w(ρ)) , (18d)

where ρ = ρ(x, y, z,�), N = ln(a(t)) denotes the number
of e-folds of the universe [93], and where we have exploited
the chain rule

dX

dN
= dX

dt
· dt
da

· da
dN

= Ẋ

H
, (19)

for any generic quantity χ = χ(t). From (16) we can write
the Hubble function, its time derivative, and the fluid energy
density in terms of the dimensionless variables as:

H2 = y − z

6ζ y(2z − y)
, Ḣ = (y − z)(y − 2)

6ζ y(2z − y)
,

ρ = �(y − z)

2ζ(2z − y)2 , (20)

3 It has already been shown that quadratic gravity can in fact give rise
to nonsingular bouncing scenarios for ζ < 0 [92]. In this paper, we will
investigate its occurrence for ζ > 0.
4 We remark that some differences should be noted between our dynam-
ical system and the one given in [33, Eq. (14)] which follow from the
different signatures between our Ricci scalar (4) and [33, Eq. (11)].

which, together with the definitions (9a), (9b), (9c), allow us
to rewrite the equation of state parameters as

w(y, z,�) = 2ζ(2z − y)2 − (
√

2 − 1)α�(y − z)

2ζ(2z − y)2 + (
√

2 − 1)α�(y − z)
β

(Redlich–Kwong), (21a)

w(y, z,�) = 2βζ(2z − y)2

2ζ(2z − y)2 + α�(y − z)
[(modified) Berthelot], (21b)

w(y, z,�) = 2βζ(2z − y)2

4ζ(2z − y)2 − α�(y − z)

× exp

[
2 − α�(y − z)

ζ(2z − y)2

]
(Dietrici). (21c)

Furthermore, the Generalized Friedman equation (11a) is
reduced to the constraint

y + � − z − x = 1 , (22)

which should be used for removing one cosmological vari-
able from the dynamical system (18). We choose to eliminate
x for a twofold reason: the x-equation is apparently the most
complicated one, and the w(ρ) can be naturally expressed in
terms of (y, z,�) as done in (21). Keeping in mind Eq. (17),
the dynamical system (18) becomes:

dy

dN
= y(7y − 8z − 3y2 + 3yz + y�)

2(y − z)
, (23a)

dz

dN
= y3 + (� − 7z − 1)y2 + 2(4z + 5 − �)yz − 2z2(z − � + 5)

2(y − z)
,

(23b)
d�

dN
= �(2 − 3w(y, z, �) − 3y + z − �) . (23c)

There are three physical viability conditions which should be
accounted for when identifying the cosmologically relevant
regions inside the full 3-dimensional y-z-� phase space.5

They are the following:

• Firstly, absence of ghost instabilities in f (R) gravity
requires F(R) > 0, which implies 1 + 2ζ R > 0 for
our scenario [94]. From (4)–(20) we can write

R = 6Ḣ + 12H2 = 1

ζ

(
y − z

2z − y

)
, (24)

so that the absence of ghost instabilities requires

F = 1 + 2ζ R = y

2z − y
> 0 , (25)

which can be satisfied for

0 < y < 2z or 2z < y < 0 . (26)

5 To the best of our knowledge this is the first time that these physical
viability conditions are used to constrain the viable region of the phase
space spanned by the expansion normalized variables (16).
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These conditions represent two disconnected regions on
the first and third quadrant of the y-z plane bounded by
the line y = 2z and the z-axis.

• Secondly, absence of tachyonic instabilities for a generic
f (R) gravity theory requires f ′′(R) > 0, which in our
case simply implies ζ > 0 [94]. From the definition of
the dynamical variables (16), we note that

y − z = RF − f

6FH2 = ζ R2

6FH2 > 0 ⇒ y > z . (27)

• Finally, the weak energy condition requires the energy
density to be locally non-negative:

ρ ≥ 0 ⇒ � ≥ 0. (28)

We can observe also that R is non-negative within the
semi-infinite y ≥ 0 region. Therefore,

� = ρ

3FH2 ≤ ρ

3F(ζ → 0)H2 ≤ 1 , (29)

where the last equality follows from the observation that
in the General Relativity limit (which corresponds to
ζ → 0 in the system (11)), one recovers the usual Fried-
man equation

3H2 = ρ. (30)

To summarize, there are two disjoint regions of the phase
space which are physically relevant:

0 < z < y < 2z, 0 ≤ � ≤ 1 and

z < y < 0, 0 ≤ � ≤ 1 . (31)

These are two distinct semi-infinite wedge-shaped sectors
above the � = 0 plane, in the first and third quadrants of
the y-z plane, respectively. The region in the first quadrant
is confined between the two lines y = z and y = 2z, while
the region in the third quadrant is confined between the line
y = z and the z-axis. We stress that till now we have not
included the boundaries of these two regions (which are
represented by equalities rather than inequalities in (31)),
because they require a more careful treatment. The plane
defined by the equality y = z accounts for the General Rela-
tivity limit R+ ζ R2 ≈ R (which can be expressed as ζ → 0
thanks to Eq. (27)) in which the quadratic modification in the
Lagrangian is negligible with respect to the Einstein-Hilbert
contribution. It is not appropriate to consider the plane y = z
in the analysis that follows because the dynamical variables
are undefined there and the dynamical system formulation
that we are adopting becomes singular on the plane y = z.
However, this does not prevent the origin (y, z) = (0, 0) to

be describe a physically meaningful configuration, as it can
be appreciated from

lim
y→0,z→0

dy

dN
= lim

y→0,z→0

dz

dN
= 0 . (32)

The dynamical system (23) is therefore singular everywhere
on the y-z plane except along the line y = z = 0. The other
boundary of the acceptable region in the first quadrant is the
plane defined by the equality y = 2z, while for the one in
the third quadrant is the z-� plane defined by the condition
y = 0. The plane y = 2z corresponds to the limit R+ζ R2 ≈
ζ R2 (which is equivalent to ζ → +∞, as it can be seen
from Eq. (25)) which occurs when the quadratic modification
term in the Lagrangian becomes dominant over the Einstein-
Hilbert contribution. At this stage, both the planes y = 2z
and y = 0 can be safely included in the physically viable
region of the phase space, which is thus given by

0 < z < y ≤ 2z ∪ z < y ≤ 0 ∪ y = 0 = z , 0 ≤ � ≤ 1 .

(33)

As a consistency check, one can note from (20) that H2 > 0
in both these regions. The dynamical system (23) admits the
two invariant submanifolds y = 0 and � = 0. An invariant
submanifold divides the entire phase space into two distinct
regions on its both sides. Although they can at most reach the
boundary, no phase trajectory can cross the invariant subman-
ifold leaving one region and entering the other. Also, any orbit
originating from a point on an invariant submanifold will
always remain on that submanifold signifying that the recon-
struction of the dynamics requires knowledge on the initial
data. We note that R is always negative in the third quadrant
of the y-z plane (because y is negative), and thus this region
cannot contain any fixed point interpreted as a De-Sitter cos-
mology (or any other cosmology with negative deceleration
parameter). Therefore, observational datasets suggest that the
cosmological evolution should not occur in this region of the
phase space.

3.2 Qualitative dynamics: equilibria, stability, and
bifurcations

In Table 1 we exhibit all the equilibrium points that arise
mathematically for the dynamical system (23), along with
the corresponding cosmological solution they represent, if
any. In fact, some of the fixed points should be ignored on
physical and observational grounds:

1. The point P3 is unphysical for the scenario of a universe
filled with the (modified) Berthelot fluid because it vio-
lates the weak energy condition. Should we consider the
Redlich–Kwong fluid, it can carry a physical interpre-
tation for 1 ≤ β ≤ 17

9 . Interestingly, the former point
corresponds to the β = 0 case of the latter.
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Table 1 In this Table we exhibit all the equilibrium points that can be
obtained mathematically for the dynamical system (23) once Eq. (21)
have been implemented for the different types of cosmic fluids. The
effective equation of state parameter weff is computed from (16b) and

it takes into account the contributions of both the actual matter content
and of the curvature effects (see also (8)). We refer to the main text
for a detailed explanation of why some equilibria do not represent any
meaningful cosmological model

Cosmic fluid Fixed point yeq zeq �eq weff Cosmology

Redlich–Kwong P1 2 1 0 −1 De-Sitter-like

P2 2 1 + �eq

(√
2−1

)
α(β−1)(√

2−1
)
α(β−1)+8(β+1)ζ

−1 De-Sitter-like

P3
5+3β

4
5+3β

8
9
8 (β − 1) − 1

2 (β + 1)

{
De-Sitter like for β = 1

a ∼ (ts − t)4/(3(1−β)) for β �= 1

P4 0 −5 0 1
3 Unphysical

P5 0 �eq − 5 40ζ(1+β)

(
√

2−1)α(β−1)+8ζ(1+β)

1
3 Unphysical

P6 0 0 0 1
3 a ∼ t1/2

P7 0 0 2 + 3β 1
3 a ∼ t1/2

(Modified) Berthelot P1 2 1 0 −1 De-Sitter-like

P2 2 1 + �eq
α

α−8(β+1)ζ
−1 De-Sitter-like

P3
5
4

5
8 − 9

8 − 1
2 Unphysical

P4 0 −5 0 1
3 Unphysical

P5 0 �eq − 5 40ζ(1+β)
8ζ(1+β)−α

1
3 Unphysical

P6 0 0 0 1
3 a ∼ t1/2

P7 0 0 2 1
3 Unphysical

Dieterici P1 2 1 0 −1 De-Sitter-like

P2 2 1 + �eq
α

4ζ [W (2β/e2)+4]+α
−1 De-Sitter-like

P4 0 −5 0 1
3 Unphysical

P5 0 �eq − 5 20ζ [W (2β/e2)+4]
4ζ [W (2β/e2)+4]+α

1
3 Unphysical

P6 0 0 0 1
3 a ∼ t1/2

2. Any orbit that approaches the point P4 must reside inside
the third quadrant of the y-z plane in which the deceler-
ation parameter is always positive. Therefore, this point
should be ignored on observational ground.

3. Similarly for the state P5: we can note that 0 ≤ �eq ≤ 1
delivers a negative zeq implying that any orbit approach-
ing P5 must reside within the third quadrant of the y-z
plane. Therefore, this point should also be ignored on
observational ground.

4. The fixed point P7 is unphysical for a universe filled
with the (modified) Berthelot fluid because it violates the
energy condition �eq ≤ 1. In the Redlich–Kwong sce-
nario it is physical for − 2

3 ≤ β ≤ − 1
3 .

