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Abstract Jet quenching, the modification of the properties
of a QCD jet when the parton cascade takes place inside
a medium, is an intrinsically quantum process, where color
coherence effects play an essential role. Despite a very signif-
icant progress in the last years, the simulation of a full quan-
tum medium induced cascade remains inaccessible to classi-
cal Monte Carlo parton showers. In this situation, alternative
formulations are worth being tried and the fast developments
in quantum computing provide a very promising direction.
The goal of this paper is to introduce a strategy to quantum
simulate single particle momentum broadening, the simplest
building block of jet quenching. Momentum broadening is
the modification of the quark or gluon transverse momen-
tum due interactions with the underlying medium, modeled
as a QCD background field. At the lowest order in αs that
we consider here, momentum broadening does not involve
parton splittings and particle number is conserved, greatly
simplifying the quantum algorithmic implementation. This
quantity is, however, very relevant for the phenomenology
of RHIC, LHC or the future EIC.

1 Introduction

The idea of simulating the dynamics of complex quantum
physical systems by using other simpler and controllable
quantum systems (which we shall refer to as quantum com-
puters) was first realized by Feynman in the 80’s [1]. Since
then quantum simulation has seen widespread application in
physics, chemistry and many other areas [2–4].

In recent years, a big effort has been made towards explor-
ing to what extent quantum computers might enhance our
understanding of High Energy/Nuclear Physics (HEP/NP)
phenomena [5–7]. Some of the most recent studies in the
application of quantum computing to HEP/NP phenomenol-
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ogy have resulted in the formulation of quantum parton show-
ers [8,9], quantum jet clustering algorithms [10,11], digital
simulation of effective field theories [12] and of the propa-
gation of hard probes in a thermal QCD bath [13]. On the
one hand, the main idea behind these approaches was to
explore the fact that quantum computers can be exponen-
tially more efficient than their classical counterparts, thus
leading to a remarkable algorithmic speed-up. On a more
fundamental level, the quantum simulation of high energy
processes is naturally performed at the the amplitude level,
and thus classically untractable interference effects are taken
into account. This second point is the main motivation of
our work, since most current theoretical challenges towards
an improved understanding of jet quenching are related to
genuine quantum interference mechanisms that are hard to
properly replicate in classical simulations or fully explore
analytically. It is important to emphasize that most of the
present attempts to use quantum computers in HEP/NP are
still at an exploratory level, including the present proposal.
Our intention here is to outline an implementation for the
simplest possible process – namely, momentum broadening
– which contains many of the ingredients needed for a more
ambitious full jet simulations in the presence of a medium.

As such, in this paper, we propose a strategy to use a quan-
tum digital computer to simulate the evolution of a single
parton in the presence a QCD background field. In particu-
lar, we are interested in the α0

s effect, corresponding to the
broadening of the parton’s momentum. Although this effect
has been extensively studied in jet quenching theory [14,15],
it is only easily computed for isotropic and homogeneous
media, where the field fluctuations behave as white noise.
More interestingly, at the amplitude level, the associated in-
medium propagators are the building blocks of jet quenching
formulation for e.g. medium-induced gluon radiation. For
this reason, we argue that our algorithmic implementation
can be considered as a first step towards a complete simu-
lation of the in-medium parton cascade with quantum color
coherence. The quantum advantage will become particularly
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important when allowing for the formation of higher mul-
tiplicity final states, which are hard to fully capture using
standard analytic and numerical techniques.

We consider an energetic parton that emerges from a hard
scattering event and then propagates inside a QCD medium.
The net effect of the medium is to alter the initial trans-
verse momentum of the parton. The underlying gauge field
is treated stochastically, in line with the usual approach
employed in jet quenching theory and phenomenology. As
a consequence, our algorithm consists in a hybrid classical-
quantum strategy [13,16,17], with the parton evolution in
time being tracked, at the amplitude level, by the quantum
computer and the gauge fields being provided as an input to
the circuit. We will not make an attempt to improve here on
these dual description as an eventual future implementation
of the quantum computation of the gauge fields would be
straightforward to implement in our procedure.

Although for an actual implementation, crucial aspects
such as quantum error correction [18], encoding details or
Trotter error analysis [19] have to be considered, we will
mostly stay at a more conceptual level and leave such an
analysis for future work. In addition, we will try to high-
light the connection between our approach and standard jet
quenching treatment of momentum broadening, thus making
what follows more relevant for an interested reader.

The present manuscript is divided as follows: Sect. 2
briefly reviews the physics of a hard parton propagating in a
gauge classical background field, while in Sect. 3 we provide
the equivalent Hamiltonian formulation. In the remainder of
the section we detail how such a problem can be implemented
in a digital quantum computer. Finally, in Sect. 4 we detail
how to deal with non-trivial evolution in color space and
finally Sect. 6 gives the paper’s main conclusions and out-
lines possible future research paths. Details on most sections
are provided in four appendices.

2 Hard parton propagating in a background field

In this section we review the theoretical description of a
highly boosted parton propagating in a classical background
gluon field A. We will consider the cases where the propa-
gating parton, a quark, is in the singlet or fundamental color
representations, though we will mostly assume that the evo-
lution in color space is trivial. Detailed and ample discus-
sions on jet quenching theory can be found, for example, in
[15,20–22] and references therein.

We begin by considering a highly energetic quark, being
produced inside a QCD medium (whose exact origin is not
relevant) from a hard process. Due to the highly boosted
kinematics, the quark’s four-momentum p = (p0, p, pz)
is more conveniently expressed in light-cone coordinates
p ≡ (ω, p, p−) = ((p0 + pz)/2, p, p0 − pz), with p the

transverse momentum, ω the light-cone energy and p− the
minus component of the quark’s momentum. The quark is
assumed to be moving in the plus direction, so that ω is the
large momentum component.

It is also convenient to work in the light-cone gauge for the
background field Aμ, taking A+ = 0 and fixing the residual
gauge freedom such that A− is the only non-vanishing com-
ponent of the background field [23]. Additionally, because
p+ is the large component of the quark’s momentum, its
interaction with the gluon field is highly localized in x−, so
that we can simplify the spacetime dependence of the field to
be A−(x+, x, x−) ≡ A(x+, x, 0), dropping the x− depen-
dence in what follows.

Finally, in the boosted regime the local quark-field spin-
flip interactions are energy suppressed and can be ignored.
Thus, for each field insertionA− and in the strict high energy
limit, the large momentum component ω and transverse com-
ponent p are conserved, with the quark state acquiring an
eikonal phase. It is however usual to relax this approximation
and allow for a small transverse momentum transfer at each
vertex, while light-cone energy is still conserved. Accounting
for this sub-eikonal corrections, the quark propagation in the
QCD field can be reduced to the study of a two dimensional
non-relativistic quantum system [21].

To make this discussion more quantitative, we consider
the in-medium scalar quark propagator G(t, x; 0, y) in the
transverse plane, between spacetime points (0, y) and (t, x)

[15]. This propagator is the Green’s function to the following
two dimensional Schrodinger equation

(
i∂t + ∂2

x

2ω
+ gA−(t, x) · T

)
G(t, x; 0, y)

= iδ(t)δ(x − y) , (1)

where we have contracted the background gauge field with
the respective SU (3) generators T in the adequate repre-
sentation. The remaining terms are diagonal in color space.
This equation explicitly shows that the quark propagation
is equivalent to a non-relativistic two dimensional quantum
mechanical system, describing a single particle evolving in
time with the Hamiltonian [21]

H(t) = p2

2ω
+ gA−(t, x) · T = HK + HA(t) , (2)

where ω plays the role of a mass and light-cone time plays

the role of time.1 In the strict eikonal limit, where p2

ω
→ 0,

the kinetic term drops out and the evolution leads to the state
acquiring a field dependent phase, as mentioned above.