The conditions on the model parameters which should be
imposed for endowing the remaining mathematical solutions
reported in Table 1 with a cosmological interpretation are
listed in Table 2. They follow by imposing 0 ≤ � ≤ 1. It
should be appreciated that this affects only the range of valid-
ity of β, while no further constraints other than the already
discussed are arising for α and ζ .

Among the physically viable fixed points we can identify
three distinct types of cosmological solutions:

1. De-Sitter-like cosmology There are two different pos-
sible realizations of a De-Sitter-like cosmology,6 which
are represented by the isolated fixed points P1 and P2.
The equilibrium P1 always constitutes a physical con-
figuration for all the three fluids, whereas P2 is relevant
in cosmology only imposing certain constraints on the
model parameter β as shown in Table 2. For all the three

6 Here, by De-Sitter-like cosmology we mean a cosmology in which
the Hubble function is constant. From the general system of equations
(11) we can note that also Minkowski can constitute an equilibrium
solution when we consider the Redlich–Kwong, (modified) Berthelot,
and Dieterici fluid models; this would correspond to the particular case
of H = const. = 0 (and ρ = P = 0). However, the dynamical
variables (16) are ill-defined for a Minkowski solution; we will address
this limitation by compactifying the phase space in Sect. 3.3. We also
remark that not all the fluid models currently adopted for a dark matter
- dark energy unification are compatible with the Minkowski spacetime
being an equilibrium solution, with the (Generalized) Chaplygin Gas
and the Anton-Schmidt proposals being some examples; see discussion
in [25].
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types of matter, the ideal fluid regime (α → 0) leads to
a saddle-node bifurcation between P1 and P2. Further-
more, in the case of the Redlich–Kwong fluid model, also
the equilibrium P3 reduces to P1 if we fix β = 1. In this
latter case a pitchfork bifurcation is possible if we choose
simultaneously α = 0 and β = 1 [95].

2. Power law evolution There are up to two different pos-
sible realizations of the power law evolution (a ∼ t1/2),
which are represented by the isolated fixed points P6 and
P7. P6 is always physical for all the three fluids whereas
P7 is relevant for cosmology only in the Redlich–Kwong
scenario and restricting − 2

3 ≤ β ≤ − 1
3 .

3. Big-Rip singularity The fixed point P3, which is physi-
cally well-defined only considering the Redlich–Kwong
fluid, represents a big-rip singularity which is asymptoti-
cally approached at the finite time7

ts = 4

3(β − 1)H0
. (34)

In fact, we can note that the scale factor is diverging by
looking at its time evolution; the energy density is also
diverging because of (20) and taking into account that
y = 2z �= 0, and this comes also with a divergence in the
pressure because of the form of the equation of state (9a).
Therefore, all the conditions for the occurrence of a Big-
Rip singularity are fulfilled [96–99]. As the limiting case
of β = 1 is approached, which we showed corresponds to
a bifurcation with the De-Sitter-like cosmology, the time
at which this singularity occurs is shifted at infinity. For
β �= 1, ts ∼ 1/H0 and the singularity time is comparable
to the age of the Universe. Keeping in mind the parameter
range in Table 2, we can also see from Table 1 that both
the effective and the matter parameters weff , w < −1 for
this point, where for the latter w = −β as from (21a).
Therefore this fixed point also corresponds to a phantom
dominated phase at which the Redlich–Kwong fluid itself
behaves like a phantom fluid. Furthermore, the adiabatic
speed of sound for the Redlich–Kwong fluid, which can
be computed from (9a),

c2
s = ∂p

∂ρ
= [(2√

2 − 3)αρ − 1]β(αρ − 1)

[(√2 − 1)αρ + 1]2
, (35)

once specified to P3 via (20) delivers

c2
s = (2

√
2 − 3)β

(
√

2 − 1)2
= −β , (36)

which is smaller than −1 in the range of interest of β.

7 For computing ts , note that d(1/H)
dt = 3(1 − β)/4, which provides

d ln a
dt = 4H0

4+3(1−β)H0t
, and that we fixed a(t = 0) = 1.

The stability nature of the fixed points is listed in Table
3 and detailed calculation is presented in Appendix B. It is
possible to note that under the assumption that α, ζ > 0, only
the parameter β, which is related to the adiabatic speed of
sound within the fluid, affects the stability nature of the finite
isolated fixed point.

3.3 Phase space analysis at infinity

Compactification of an unbound phase space is necessary
to search for any possible fixed point that lies at its infin-
ity: thanks to this procedure the fixed points at infinity are
mapped to the boundary of the corresponding compact phase
space. In general all the dynamical variables can tend to infin-
ity, which means the phase space of the theory can exhibit a
unlimited extent in all the directions. There are different pre-
scriptions for f (R) cosmologies (see e.g. [38] for a generic
f (R) theory and [37] for the particular R + ζ Rn theory) for
compactifying the phase space in all the directions. However,
in this Sect. we introduce a new compactification technique
which directly exploits the physical viability conditions we
previously derived in (33). As we will show below, one can
use these constraints to define some invariant submanifolds
that border the physically viable region of the phase space
and then we are left with only one direction in which the
phase space need to be compactified.

From a mathematical point of view, the dynamical system
(23) is singular on the plane y = z. Since this plane is one of
the boundaries of the region of the phase space we are inter-
ested in, this singularity can be regularized by introducing a
new time variable τ such that

dτ = dN

y − z
, (37)

in terms of which the dynamical system can be re-written as

dy

dτ
= y(7y − 8z − 3y2 + 3yz + y�)

2
, (38a)

dz

dτ
= y3 + (� − 7z − 1)y2 + 2(4z + 5 − �)yz − 2z2(z − � + 5)

2
,

(38b)
d�

dτ
= �(y − z)(2 − 3w(y, z, �) − 3y + z − �) . (38c)

Now one can write

d

dτ
(y − z) = −(y − z)[2y2 − y(3z + 4)

+z(−� + z + 5)], (39a)
d

dτ
(y − 2z) = −1

2
(y − 2z)[5y2 + y(� − 7z − 9)

+2z(−� + z + 5)], (39b)

which show that the planes y = z and y = 2z are invariant
submanifolds as well. As discussed in Sect. 3.1, these two
planes are equivalent to the two limits ζ → 0 and ζ → +∞
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Table 2 Taking into account that α, ζ > 0, the necessary conditions for
promoting the solutions listed in Table 1 from mathematical to physical
are derived demanding 0 ≤ � ≤ 1. The limits α → 0 and ζ → 0 cor-

respond to ideal fluid and General Relativity, respectively. The points
P4 and P5 are not included in this Table because they belong to a region
of the phase in which the deceleration parameter is always positive

Fixed points Redlich–Kwong (Modified) Berthelot Dietrici

P1 Always exists Always exists Always exists

P2 β ≥ 1 ∪ β < −1 β < −1 β > −2/e2

P3 1 ≤ β ≤ 17
9 Unphysical Does not exist

P6 Always exists Always exists Always exists

P7 − 2
3 ≤ β ≤ − 1

3 Unphysical Does not exist

Table 3 Stability nature of the finite fixed points. When investigating the stability of a fixed point it is important to keep in mind the range of β for
which the fixed point exists. The abbreviation c.m.a. stands for “ Center Manifold Analysis”

Points Redlich–Kwong (Modified) Berthelot Dietrici

P1

{
Saddle forβ �= −1

Requires more analysis forβ = −1

{
Saddle for β �= −1

Requires more analysis for β = −1

{
Saddle for β �= − 2

e2

Requires more analysis for β = − 2
e2

P2

⎧⎪⎨
⎪⎩

Stable for β < −1

Saddle for β > 1

Saddle for β = 1

Stable Stable

P3

{
Stable for 1 < β ≤ 17

9
Saddle for β = 1

– –

P6

⎧⎪⎨
⎪⎩

Unstable for β < 2
3

Saddle for β > 2
3

Requires c.m.a for β = 2
3

⎧⎪⎨
⎪⎩

Unstable for β < 2
3

Saddle for β > 2
3

Requires c.m.afor β = 2
3

⎧⎪⎨
⎪⎩

Unstable for β < 4
3e2

Saddle for β > 4
3e2

Requires c.m.a for β = 4
3e2

P7

{
Unstable for β = − 2

3
Saddle for β > − 2

3

– –

respectively. To the best of our knowledge this is the first
time that the physical viability conditions which follow from
the absence of ghost and tachyonic instabilities are recast
as invariant submanifolds on the phase space of quadratic
gravity. Linear stability analysis reveals that the invariant
submanifold y = z is always attracting whereas the invariant
submanifold y = 2z is attracting (repelling) for y2 + z2 >

5(1 − �)2 (y2 + z2 < 5(1 − �)2); detailed mathematical
analysis is given in “Appendix D”.

Before proceeding any further, it is important to comment
that the dynamical system in Eq. (38) should not be used to
determine the fixed points, because time redefinitions like
(37) may introduce artificial solutions which are not appear-
ing in the original dynamical system. For example, one can
notice that the system in Eq. (38) has two lines of fixed points
given by,

L1 ≡ (y = 0 = z, 0 ≤ � ≤ 1) and

L2 ≡ (y = z, � = 1) , (40)

both of which do not occur in the original dynamical system
(23). These fictitious fixed points are a pure mathematical
artefact due to the time redefinition (37). We stress that this
and the following steps are purely mathematical treatments
aimed towards compactifying the phase space by introducing
appropriate invariant submanifolds. All the finite fixed point
analysis should be carried out before these steps.

Along with � = 0, the physically relevant region of the
phase space is therefore bounded by three invariant subman-
ifolds. Since in this region the dynamical variable � is itself
bounded (0 ≤ � ≤ 1), as demonstrated in Sect. 3.1, one
needs only to compactify the radial direction in the y–z plane.
For achieving this goal we first switch to plane polar coordi-
nates in the y-z plane

y := r cos θ, z := r sin θ , (41)

subject to the restrictions

0 ≤ r < ∞, tan−1 1

2
≤ θ ≤ π

4
. (42)
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The dynamical system (38) in terms of the r -θ -� variables
(41) becomes

dr

dτ
= r2

[
r cos4 θ +

(
3(� − 1)

2
− 2r sin θ

)
cos3 θ

+ (1 − �) sin θ − 3r

2
cos2 θ

+ (4r sin θ + 5 − �) cos θ + (� − 5) sin θ − r

]

(43a)
dθ

dτ
= −2r2 cos4 θ

+1 − � − 2r sin θ

2
r cos3 θ

+5r + 3(1 − �) sin θ

2
r cos2 θ

+(� − 1 − r sin θ)r cos θ , (43b)
d�

dτ
= r�(cos θ − sin θ)(2 − 3w(r, θ,�)

−3r cos θ + r sin θ − �) , (43c)

where the fluid equation of state parameters (21) entering the
latter equation are given by

w(r, θ,�) = 2ζr(2 sin θ − cos θ)2 − (
√

2 − 1)α�(cos θ − sin θ)

2ζr(2 sin θ − cos θ)2 + (
√

2 − 1)α�(cos θ − sin θ)
β

(Redlich–Kwong), (44a)

w(r, θ,�) = 2βζr(2 sin θ − cos θ)2

2ζr(2 sin θ − cos θ)2 + α�(cos θ − sin θ)

(Modified Berthelot) , (44b)

w(r, θ,�) = 2βζr(2 sin θ − cos θ)2

4ζr(2 sin θ − cos θ)2 − α�(cos θ − sin θ)

× exp

[
2 − α�(cos θ − sin θ)

ζr(2 sin θ − cos θ)2

]
(Dietrici) . (44c)

As we have previously remarked, the introduction of the arti-
ficial line of fixed points L1 ≡ (r = 0) is clearly confirmed
by inspecting the system in Eq. (43). We should remove this
fictitious fixed point by another time redefinition

dτ ∗ = rdτ , (45)

so that the dynamical system becomes

dr

dτ ∗ = r

[
r cos4 θ +

(
3(� − 1)

2
− 2r sin θ

)
cos3 θ

+ (1 − �) sin θ − 3r

2
cos2 θ

+ (4r sin θ + 5 − �) cos θ + (� − 5) sin θ − r

]

(46a)
dθ

dτ ∗ = −2r cos4 θ + 1 − � − 2r sin θ

2
cos3 θ

+5r + 3(1 − �) sin θ

2
cos2 θ

+(� − 1 − r sin θ) cos θ , (46b)
d�

dτ ∗ = �(cos θ − sin θ)(2 − 3w(r, θ,�)

−3r cos θ + r sin θ − �) . (46c)

The radial direction can be compactified by introducing the
new compact variable [36,39,40]

R := r

1 + r
, (47)

so that r = 0 coincides with R = 0 and r = ∞ is mapped
ontoR = 1. In terms ofR the dynamical system to investigate
is

dR

dτ ∗ = −R

2

[
− 2R cos4 θ

+[4R sin θ + 3(1 − �)(1 − R)] cos3 θ

+[3R − (1 − �)(1 − R) sin θ ] cos2 θ

−[8R sin θ + 2(5 − �)(1 − R)] cos θ

+2(5 − �)(1 − R) sin θ + 2R
]
, (48a)

dθ

dτ ∗ = cos θ

2(1 − R)

[
− 4R cos3 θ

+[(1 − �)(1 − R) − 2R sin θ ] cos2 θ

+[3(1 − �)(1 − R) sin θ + 5R] cos θ

−2R sin θ − 2(1 − �)(1 − R)
]
, (48b)

d�

dτ ∗ = �(cos θ − sin θ)

(1 − R)

[
(sin θ − 3 cos θ)R

+(2 − � − 3w(R, θ,�))(1 − R)
]
, (48c)
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with

w(R, θ,�) = 2ζR(2 sin θ − cos θ)2 − (
√

2 − 1)α�(1 − R)(cos θ − sin θ)

2ζR(2 sin θ − cos θ)2 + (
√

2 − 1)α�(1 − R)(cos θ − sin θ)
β (Redlich–Kwong), (49a)

w(R, θ,�) = 2βζR(2 sin θ − cos θ)2

2ζR(2 sin θ − cos θ)2 + α�(1 − R)(cos θ − sin θ)
(Modified Berthelot), (49b)

w(R, θ,�) = 2βζR(2 sin θ − cos θ)2

4ζR(2 sin θ − cos θ)2 − α�(1 − R)(cos θ − sin θ)
exp

[
2 − α�(1 − R)(cos θ − sin θ)

ζR(2 sin θ − cos θ)2

]
(Dietrici).

(49c)

We can note that all the three fluid equations of state
remain well-behaved at infinity, i.e. have finite limits as
R → 1. The latter dynamical system has a pole at R = 1,
i.e. is apparently singular at the boundary. This can again be
eradicated by defining a new time variable η as

dη = dτ ∗

1 − R
. (50)

Therefore, the dynamical system governing the evolution of
the compatified variables can be written as

dR

dη
= −R(1 − R)

2

[
− 2R cos4 θ + [4R sin θ

+3(1 − �)(1 − R)] cos3 θ

+[3R − (1 − �)(1 − R) sin θ ] cos2 θ

−[8R sin θ + 2(5 − �)(1 − R)] cos θ

+2(5 − �)(1 − R) sin θ + 2R
]
, (51a)

dθ

dη
= cos θ

2

[
− 4R cos3 θ

+[(1 − �)(1 − R) − 2R sin θ ] cos2 θ

+[3(1 − �)(1 − R) sin θ + 5R] cos θ

−2R sin θ − 2(1 − �)(1 − R)
]
, (51b)

d�

dη
= �(cos θ − sin θ)

[
(sin θ − 3 cos θ)R

+(2 − � − 3w(R, θ,�))(1 − R)
]
. (51c)

Since only the r -direction can be infinite, all the asymptotic
fixed points should correspond to r → ∞ (or R → 1).
Therefore we need to identify the fixed points in the R-θ -�
phase space which fulfill R = 1. Setting R = 1 in (51), we
obtain

dR

dη

∣∣∣∣
R→1

= 0 , (52a)

dθ

dη

∣∣∣∣
R→1

= cos θ

2
(1 − sin 2θ)(cos θ − 2 sin θ) , (52b)

d�

dη

∣∣∣∣
R→1

= �(cos θ − sin θ)(sin θ − 3 cos θ) . (52c)

Interestingly, the evolution at spatial infinity is not explic-
itly sensitive to the modeling of the cosmic fluid as it was
observed in the case of Rn gravity [36] because w does not
enter anylonger the dynamical system (however we remind
that we have used previously our particular equations of state
for checking that they well behave at infinity). A further infor-
mation that can be obtained from the analysis at infinity is
that R → 1 is an invariant submanifold. To determine the
cosmology corresponding to this submanifold first we note
that using (20) one can write

lim
r→∞ H2 = lim

r→∞
cos θ − sin θ

6ζr cos θ(2 sin θ − cos θ)
= 0 , (53a)

lim
r→∞ Ḣ = lim

r→∞
(cos θ − sin θ)(r cos θ − 2)

6ζr cos θ(2 sin θ − cos θ)

= 1

6ζ

(
cos θ − sin θ

2 sin θ − cos θ

)
, (53b)

lim
r→∞ ρ = lim

r→∞
�(cos θ − sin θ)

2rζ(2 sin θ − cos θ)2 = 0 , (53c)

within the range tan−1
( 1

2

) ≤ θ < π
4 . Ḣ is positive at all

points on this hypersurface whereas H , ρ vanish. This is
exactly the condition for a matter-less nonsingular bounce.
We remark that had we not compactified the phase space,
we would have not been able to discover this bounce solu-
tion in our cosmological models for the reasons discussed
below Eq. (17). Keeping in mind the range of θ given in
(42), asymptotic dynamical analysis reveals the following
features:

• The asymptotic invariant submanifold accounted for by
R = 1 is a repelling submanifold. Detailed calculation
regarding the stability of this submanifold is presented in
Appendix D. Therefore the nonsingular bouncing solu-
tions that lie on this submanifold may constitute past
epochs of the universe.

• The pointPi ≡ (R, θ,�) = (1, tan−1 1
2 , 0) is an isolated

fixed point at infinity. This fixed point, although repre-
sents a nonsingular bounce, does not necessarily need to
be matter-less, as at this point tan θ = 1

2 . In fact, as was
pointed out in [92], matter-less nonsingular bounce in
f (R) gravity requires the equation RF(R) − f (R) = 0
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to have a positive root Rb, which is not satisfied in case
of R + ζ R2 gravity. Linear stability analysis reveals Pi

is a saddle point. Stability calculation is presented in
“Appendix D”.

3.4 Evolution on the y = 2z invariant submanifold

The submanifold y = 2z corresponds to the limit ζ → ∞
which accounts for the high energy regime in which the grav-
itational field is so strong that the theory is dominated by the
R2 term. From (39b) it is seen that y = 2z is an invariant sub-
manifold for the dynamics of the system. This submanifold
is of attracting nature for (detailed calculations presented in
“Appendix D”)

y2 + z2 > 5(1 − �)2 ⇔ r >
√

5(1 − �)

⇔ � > 1 − 1√
5

(
R

1 − R

)
, (54)

and of repelling nature for

y2 + z2 < 5(1 − �)2 ⇔ r <
√

5(1 − �)

⇔ � < 1 − 1√
5

(
R

1 − R

)
. (55)

In terms of the variables r -θ -� (or R-θ -� for the compact
case) this submanifold corresponds to θ = tan−1(1/2). From
(44) or (49), for the fluid equation of state parameter we get

lim
θ→tan−1(1/2)

w =

⎧⎪⎨
⎪⎩

−β (Redlich–Kwong),

0 [(Modified) Berthelot],
0 (Dietrici),

(56)

which shows that the (modified) Berthelot and Dieterici flu-
ids behave like presureless dust (which may account for dark
matter), and the Redlich–Kwong one behaves like an ideal
fluid in which the non-linearities are suppressed. Phase space
plot on the compactified version of this submanifold plane
is shown in Fig. 1 for the cases of equations of state corre-
sponding to dark matter (e.g. pressureless dust), stiff fluid
and a cosmological constant. We remark that stiff fluids are
canonically equivalent to massless scalar fields [100], and
some cosmological models indeed predict an epoch of the
universe in which they are the dominating energy content
[101,102].