1 In the boosted regime, light-cone time x+ becomes the same as time
x0 since x+ = (xz + x0)/2 ∼ x0.

123



Eur. Phys. J. C (2021) 81 :862 Page 3 of 13 862

3 Quantum simulating momentum broadening

From Eq. 2 one can construct the time evolution operator
(with T the time ordering operator)

U(t, 0) ≡ T exp

[
−i

∫ t

0
dsH(s)

]
, (3)

which acts on the infinite dimensional Hilbert space of a
single free particle in two spatial dimensions, such that from
an initial state |ψ0〉 at time t = 0 one obtains the time evolved
state |ψt 〉 via

|ψt 〉 = U(t, 0)|ψ0〉. (4)

The Hilbert space is spanned by the position eigenvectors
|x〉 or by their Fourier pair | p〉. These two bases are conve-
nient since p̂| p〉 = p| p〉 and Â−a(t, x̂)|x〉 = A−a(t, x)|x〉,
where we used the hats to highlight the difference between
operators and c-numbers; we also used the fact that the quark-
medium interaction is localized in position space (and con-
versely delocalized in momentum space).

We now detail how to frame single particle momentum
broadening in terms of a digital quantum simulation algo-
rithm, implementing Eq. 4. The algorithm, summarized in
Fig. 1, can be divided as follows:

1. Input (i) Template distribution to be loaded as an initial
state |ψ0〉. (ii) A list of m field configurations A− with
the associated weights pA− , storing the probability of
generating each configuration;

2. Encoding Map between the degrees of freedom of the
quantum system and the qubits;

3. Initial state preparation Preparation of |ψ0〉;
4. Time evolution Implementation of Eq. 4;
5. Measurement Retrieving physical information by mea-

suring the qubits, according to a sensible protocol;
6. Output For each field configuration the algorithm will

output the expected value of a random variable χ , which
should be then medium-averaged over all m configura-
tions.

3.1 Encoding

We begin by discretizing the problem in position space, such
that |x〉 = |asn〉, with as the spatial lattice spacing and n =
(n1, n2) a two component dimensionless transverse vector,
where each component can take integer values between 0 and
Ns − 1, with Ns the number of lattice sites per dimension.
The spatial cutoff is given by xmax = as(Ns − 1, Ns − 1).
Also, the spatial discretization induces a lattice discretization
in momentum space with | p〉 = |adq〉 and ad = 2π

as Ns
the

momentum space lattice spacing, with q = (q1, q2) a two

dimensional vector with each component also taking integer
values between 0 and Ns − 1.2

One can rewrite the Hamiltonian H in terms of the dimen-
sionless Hamiltonian H = Has (see Appendix A)

H = P2

2E
+ gA(t, X) · T = HK + HA(t), (5)

with P̂ |q〉 = q|q〉 and X̂|n〉 = n|n〉 the dimensionless
position and momentum operators. Also A(t, n) · T =
asA−(t, asn)·T and E = N2

s ωas
4π2 is the dimensionless energy

factor. In what follows, position and momentum vectors are
assumed to be given in this dimensionless basis.

With this discretization, the problem can be mapped to
the qubits available in a quantum computer. For each spa-
tial dimension, we use a register with nQ qubits (each qubit
being equivalent to a 1/2-spin), such that we can generate
2nQ = Ns states. We use the QIS convention [24] to denote
the single up spin state |↑〉 = |0〉 = [1, 0]T in the com-
putational basis (with the last equality giving the associated
vector representation) and |↓〉 = |1〉 = [0, 1]T . Then, any
component of the vector |n〉 can be represented by a product
of many spins, in a binary basis (see “Appendix A”). The
associated momentum state vector |q〉 is obtained by apply-
ing a standard quantum Fourier Transform (qFT).

3.2 Initial state preparation

Given the above encoding, the first step in the algorithm con-
sists in loading a desired template distribution by construct-
ing the initial state |ψ0〉 from the fiducial state |0〉⊗2nQ . The
template is meant to represent the relevant physics of the hard
scattering which generates the initial parton.

In this manuscript, since we are interested in extracting
the jet quenching parameter q̂ from the quantum simulation
output, we wish to avoid contributions coming from initial
state physics. Therefore, we shall mainly focus on the case
where |ψ0〉 = | p = 0〉.