On this invariant submanifold the dynamical equations
can be reduced to:

dz

dτ
= z[� + 3(1 − z)] ,

d�

dτ
= �(2 − � − 5z − 3w). (57)

For the case of stiff matter, we can find the orbit in the phase
space by solving the differential equation

d�

dz
= �(1 + 5z + �)

z(3z − 3 − �)
, (58)

which delivers the implicit solution

[1 + z2 + z(� − 2)]2[z2 + 2(� − 1)z + (1 + �)2]
[z3 + (2� − 3)z2 + (�2 − � + 3)z − � − 1)]2 = J1 ,

(59)

where J1 is a constant of integration. The quantity J1(z, �)

is conserved along a particular orbit, but has different values
for different orbits, and therefore it can be interpreted as the
total “energy” of the Universe. The cosmological evolution
must respect the principle of energy conservation: we can
interpret Eq. (59) as a sort of “ energy conservation equa-
tion” which is providing a law describing how the energy of
the cosmic fluid accounted for by � is converted into the “
geometrical energy” accounted for by the Ricci scalar R; this
result is especially relevant for the description of the infla-
tionary epoch in which the quadratic term in the curvature is
dominating. Furthermore, in the case of a stringy fluid with
w = − 1

3 , which may describe some topological defects or
monopoles arising in the early universe [103], by integrating
the differential equation

d�

dz
= �(5z − 3 + �)

z(3z − � − 3)
, (60)

we obtain the implicit orbit equation

[z3 + 2(� − 1)z2 + (�2 − 6� + 1)z + 4�](z + �)2

z[z2 + (2� − 1)z + �2 − 3�]2 = J2 ,

(61)

where J2 is a constant of integration. Also for the radiation
case w = 1

3 it is possible to integrate analytically the evolu-
tion equation

d�

dz
= �(5z − 1 + �)

z(3z − � − 3)
, (62)

and we obtain the implicit orbit equation

z(z − 1 + �)4

�3 = J3 , (63)

where J3 is another constant of integration.

3.5 Evolution on the � = 0 submanifold

It appears either from (23c) or from (48c) that the plane
� = 0 is an invariant submanifold for the cosmic dynam-
ics. Taking into account that the physically viable region is
constituted by the wedge 0 < z < y < 2z, we depict the
phase orbits in this invariant submanifold in Fig. 2 by using
the evolution equations written in polar coordinates (51a)–
(51b). In this way we can get a graphical confirmation that

123



944 Page 14 of 30 Eur. Phys. J. C (2021) 81 :944

Fig. 1 Phase trajectories on the compactified R-� plane with θ =
tan−1(1/2), which corresponds to the y = 2z submanifold, i.e. the R2

regime, for (a)w = −1, (b)w = 0, (c)w = 1. In this limit the equations
of state for (modified) Berthelot and Dietrici fluids reduce to that of pres-
sureless dust, so that they correspond to only figure (b). The equation of
state for the Redlich–Kwong fluid in this limit reduces to p = −βρ, so

that this can correspond to either cases (a)–(c) for the parameter choice
β = 1, 0,−1. The red curve corresponds to the boundary between the
attracting part (right side of the curve) and repelling part (left side of
the curve) of the submanifold. The fixed points P1, P6 and Pi lie on
this submanifold

the dynamics is indeed bounded inside this region and that
the boundary at spatial infinity R = 1 acts as a source for the
cosmic dynamics containing possible past epochs of the uni-
verse. Unlike the case of the invariant submanifold y = 2z
discussed in Sect. 3.4, the dynamics on the invariant subman-
ifold � = 0 does not depend on the particular modeling of
the cosmic fluid. However, the stability nature of this invari-
ant submanifold is sensitive to the value of the parameter
β as demonstrated in Appendix D, and more in detail it is
attracting (repelling) according to 2−3β −3y+ z < 0 (> 0)
for the Redlich–Kwong and (modified) Berthelot fluids and
2 − 3e2β/2 − 3y + z < 0 (> 0) for the Dietrici fluid.

3.6 Evolution on the R = 1 submanifold

R = 1 is an invariant submanifold at the infinity of the phase
space. We can find the equation for the orbit J = J (θ, �) at
the infinity of the phase space by solving the partial derivative
equation

d J (θ, �)

dη
≡ ∂ J (θ, �)

∂θ

dθ

dη

+∂ J (θ, �)

∂�

d�

dη
= 0 . (64)

Implementing (52) we find

J (θ, �) = F

(
�(1 − tan θ)4

(2 tan θ − 1)5

)
, (65)

where F can be any arbitrary function. For reasons of math-
ematical simplicity, we choose:

J (θ, �) = �(1 − tan θ)4

(2 tan θ − 1)5
. (66)

We note that the quantity J (θ, �) is a positive quantity within
our range of θ , which is conserved along a particular orbit but
can have different values for different orbits. This quantity
can again be interpreted as the total “energy” of the Universe
and the cosmological evolution must respect the principle of
energy conservation. Therefore, the orbits on this submani-
fold are a family of curves obeying to the equation

� = J (2 tan θ − 1)5

(1 − tan θ)4 , (67)

where J is a constant. We stress as a consistency check that
the same result also follows by integrating a differential equa-
tion for d�

dθ
derived by dividing side by side (52c) with (52b).

In terms of the original dynamical variables one can write the
equation of the orbits as

� = J (2z − y)5

y(y − z)4 . (68)

Finally, by using (16) this condition can be recast in terms
of the energy density, of the Hubble function and of its first
derivative as:

ρ(2H2 + Ḣ)4 − J̃ H2 = 0 , (69)

where we have introduced the new constant

J̃ = 3J

64ζ
. (70)

This result allows us to confirm independently what written
below Eq. (53a): since H = 0 and Ḣ �= 0 we get that the
submanifoldR = 1 corresponds to a matterless cosmological
epoch. However, this should not be taken naively to imply
that � = 0 because this latter quantity comes with a factor
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Fig. 2 In panel (a) we show the
phase dynamics in the � = 0
submanifold accounted for by
the evolution Eqs. (51a)–(51b),
whilst in panel (b) we focus our
attention on the viable region
bounded between the lines
0 < z < y < 2z. This analysis
provides a graphical
confirmation that the
submanifold R = 1 acts as a
source for the dynamics, and
that the cosmic evolution is
indeed contained within the
physical region

H in the denominator and indeed this is true only on the
hypersurface y = 2z as it can be understood from (68).

3.7 Cosmographic analysis

We will now discuss some observational properties of the uni-
verse in correspondence of the physical equilibrium points
listed in Table 1 by computing the corresponding three cos-
mographic parameters, namely the deceleration, jerk and
snap parameters [104,105]:

q ≡ − 1

aH2 · d
2a

dt2 = −1 − Ḣ

H2 , (71a)

j ≡ 1

aH3 · d
3a

dt2 = Ḧ

H3 − 3q − 2 , (71b)

s ≡ 1

aH4 · d
4a

dt2 =
...
H
H4 + 4 j + 3q(q + 4) + 6 . (71c)

It has been shown that the cosmographic parameters are
related to each other by [106, Eq. (15)], [107, Eq. (21)]:

j = 2q2 + q − dq

dN
, (72a)

s = d j

dN
− j (2 + 3q) . (72b)

The cosmographic parameters are connected to the luminos-
ity distance via [104,108–111]:

dL (z) � z

H0

[
1 + (1 − q0)z

2
+ (−1 + q0 + 3q2

0 + j0)z2

6

+ (2 − 2q0 − 15q2
0 − 15q3

0 + 5 j0 + 10q0 j0 + s0)z3

24

]

(73)

and to the cosmic history of the universe as:

H(z) � H0

[
1 + (1 + q0)z + ( j0 − q2

0 )z2

2

+ (3q2
0 + 3q3

0 − j0(3 + 4q0) − s0)z3

6

]
, (74)

where a subscript ‘0’ denotes that the quantity has been eval-
uated at the present time. In this Sect. instead we will esti-
mate the cosmographic parameters characterizing the rele-
vant equilibrium configurations. We exhibit our findings in
Table 4. We will achieve this goal by recasting the dimen-
sionless cosmographic parameters q, j , and s in terms of the
dimensionless variables introduced in (16). Using the inter-
relations between the cosmographic parameters (72), we can
write

q = 1 − y , (75a)

j = 3 − 5y + 2y2 + dy

dN
, (75b)

s = − j (2 + 3q) − (5 − 4y)
dy

dN
+
(
dy

dN

)
,y

dy

dN

+
(
dy

dN

)
,z

dz

dN
+
(
dy

dN

)
,�

d�

dN
. (75c)

Calculating the right hand side of the above equations using
the dynamical evolution (23), we can provide explicit expres-
sions for the cosmographic parameters in terms of the phase
space coordinates:

q = 1 − y , (76a)

j = 3 − y + 1

2
y2 − 1

2

(
y2

y − z

)
(1 − �) , (76b)

s = −15 + 10y − 1

2
y2
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− y3

y − z
+ 1

2

(
y2

y − z

)
(3 − 2� − 3w(y, z,�)�) .

(76c)

These expressions can be directly generalized to include the
fixed points at the infinity of the phase space by switching to
the compact phase space coordinates

y =
(

R

1 − R

)
cos θ , z =

(
R

1 − R

)
sin θ . (77)

Substituting in Eq. (76) we get the following explicit expres-
sions for the cosmographic parameters in terms of the com-
pact phase space coordinates:

q = 1 −
(

R

1 − R

)
cos θ , (78a)

j = 3 −
(

R

1 − R

)
cos θ + 1

2

(
R

1 − R

)2

cos2 θ

−1

2

(
R

1 − R

)(
cos2 θ

cos θ − sin θ

)
(1 − �) , (78b)

s = −15 + 10

(
R

1 − R

)
cos θ

−1

2

(
R

1 − R

)2

cos2 θ

−
(

R

1 − R

)2 ( cos3 θ

cos θ − sin θ

)

+1

2

(
R

1 − R

)

×
(

cos2 θ

cos θ − sin θ

)
(3 − 2� − 3w(R, θ,�)�) . (78c)

First of all, we easily get that (76a) implies that y =constant
submanifolds correspond to cosmic moments with the same
value of the deceleration parameter. Possible Minkowski
solutions necessarily lie on y = 1, and therefore our mod-
els do not contain them as equilibrium configurations (this
resolves the ambiguity whether the De-Sitter-like cosmolo-
gies we have identified in Sect. 3.2 can come with H =
const. = 0). The expression of the cosmographic parame-
ters in terms of compact variables also allows us to show that
the cosmographic quantities are diverging at spatial infinity
of the phase space which is consistent with having a bounce
there characterized by dL → ∞. We would like to mention
that a cross-check procedure for computing the jerk param-
eter which does not rely on inter-relations is the following.
We implement (20) into (16a) and then solve for the second
time derivative of the Hubble function:

Ḧ = (8 − x)y2 − 8(z + 2)y + 16z

72ζ y(y − 2z)

√
6(z − y)

ζ y(y − 2z)
, (79)

from which x can be eliminated thanks to the constraint (22):

Ḧ = (9 + z − � − y)y2 − 8(z + 2)y + 16z

72ζ y(y − 2z)

×
√

6(z − y)

ζ y(y − 2z)
. (80)

Finally, the jerk parameter is obtained just by algebraic
manipulations. We get:

j = (x − 2)y2 + 2(z + 3)y − 6z

2(y − z)

= y3 + (� − z − 3)y2 + 2(z + 3)y − 6z

2(y − z)
. (81)

Interestingly, the jerk parameter is regular on y = 2z because
the divergence in Ḧ has been cured by the likewise diver-
gence in H . For estimating it on y = z �= 0 it is appropriate
to choose a different set of variables taking into account that
in such case we fall back in the General Relativity framework.

The values we get for the deceleration parameter imply
that phase transitions between epochs in which the expansion
of the universe is accelerating and decelerating are allowed
in our class of models. In particular, at least one equilibrium
point comes with q > 0 and at least two with q < 0 for each
fluid model. Comparison between available astrophysical
datasets and the predicted values of the cosmographic param-
eters can constrain the theory parameters of f (R) theories
[107,112]. A cosmographic interpretation of the Gold SNeIa
dataset suggests that q0 � −0.90 and j0 � 2.7 [113,114].
It should be noted that due to the presence of w(y, z,�)

in the expression for the cosmographic parameter s (76c),
the present-day epoch would correspond to different triples
(y, z,�) in the phase space. However, the phase space point
representing today universe is located in the region y < 1.
Information on physically relevant trajectories in the phase
space can therefore be obtained by noticing that from the
expression of the jerk parameter in terms of the dynamical
system variables (81) we get

∂ j

∂�
= y2

2(y − z)
,

∂ j

∂z
= y2(� − 1)

2(y − z)2 , (82)

implying that the jerk parameter is an increasing function
with respect to � and decreasing with respect to z.

4 Singularities classification

In this section we will investigate the possible occurrence of
finite-time singularities in the class of Friedmannian f (R)

cosmologies we have previously introduced for clarifying
whether the different modelings of the cosmic fluid and the
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Table 4 This Table exhibits the values of the deceleration parameter q,
jerk parameter j and snap parameter s for the physically-relevant con-
figurations listed in Table 1. We refer to the main text on details about
the mathematical steps involved in these computations. We remark that

for a correct interpretation of these results it is necessary to take into
account the appropriate range of validity for the parameter β for each
equilibrium point separately, as summarized in Table 2

Cosmic fluid Fixed point q j s

Any fluid P1 −1 1 1

Any fluid P2 −1 1 1

Redlich–Kwong P3 − 3β+1
4

9β2−1
8

(9β−5)(3β−1)(3β+1)
32

Any fluid P6 1 3 −15

Redlich–Kwong P7 1 3 −15

Any fluid Pi ∞ ∞ ∞

modifications beyond general relativity to the gravity sector
affect them. In what follows we will denote with ts the time at
which a singularity may occur. Applying a literature scheme
[96,97], we will be interested in the following five different
possible types of singularity:

1. Big rip singularity or Type I is characterized by limt→ts
a(t) = ∞, limt→ts ρeff(t) = ∞, limt→ts |Peff(t)| = ∞
[98,99];

2. Sudden singularity or Type II is characterized by limt→ts
a(t) = as , limt→ts ρeff(t) = ρs , limt→ts |Peff(t)| = ∞
[115–118];

3. Big freeze singularity or Type III is characterized by
limt→ts a(t) = as , limt→ts ρeff(t)
= ∞, limt→ts |Peff(t)| = ∞ [119];

4. Generalized sudden singularity or Type IV is charac-
terized by limt→ts a(t) = as , limt→ts ρeff(t) = ρs ,
limt→ts |Peff(t)| = Ps , limt→ts H

(i)(t) = ∞, i = 2, ...

[117,118,120,121];
5. w singularityor Type V is characterized by limt→ts a(t) =

as , limt→ts ρeff(t) = 0, limt→ts |Peff(t)| = 0, limt→ts weff

= limt→ts
Peff (t)
ρeff (t)

= ∞ [122,123].

In this classification, we have denoted with as , ρs and Ps
some finite constant values of the scale factor, the effective
energy density and its corresponding pressure at time ts . We
recall that in our analysis we will assume positive α and ζ ,
while we will not make any assumptions on the sign of β. We
also remark that we are working with the effective values of
the energy density, pressure and equation of state parameter
which encode information both on the actual matter fluid and
the curvature effects, as done for example in [124–127].

Before analyzing the possible occurrence of a finite-time
singularity in a generic point of the phase space, we inves-
tigate the situation in correspondence of the isolated fixed
points reported in Table 1. By looking at the evolution of
the scale factor, they can exhibit three different types of cos-
mological evolution: de Sitter-like (P1 and P2 for all the

three types of fluids), radiation (P6 for all the three types of
fluids, and P7 for Redlich–Kwong), and power-law (P3 for
Redlich–Kwong).

– The de Sitter-like cosmologies do not correspond to any
finite-time singularity because the effective energy den-
sity, pressure and equation of state parameter are finite
constants.

– In the case of an “effective” radiation domination, the
scale factor (a ∼ t1/2) would approach as = 0 at the time
t = 0 in correspondence of which ρeff , Peff ∼ 1/t →
∞, and therefore a finite-time (recalling that the present-
day time is t0 > 0) Type III singularity occurs in the
past.

– The isolated fixed point P3 in the Redlich–Kwong sce-
nario can correspond to a Type I singularity occurring at
a finite time ts (34) in future if 1 < β ≤ 17/9. We note
that in P3

ρeff = 3H2 = 4

3(β − 1)(ts − t)
, (83)

which diverges also for β → 1; however this does
not imply a finite-time singularity as can be seen from
Eq. (34).

We will now investigate whether some type of finite-time
singularity can occur in some other regions of the phase
space. By using the definition of effective energy density
(7a), and the relationships between the Hubble function and
the dimensionless variables (20), and (41), we have

ρeff = y − z

2ζ y(2z − y)

= cos θ − sin θ

2ζr cos θ(2 sin θ − cos θ)
. (84)

Furthermore, by using Eqs. (16b)–(41) we can get the effec-
tive equation of state parameter defined in (8), and pressure
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in terms of dimensionless variables as:

weff = 1 − 2y

3
= 1 − 2r cos θ

3
, (85)

Peff = (y − z)(1 − 2y)

6ζ y(2z − y)
= (cos θ − sin θ)(1 − 2r cos θ)

6ζr cos θ(2 sin θ − cos θ)
.

(86)

First of all, we note that on the planes y = 0 and y = 2z,
both the effective energy density (84) and effective pressure
(86) are diverging, so that two of the requirements for having
either a Type I or a Type III singularity are fulfilled. We
also remark that in these regions of the phase space both the
Hubble function and its first derivative are diverging, as we
can understand from Eq. (20), and therefore we have a true
curvature singularity in which the Ricci scalar (4) is blowing
up.

More in detail, everywhere on the plane y = 0 the effective
fluid behaves like radiation, implying a Type III singularity
since a ∼ t1/2 (see also the equilibrium points P6 in Table 1
for all the three types of fluids, and P7 for Redlich–Kwong);
this implies also that both energy density and pressure are
diverging as ρeff , Peff ∼ H ∼ t−1 ∼ 1/a2 ∼ (1 + z)2

(where this latter z denotes the redshift). Therefore, assuming
that the present-day is at the finite-time t0 > 0, a Type III
singularity occurs in the past at the time t = 0.

For understanding the behavior of the singularity on the
line y = 2z, we recall that a Type I singularity would require
weff < −1 [128], i.e. y > 2. Therefore the plane y = 2
separates the line y = 2z into two parts on whose sides a Type
I or a Type III singularity can occur; this finding is consistent
with the evolution of the scale factor exhibited in Table 1, and
the previous discussion about the equilibrium pointP3 for the
Redlich–Kwong fluid. We can provide a rough estimate of the
time ts at which these singularities occur by approximating
y ≈ ys in a small neighborhood of the line y = 2z assuming
that the present-time t0 configuration is contained there. This
implies that d(1/H)

dt ≈ 2− ys . Thus, H(t) ≈ H0
1+(2−ys )(t−t0)H0

which diverges at ts ≈ t0 + 1
(ys−2)H0

showing that the Type I
singularity would be a future singularity, while the Type III
a past singularity.

On the other hand, for having a finite energy density, but
a diverging pressure we would need a diverging equation of
state parameter. By looking at (85), we see that this is possible
at and only at infinity, that is for r → ∞. In fact, in such a
regime, by using Eq. (86) we get

lim
r→∞ |Peff | = cos θ − sin θ

3ζ(2 sin θ − cos θ)
, (87)

which can diverge if and only if θ = arctan(1/2). Thus, a
Type II singularity may occur only at the point Pi . More-
over, in Sect. 3.3 we have showed that H = 0 there, i.e. we
have a well-behaving de Sitter-like scale factor and a finite
(zero) effective energy density fulfilling all the conditions for

having a Type II singularity. We remark that should we have
considered the pressure of the actual matter fluid only, a Type
II singularity may have arisen in the Dieterici framework only
[25].

Moreover, by looking at the second time derivative of the
Hubble function in terms of the dimensionless variables given
in Eq. (80), we see that a Type IV singularitymay occur either
along y = 0 or along y = 2z. This is the mildest possible
singularity because it does not imply geodesic incompletness
nor diverging curvature scalars. However, in these regions of
the phase space also the energy density is diverging as it
can be understood from Eq. (84) violating (at least) one of
the requirements in the definition of a Type IV singularity;
as previously discussed also the Ricci scalar is diverging in
such circumstances violating the conditions for a Type IV sin-
gularity. Interestingly, this analysis shows that the effective
energy density and pressure arising from gravity modifica-
tions cannot mimic those of linearly interacting dark matter
- dark energy where the latter is modeled according to the
Redlich–Kwong or the (modified) Berthelot fluid, as in those
cases a type IV singularity is allowed for certain strengths of
the coupling term [25].

Finally, by looking at (85) we see that a Type V singular-
ity may occur only at spatial infinity for which r → ∞; this
would be consistent with having also a diverging decelera-
tion parameter there as we have found in Sect. 3.3. Then, by
recalling (87) we see that the effective pressure can vanish if
and only if θ = π

4 . Under these assumptions also ρeff = 0,
and taking into account the discussion of Sect. 3.6 we fur-
ther have a finite scale factor fulfilling all the requirements
for a Type V singularity. This result follows from the gravity
modifications and constitutes an important difference than
General Relativity in which a Type V singularity has been
excluded for the three types of Redlich–Kwong, (modified)
Berthelot and Dieterici fluids [25]. In fact, we can observe
that such type of singularity persists also in the limiting case
of ρ, P → 0, i.e. of absence of an actual cosmic fluid.

5 Discussion on generic behavior

Out of the global dynamical analysis of the system that we
have presented in this paper, we note that the finite fixed
points P1, P6 and the asymptotic fixed point Pi always exist
for all the three fluids irrespective of whatever values we
choose for the model parameters α, β, ζ , whereas all the
other fixed points either exist for a certain fluid or for a spe-
cific range of values for the model parameters, and coincide
with either P1 or P6 for certain values of those model param-
eters. The fixed points P1, P6 and Pi therefore characterize
some generic features of the cosmological model in quadratic
gravity consisting of the three fluids under consideration. We
note that all these three fixed points lie at the line of intersec-

123



Eur. Phys. J. C (2021) 81 :944 Page 19 of 30 944

tion of the planes � = 0 and y = 2z. We stress that � = 0
does not necessarily imply a vacuum solution if either r = 0
or y = 2z, so that these three fixed points, although lying
on the � = 0 plane, should not necessarily correspond to
vacuum solutions of the R + ζ R2 gravity theory. Another
point to note is that, as we had discussed before, the plane
y = 2z corresponds to the limit ζ → ∞, so that the points
lying on this plane can be interpreted to be the solutions of
f (R) = R2 theory of gravity. As shown in [36], irrespec-
tive of the fluid under consideration, the phase space of Rn

(n ≥ 2) gravity is always 2-dimensional, which is consistent
with our interpretation.

Below we explicitly point out the generic dynamical fea-
tures of the scenario that we have considered.

• P1 is a De-Sitter solution that lies on the line of intersec-
tion of the planes � = 0 and y = 2z. This point rep-
resents the exact De-Sitter solution of R2 gravity, which
is the basis of Starobinski’s inflationary scenario [78].
Since it is always a non-hyperbolic fixed point one needs
to do a center manifold analysis to determine the stability,
which is done in Appendix C. From Eq. (C5) we see that
two of the eigenvectors of the Jacobian at that point lie on
the � = 0 plane. The eigenvector corresponding to the
negative eigenvalue is along the line (y = 2z, � = 0),
which implies that the De-Sitter solution in R2 gravity
is an attractor. The eigenvector corresponding to the zero
eigenvalue is along the line y+z = 3, and the center man-
ifold analysis reveals that the dynamics is always away
from the fixed point along this direction. In the complete
R + ζ R2 theory, this corresponds to an exit from the
De-Sitter phase.

• Pi is a nonsingular bouncing solution (H = 0, Ḣ > 0)
as discussed in Sect. 3.3. As demonstrated in Appendix
E, this point is a saddle: repelling in the direction nor-
mal to the surface R → 1 and attracting in the directions
normal to the planes � = 0 and y = 2z. The trajectories
flowing fromPi toP1 can be interpreted as early universe
solutions with an inflationary phase following a nonsin-
gular bounce.8 The flow at P1 away from it along the
line y + z = 3 in this case corresponds to the “graceful
exit”. This is consistent with the well known result that
Starobinski’s inflationary scenario is a transient attractor
in R + ζ R2 gravity [24].

• P6 is an “effective” radiation dominated phase (weff =
1
3 ). The trajectories flowing from P6 to P1 can be inter-
preted as late time solutions with a transition from a radi-
ation dominated epoch to a late time accelerating epoch
corresponding to dark energy domination. The flow atP1

away from it along the line y+ z = 3 in this case implies

8 Recent research has showed that astrophysical structures, whether
they exist, can survive a bounce [129].

an end to the accelerated phase of expansion, which, in
GR, is possible only if the cosmological constant changes
sign.

Apart from these generic features, there are some other inter-
esting points worthwhile for explicitly commenting upon:

• An interesting thing to note is that the same fixed point
P1 can be interpreted as either an inflationary epoch or a
late time acceleration epoch, depending on which of the
phase trajectories we choose to consider.

• It is also worth mentioning here that we do not get
any fixed point corresponding to a matter dominated
epoch because we have not considered any dust fluid that
may correspond to the CDM. A matter dominated epoch
requires weff = 0 or equivalently y = 1

2 . We note that
although any trajectory flowing fromP6 toP1 crosses the
plane y = 1

2 , there is no actual fixed point with y = 1
2 ,

and therefore no matter dominated “phase” in the picture.
It is however interesting that an “effective” radiation-like
epoch is arising even without explicitly including any
ultra-relativistic fluid in the picture.

• As clear from Tables 2-3, for specific ranges of the values
of the model parameter β, the fixed points P2 and/or P3

can exist and can also be stable. In such cases there might
be more than one De-Sitter phases in the complete evo-
lution of certain cosmological solutions. The trajectories
that encounter two De-Sitter fixed points (P1 and P2 or
P3), with P1 being saddle and P2 (or P3) being stable,
are particularly interesting. It should also be noted that
P2 (or P3), when exists, can only be reached afterP1. For
such solutions P1 can represent Starobinski’s curvature
driven inflation, whereasP2 (or P3) can represent a future
attractor corresponding to the late time acceleration.

• It is worthwhile to note that the other two model param-
eters, namely α and ζ , do not affect neither the existence
nor the stability nature of the fixed points, as long as they
are assumed to be positive. These two parameters quan-
tify the deviations from ideal fluid and from GR respec-
tively. Existence and stability of fixed points depend only
on the model parameter β, which characterizes the equa-
tion of state parameter of the fluid in its ideal limit. The
parameter α however is crucial in relation to the bifur-
cation of the De-Sitter fixed points. It is precisely the
non-ideal nature of the fluid (α �= 0) that makes it possi-
ble to obtain two separate De-Sitter fixed points P1 and
P2, hence providing a scope for describing the early and
the late time De-Sitter epochs at one go.

• The only case in which a big-rip singularity can arise in
finite future is for the Redlich–Kwong fluid with β > 1.
In this case the De-Sitter fixed pointP2 is a saddle, imply-
ing that the late time De-Sitter phase is an intermediate
cosmological phase and not an attractor. In this particu-
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lar case the true future attractor is P3, which is a big-rip
singularity.

The generic features and other interesting points listed in
this section are the take home messages from our present
study.

6 Conclusion

In this paper, we have investigated some cosmological mod-
els governed by a modified Friedman and a modified Ray-
chaudhuri equation (11) equivalent to the following algebraic
relations between the cosmographic parameters:9

ρ = 3H2�[1 + 12ζH2(q − 1)] ,

ρ + P(ρ) = 12H4[6 + q2 + 8q

+s + ζ( j − q − 2q2)] − 2H2(q + 1) , (88)

which can be summarized into the a single expression in
which the parameter ζ does not enter directly:

3�(q − 1)[ρ + P(ρ)]
= 36H2

[
(q − 1)(q2 + 8q + s + 6)H2 + 2 + q − j

12

]
�

+ρ( j − q − 2q2) . (89)

Whether this evolution of the rate of expansion can tame some
of the problems related to the Hubble tension [131–133] is
beyond the purpose of the present paper, but already at this
stage we have demonstrated that these models come with
many desirable features: they exhibit an inflationary epoch
admitting a graceful exit, a radiation dominated epoch in
which light elements may form [134], and a late-time De Sit-
ter epoch consistent with supernovae observations [135,136].
Furthermore, more than one De Sitter epoch in the cosmo-
logical history can also be predicted from thermodynamical
arguments [137].

We have obtained these results by applying dynamical
system techniques making use of both the linear stability
analysis and of center manifold analysis to a Friedman uni-
verse filled with three different non-ideal fluids separately in
f (R) = R + ζ R2 gravity. We have adopted a set of dimen-
sionless variables proposed in [33] on which we have derived
the physical restrictions (33) for preserving the theory from
ghost and tachyonic instabilities, obtaining nevertheless a
model with a rich variety of cosmological behaviors as pre-
viously mentioned. It is also interesting to note that the dif-

9 For the relationship between the Ricci scalar and its time derivatives
and the cosmographic parameters see [130, Eq. (15)].

ference between the curvature energy density and the actual
matter content energy density, which can be computed from
(20), reads as:

ρC − ρ = 3H2 − 2ρ = (y − z)(2z − y − 2y�)

2ζ y(2z − y)2 . (90)

Therefore, the two energy densities are equal on the line
2z − y − 2y� = 0, which describes a configuration that
can actually arise within the physical range (33). Whether
this can tame some aspects of the coincidence problem [138]
will be explored in future publications, but we should remark
that this result has not required to introduce any ad hoc inter-
action terms between the two fluids by modifying by hands
the Bianchi identities unlike in [139–141], and therefore we
can appreciate already at this stage that this potential solu-
tion would not be affected by inconsistent directions of such
energy flow. For example as mentioned in [138], the solar
system has formed at the epoch in which the abundance of
dark energy is of the same order of magnitude of the abun-
dance of regular matter so that a local gravitational collapse
can occur in a globally accelerated expanding universe, and
in our picture the roles of those two fluids would be played by
a gravitational effect and by an actual matter fluid separately.

We have as well derived a connection between the dynam-
ical system variables we have adopted and the cosmographic
deceleration, jerk and snap parameters. Two equilibria points
P1 and P2 come with the same values of these cosmographic
parameters, and while one of them (P2) admits a well-defined
energy density of the cosmic fluid, in the case of the other
(P1) it exhibits the indefinite form 0/0. Thus, in future we
will investigate whether the same dimensionless variables
used here can be connected as well to the positions of the
CMBR peaks for removing this ambiguity. We have extended
the dynamical system analysis up to infinity by introducing
an appropriate compactification of the phase space. As far as
the Redlich–Kwong, (modified) Berthelot, and Dieterici flu-
ids are considered, the region at infinity of the phase space
does not carry only an abstract geometrical interpretation,
but it corresponds to a regime in which the equation of state
for the cosmic fluid reduces to P � βρ, as it can be seen
from (44). Thermodynamically, this means that the interac-
tions between the fluid constituents are suppressed as it would
happen in the limit α → 0. This transition to the ideal behav-
ior of P = w(ρ)ρ fluids has already been met in cosmology
[8,9,142], and it has been interpreted as a form of asymptotic
freedom analogue to the one which characterizes the quark-
gluon plasma [143,144], although in this case is occurring at
low rather then high energy densities.
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Finally, the dynamical system approach has given us the
opportunity of identifying the regions of the phase space
which are free from any of the known five finite-time cosmo-
logical singularity. In our cosmological models Type II and
Type V singularities can occur in the past only in correspon-
dence of the nonsingular bounce at the infinity of the phase
space, the latter being a direct consequence of the modifi-
cations to the gravity sector. A Type I singularity can occur
in the future along the line y = 2z, while a Type III in the
past in correspondence of the radiation dominated epochs.
Our cosmological models are not affected by a Type IV sin-
gularity. Our analysis was completely classical and whether
quantum gravity corrections á la Wheeler-DeWitt affect this
picture will be clarified in a future project, as for example
done in [145]. Other interesting future projects may con-
sist in analyzing the astrophysical data about recombination
epoch, 21-cm line excess at cosmic dawn, and Lyman α forest
by exploiting the existence of a radiation-dominated epoch in
our models; this can tame the previously mentioned disagree-
ment between the thermodynamical Le Chatelier-Braun prin-
ciple and the fact that a dark matter epoch should have come
before the dark energy one [67,68] since those phenomena
are usually addressed via interacting scenarios [146–148].
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AppendixA:Foundationandapplicability of theRedlich–
Kwong, Berthelot and Dieterici fluid models

The first attempt of accounting for physical properties of real
gases beyond their ideal behavior has been performed by the
van der Waals equation of state which implements informa-
tion about the finite size of the molecules and their mutual
interactions assumed to be attractive at large distances and
repulsive at short ones via a Lennard-Jones type of potential.

Although this proposal came with many desirable features
because it can reproduce ideal gas isotherms at high tem-
perature and it exhibits a liquid-gas coexistence phase, the
experimental collections of more and more precise data about
chemical substances has called for some improved models,
as for example the Redlich–Kwong, Berthelot and Dieterici
formulations. These models are still based on just two free
parameters which are the critical temperature and critical
pressure at the coexistence of two phases. Van der Waals’
idea of combining the two contributions for the pressure due
to the volume occupied by the molecules (which sets a limit
on the fluid compressibility), and their internal energy (in the
ideal picture molecules only have kinetic energy) simply as
an algebraic sum P = Patt. + Prep. has been assumed also in
the Berthelot and Redlich–Kwong equations of state. They
have been proposed as more realistic models for account-
ing for datasets about the fugacity of hydrocarbons at low
(close to the ambient pressure) and high pressure respec-
tively. Intuitively the fugacity quantifies the fleeting proper-
ties of a material, while rigorously it is the effective pressure
of an ideal gas at the same temperature and with the same
molar Gibbs free energy as the real gas; its value for a certain
substance is determined from measurements of volume as a
function of pressure at constant temperature. The success of
the Berthelot and Redlich–Kwong formalisms is grounded
in being consistent with experimental data of different sub-
stances (methane, ethane, propane, isobutane, etc...) belong-
ing to the family of hydrocarbons just by changing the values
of the two free parameters α and β for each of them; before
it was necessary to consider a temperature-dependent coef-
ficient in the second-order virial expansion to be empirically
reconstructed in each case separately. Thus, this has consti-
tuted a great advantage in epochs at which computer simu-
lations were still not widely available. The Redlich–Kwong
equation of state has then been further improved by intro-
ducing a third parameter known as the acentric factor taking
into account non-spherical shapes of the molecules as the
Soave–Redlich–Kwong equation for a better description of
nonpolar compounds [149]. For a modern treatment of such
equations of state we refer to some textbooks as [150,151].
On the other hand, the Dieterici proposal still maintains the
idea that two contributions should be included in the pressure
(repulsive because molecules are assumed to be hard spheres
which cannot penetrate each other, and attractive for having
a bound system), but it combines them as P = Prep.e−Patt.

improving the agreement with experimental data of the com-
pressibility factor at high pressure than the van der Waals
equation [150,151]. In cosmology a similar way of thinking
than in chemical thermodynamics has been followed by com-
bining into a single formalism the attractive effects of regular
matter and the repulsive one of dark energy: at first the van
der Waals equation of state has been chosen for the cosmic
fluid [154–157], and then the Redlich–Kwong, Berthelot and
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Dieterici ones have been used for enlightening whether those
different characteristics which have been observed in a lab-
oratory setting come with specific signatures in cosmology
[27].

Appendix B: Stability analysis of finite isolated fixed
points

In this Appendix we present in some details the calculations
regarding the linear stability analysis for the cosmologically
relevant isolated fixed points exhibited in Table 1. The sta-
bility nature of an isolated fixed point in the linear regime
is completely determined by the eigenvalues of the Jacobian
matrix evaluated at the fixed point, provided the fixed point
is hyperbolic, i.e. none of the eigenvalues is zero. There are
four distinct possibilities that may arise for a dynamical sys-
tem (for the stability classification criteria see for example
[88–91]; for the physical significance of a certain type of
stability see instead [158,159]):

• If all the eigenvalues have positive real parts, then the
fixed point is said to be unstable. An unstable fixed point
represents a past attractor in cosmology i.e. an epoch
which represents a possible initial state for a cosmologi-
cal evolution.

• If some of the eigenvalues have positive real parts and
some have negative real parts, then the fixed point is
called a saddle. A saddle fixed point represents a pos-
sible intermediate epoch for a cosmological evolution.

• If all the eigenvalues have negative real parts, then the
fixed point is said to be stable. A stable fixed point repre-
sents a future attractor in cosmology, i.e. an epoch which
represents a possible final state for a cosmological evo-
lution.

• If two of the eigenvalues are complex conjugate to each
other with vanishing real parts, then the fixed point is
unstable (stable) whether the third eigenvalue is posi-
tive (negative). This represents an oscillatory approach
towards the past (future) attractor. The past (future)
attractor itself represents an epoch around which the cos-
mological solution oscillates indefinitely.

If one or more of the eigenvalues of the Jacobian matrix
are zero then the fixed point is said to be non-hyperbolic.
For non-hyperbolic fixed points Jacobian eigenvalues cannot
completely determine the linear stability nature, and center
manifold analysis is required to determine the stability of
non-hyperbolic fixed points.

In Table 5 we list the eigenvalues of the Jacobian matrix for
the cosmologically relevant isolated fixed points presented in
Table 1. The eigenvalues are functions of the model param-

eters, and therefore to determine their signs one must keep
in mind that α, ζ > 0, and the existence conditions for the
various fixed points from Table 2.

It appears that the linear stability analysis fails for the
following cases:

• P1 for all the three fluids;
• P2 with β = 1 for the Redlich–Kwong fluid;
• P3 with β = 1 for the Redlich–Kwong fluid;
• P6 with β = 2

3 for the Redlich–Kwong and (modified)
Berthelot fluids, with β = 4

3e2 for the Dieterici fluid;

• P7 for β = − 2
3 for the Redlich–Kwong fluid.

For case of Redlich–Kwong fluid with β = − 2
3 , we note

however that the fixed point P7 coincides with P6. The fixed
point P6 exists for all values of β, and for β = − 2

3 it is
unstable. Therefore one can conclude that the fixed point P7

with β = − 2
3 for Redlich–Kwong fluid is unstable. Stability

analysis in the other cases requires the application of a center
manifold analysis. Also we note that for the Redlich–Kwong
fluid with β = 1, the fixed pointsP2 andP3 coincide withP1,
implying that a center manifold analysis for P1 also allows
us to complete the stability analysis of P2 and P3.

Appendix C: Center manifold analysis for P1

Center manifold analysis is significantly mathematically rig-
orous [95,160], and it has been applied in cosmology in
[34,39,161–164], just to mention a few examples. We carry
out this analysis only for the fixed point P1 ≡ (2, 1, 0),
because the Jacobian at this point has a vanishing eigenvalue
irrespective of the model parameters for all the three flu-
ids. Firstly we note that in the cases of Redlich–Kwong and
(modified) Berthelot fluids with β < −1 and in the case of
Dietrici fluid with β < − 2

e2 , P1 is clearly a saddle and center
manifold analysis is not required. In the cases of Redlich–
Kwong and (modified) Berthelot fluids with β = −1 and in
the case of Dietrici fluid with β = − 2

e2 , stability analysis of
P1 requires beyond center manifold analysis than presented
here, as two of the eigenvalues vanish, and therefore here
we investigate only the cases of Redlich–Kwong and (mod-
ified) Berthelot fluids with β > −1 and Dietrici fluid with
β > − 2

e2 . To perform a center manifold analysis we begin
by shifting the fixed point to the origin by applying the coor-
dinate translation

Y = y − 2 , Z = z − 1 . (C1)

In terms of Y, Z , � the system (23) becomes
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Table 5 Eigenvalues of the Jacobian at the finite fixed points for the dynamical system (23) and presented in Table 1. We remark that the correct
physical interpretation of these results require α, ζ > 0, whilst the restrictions on the parameters β can be found in Table 2

Fixed points Redlich–Kwong (Modified) Berthelot Dietrici

P1 −3, 0, −3(β + 1) −3, 0, −3(β + 1) −3, 0, −3
(

1 + e2β
2

)

P2
3(β2−1)

2β
− 3(1+β)

β
, −3W

(
2β

e2

)
− 12

W
(

2β

e2

) − 15,

− 3
2

(
1 ±

√
1 − 2(

√
2−1)α(β−1)
9ζ(β+1)

)
− 3

2

(
1 ±

√
1 + 2α

9(1+β)ζ

)
− 3

2

(
1 ±

√
1 − 4α

9ζ
(
W
(

2β

e2

)
+4
)
)

P3 − 3
2 (β − 1) – –

− 3
8

(
3β + 1 ± √

41 − 5β(3β + 2)
)

– –

P6 2 − 3β, 4 ± 1√
2

2 − 3β, 4 ± 1√
2

2 − 3
2 e

2β, 4 ± 1√
2

P7 −2 − 3β, 4 ± 1+3β√
2

– –

dY

dN
= (Y + 2)(Y (−3Y + � + 3Z − 2) + 2� − 2Z)

2(Y − Z + 1)
, (C2a)

dZ

dN
= Y 3 + Y 2(� − 7Z − 2) + 2Y

(
� + 4Z2 − (� + 1)Z − 1

)+ 2
(
Z2 + 1

)
(� − Z)

2(Y − Z + 1)
, (C2b)

d�

dN
= −�(3w(Y, Z ,�) + 3Y + � − Z + 3) , (C2c)

with

w(Y, Z ,�) =
2ζ(Y − 2Z)2 −

(√
2 − 1

)
α�(Y − Z + 1)

2ζ(Y − 2Z)2 +
(√

2 − 1
)

α�(Y − Z + 1)
β

(Redlich–Kwong), (C3a)

w(Y, Z ,�) = 2βζ(Y − 2Z)2

α�(Y − Z + 1) + 2ζ(Y − 2Z)2

[(Modified) Berthelot)], (C3b)

w(Y, Z ,�) = 2βζ(Y − 2Z)2

α�(−Y + Z − 1) + 4ζ(Y − 2Z)2

× exp

[
2 + α�(−Y + Z − 1)

ζ(Y − 2Z)2

]
(Dietrici).

(C3c)

The fixed point P1 corresponds to the origin in the new vari-
ables: P1 ≡ (Y, Z ,�) = (0, 0, 0). Jacobian at the origin
corresponding to the dynamical system (C2) is:

J (0, 0, 0) =
⎛
⎝−2 −2 2

−1 −1 1
0 0 −3(β̃ + 1) ,

⎞
⎠ (C4)

where β̃ = β for the Redlich–Kwong and (modified) Berth-
elot fluids, while β̃ = e2β/2 for the Dieterici fluid. We stress
that in the ideal fluid regime α → 0 for which P = wρ, the
33-component of the matrix would be −3(1+w). The eigen-
values remain the same as given in Table 5. The eigenvectors
are

⎛
⎝ 2

1
0

⎞
⎠ ,

⎛
⎝−1

1
0

⎞
⎠ ,

⎛
⎜⎝

− 2
3β̃

− 1
3β̃

1

⎞
⎟⎠ . (C5)

The matrix that diagonalizes the Jacobian J (0, 0, 0) is the
matrix whose three columns are the three eigenvectors above:

S =
⎛
⎜⎝

2 −1 − 2
3β̃

1 1 − 1
3β̃

0 0 1

⎞
⎟⎠ . (C6)

One can indeed verify by direct multiplication that

S−1 J (0, 0, 0)S =
⎛
⎝−3 0 0

0 0 0
0 0 −3(β̃ + 1)

⎞
⎠ . (C7)

The eigenvectors of the Jacobian at a point form an orthogo-
nal basis at that point. In the (Y, Z ,�) coordinates the basis
vectors are⎛
⎝ 1

0
0

⎞
⎠ ,

⎛
⎝0

1
0

⎞
⎠ ,

⎛
⎝ 0

0
1

⎞
⎠ (C8)
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everywhere in theY -Z -� space. The particular diagonalizing
matrix S for the point (Y, Z ,�) = (0, 0, 0) represents a
coordinate transformation (Y, Z ,�) → (U, V,W ) at that
point such that the basis vectors are now along the Jacobian
eigenvectors:

⎛
⎝ U

V
W

⎞
⎠ = S−1

⎛
⎝ Y

Z
�

⎞
⎠ =

⎛
⎜⎝

�

3β̃
+ Y

3 + Z
3

2Z
3 − Y

3
�

⎞
⎟⎠ (C9)

In terms of U, V, W the system (C2) becomes

dU

dτ
= A + B + C

9β̃2[−W + 3(1 +U − 2V )β] , (C10a)

A = −27[3U (1 +U )2 − 7U (1 +U )V + (2 +U )V 2 + 2V 3]β̃3 + W 3(6β̃ − 2) ,

B = 3W 2β̃[2 +U − 7V + 3w(U, V,W ) − 9(1 +U − V )β̃] ,

C = 9W β̃2[4U (1 +U ) + 3V − 7V 2

−3w(U, V,W )(1 +U − 2V ) + 3((1 +U )2 − (1 +U )V + V 2)β̃] ,

dV

dτ
= −V

8W 2 + 9[8U (1 +U ) − (4 + 23U )V + 14V 2]β̃2 − 3β̃W [8 + 16U + V (−23 + 9β̃)]
6β̃[3(1 +U − 2V )β̃ − W ] , (C10b)

dW

dτ
= −W

[
3 + 5U − 4V + 3w(U, V,W ) + W

(
1 − 5

3β̃

)]
, (C10c)

with

w(U, V,W ) =
⎛
⎝54βζV 2 +

(√
2 − 1

)
αW (W − 3β(U − 2V + 1))

54βζV 2 −
(√

2 − 1
)

αW (W − 3β(U − 2V + 1))

⎞
⎠β (Redlich–Kwong), (C11a)

w(U, V,W ) = 54β2ζV 2

54βζV 2 − αW (W − 3β(U − 2V + 1))
((modified) Berthelot), (C11b)

w(U, V,W ) = 54β2ζV 2

αW [W − 3β(U − 2V + 1)] + 108βζV 2 exp

(
αW [W − 3β(U − 2V + 1)]

27βζV 2 + 2

)
(Dietrici). (C11c)

We note that there is no linear term in V in any of the
equations in the system (C10). This is because by construc-
tion the V -axis is along the eigenvector corresponding to the
zero eigenvalue. Let us consider the phase trajectories in the
neighbourhood of the fixed point P1 = (0, 0, 0). Consider-
ing only the leading contributions at the vicinity of this point,
from the system (C10) we can write the following

• Redlich–Kwong fluid:

dV

dU
≈ 2V

3β

[
1 + (1 − 2β)

3U

2W

]
, (C12a)

dV

dW
≈ − 4V

9β(1 − β)

[
1 − 3β

U

W

]
, (C12b)

dW

dU
≈ −3(1 − β)

2

[
1 + 3

2
(W
U − 3β

)
]

. (C12c)

• (Modified) Berthelot and Dietrici fluid:

dV

dU
≈ 4V

3β̃

[
1 + 3(1 − β̃)

U

W

]
, (C13a)

dV

dW
≈ −4V

9β̃

[
1 − 3β̃

U

W

]
, (C13b)

dW

dU
≈ −3

[
1 + 3

W
U − 3β̃

]
, (C13c)

with β̃ = β,
e2β

2 for (modified) Berthelot and Dietrici

fluid respectively, and where we have used dW
dU ≈ dV/dU

dV/dW .
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Keeping in mind that W
U � dW

dU as W,U → 0, 0, we get
from Eqs. (C12c) and (C13c) that

W

U
� dW

dU
≈
⎧⎨
⎩

3
4 (−1 + 3β ±√β2 + 6β − 3), (Redlich–Kwong)

3
2 (−1 + β̃ ±

√
β̃2 + 2β̃ − 3), [((modified) Berthelot and Dietrici] .

(C14)

Considering the leading order contribution in the vicinity
ofP1 ≡ (0, 0, 0), the V−equation from (C10) can be written
as

d ln |V |
dτ

= −4

(
U − W

3β̃

)
, (C15)

with β̃ = β for Redlich–Kwong, (modified) Berthelot fluid

and β̃ = e2β
2 for Dietrici fluid in this case. Taking one more

derivative we get

d2 ln |V |
dτ 2 = −4

d ln |V |
dτ

d

d ln |V |
(
U − W

3β̃

)
. (C16)

To the leading order approximation, dU
d ln |V | ,

dW
d ln |V | are con-

stants depending on β, whose value for different fluids can
be calculated by substituting the values of W

U from Eq. (C14)
into Eqs. (C12a), (C12b), (C13a), (C13b). If we define

γ = −4
d

d ln |V |
(
U − W

3β̃

)
, (C17)

then γ is a β−dependent constant, and the first integral of
Eq. (C16) gives

d ln |V |
dτ

∼ eγ τ . (C18)

It is clear from the above result that irrespective of the sign
of γ , evolution of V (τ ) is always away from the origin. The
fixed point P1 is therefore always a saddle.

Appendix D: Stability analysis of invariant submanifolds

Xi = C is called an invariant submanifold of the dynamical
system Ẋ = f(X) if

Ẋi

∣∣∣∣
Xi=C

= fi (X)

∣∣∣∣
Xi=C

= 0 . (D1)

Stability of an invariant submanifold is determined by the
phase flow in its vicinity. If one considers a point in prox-
imity of the submanifold with a coordinate C + δXi , then
the component of the flow normal to the submanifold at that
point is determined by

˙δXi = ∂ fi
∂Xi

∣∣∣∣
Xi=C

δXi . (D2)

If ∂ fi
∂Xi

∣∣∣∣
Xi=C

is negative (positive), then the phase flow

at that point is towards (away from) the submanifold
Xi = C, and correspondingly the submanifold is attracting

(repelling). If ∂ fi
∂Xi

∣∣∣∣
Xi=C

= 0, further analysis is required.

Armed with this concept, we can determine the stability
of the invariant submanifolds that arise in our dynamical sys-
tem:

• The submanifold y = 2z can be better specified in the
polar coordinate as θ = tan−1

( 1
2

)
. From (46) one can

compute that

∂

∂θ

(
dθ

dτ ∗

) ∣∣∣∣
θ=tan−1 1

2

= −1

5

[
r + √

5(� − 1)
]

. (D3)

Therefore the submanifold θ = tan−1
( 1

2

)
is attracting

(repelling) for r >
√

5(1 − �) (r <
√

5(1 − �)). In
Cartesian coordinates one can state that the submanifold
y = 2z is attracting (repelling) for y2 + z2 > 5(1 − �)2

(y2 +z2 < 5(1−�)2) respectively. The line r = √
5(1−

�) (y2 + z2 = 5(1 − �)2) separates the two regions of
the submanifold with opposite dynamical characteristics.

• Regarding the invariant submanifold � = 0, one can
compute from (23c) that

∂

∂�

(
d�

dN

) ∣∣∣∣
�=0

= 2 − 3w(� → 0) − 3y + z . (D4)

Using the expressions in Eq. (21) to calculate w(� → 0),
one can conclude that the invariant submanifold � = 0
is attracting (repelling) according to 2−3β −3y+ z < 0
(> 0) for the Redlich–Kwong and (modified) Berthelot
fluids and 2−3e2β/2−3y+ z < 0 (> 0) for the Dietrici
fluid.

• The submanifoldR = 1 is an invariant submanifold at the
infinity of the phase space. Stability of this submanifold
can be determined from (51a) by calculating

∂

∂R

(
dR

dη

) ∣∣∣∣
R→1

= 1

4
(3 − cos(2θ))(2 − 2 sin(2θ) + cos(2θ)) . (D5)
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The expression on the right hand side is positive within
the range tan−1

( 1
2

) ≤ θ < π
4 (z < y ≤ 2z). Therefore

the invariant submanifold at infinityR = 1 is everywhere
repelling.

Appendix E: Stability analysis of fixed points at infinity

The isolated fixed point at infinity Pi ≡ (1, tan−1 1
2 , 0
)

lies
at the intersection of three invariant submanifolds, namely
� = 0, θ = tan−1

( 1
2

)
and R = 1. This observation com-

pletely determines the stability nature of this fixed point. The
submanifold R = 1 is everywhere repelling. The subman-
ifold θ = tan−1

( 1
2

)
is attracting at Pi (since � = 0 and

r → ∞ at Pi ). The submanifold � = 0 is also attracting at
Pi (since −3y+ z = −2y− (y− z) → −∞ at Pi , assuming
β to be finite). Therefore the fixed point Pi is a saddle point
in the cases under consideration in this section.
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