However, including a localized initial state distribution
might be important for certain digitizations where one can
not prepare the state | p = 0〉 exactly or if one is simply inter-
ested in studying how different production mechanisms influ-
ence the final state. Several strategies to prepare |ψ0〉 from
an integrable template distributions can be found in the lit-
erature [25–28]. Depending exactly on what |ψ0〉 one wants
to prepare, in principle, one can devise a routine which only
requires O(nQ) basic quantum gate operations.

2 In the following discussion we will consider only positive values for
the position and momentum of the quark, see “Appendix A”.
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Fig. 1 Overview of the quantum circuit detailed in the main text. Sin-
gle lines denote quantum channels while double lines denote classical
ones. Above each line we detail the state being store in the circuit (see

main text for notation). The � denotes that the time evolution gates
parameters are to be determined from the field A

3.3 Time evolution

After the initial state |ψ0〉 has been prepared, we time evolve
it for a time L , producing the final state |ψL〉. The time evo-
lution operator in Eq. 3 can be written in terms of the dimen-
sionless Hamiltonian H and medium length L ′ ≡ L/as .3

U (L ′, 0) ≡ T exp

[
−i

∫ L ′

0
dt H(t)

]
. (6)

Directly implementingU (L ′, 0) in terms of a quantum circuit
is in general impossible. Rather, one decomposes the full
evolution into a sequence of short time evolution steps. Here
we do this by considering the simplest product formula [29],
decomposing U as

U (L ′, 0) ≈
Nt∏

kt=1

{
exp

[
−i HK

L ′
Nt

]
exp

[
−i HA

(
kt · L ′

Nt

)
L ′
Nt

]}

≡
Nt∏

kt=1

{UK (εt )UA(kt · εt , εt )} , (7)

where we have effectively sliced time into Nt steps, each
with a length εt ≡ L ′/Nt . In each time step, the evolution
operator is split into a short evolution according to HK , fol-
lowed by an evolution in time with HA. Notice that during
the time interval (kt · εt , (kt + 1) · εt ) the field A is taken
to be constant, leading to the constraint ε−1

t � ||∂t HA(t)||;
there exist algorithms [29] which circumvent this constraint,
as well as other strategies (see for example [30–33]) to quan-
tum simulate time dependent Hamiltonians with expected
higher precision. Although the way one chooses to imple-
ment U is of critical importance to determine the efficiency
and accuracy of the quantum circuit, since we are aiming to
restrict our discussion to a more conceptual level, we limit
our analysis to the simple product formula considered above,
which has a Trotter error O(ε2

t ).

3 In general, one could choose another length scale to make time dimen-
sionless, leading to the appearance of a ratio between as and such scale.

Let us now consider the kth
t time slice of the evolution. As

mentioned above, HK has a trivial action in the momentum
basis, while HA can be simply written in the position basis;
this justifies the decomposition of H taken in Eq. 7. Since
these bases are trivially related by a qFT, one can simply first
time evolve with HK , perform the transformation | p〉 → |x〉,
time evolve with HA and transform back to the | p〉 basis, the
generated state being the input to the kt + 1th time slice; this
strategy is illustrated in Fig. 2.

The time evolution operator UK is diagonal in the | p〉
basis

UK (εt )| p〉 = exp
(
−i

εt

2E
p2

)
| p〉 , (8)

thus one only needs to implement a circuit which generates a
state dependent phase. This can be achieved using the algo-
rithm introduced in [34], which we detail in “Appendix B”.

After performing the qFT, using standard implementations
of the circuit [24], one has to compute the action of UA.
Although this operator is diagonal in the |x〉 basis,

UA(kt · εt , εt )|x〉 = exp(−igεt A(kt · εt , x))|x〉 , (9)

the value of the phase depends on the local value of the field
A. Notice that here we assume that the quark is a color sin-
glet; see Sect. 4 for details on how to deal with non-trivial
color evolution. In principle, one could again use a strategy
similar to the one used to implementUK (see “Appendix B”).
However, this assumes that one could construct Nt oracles
which quantum compute A(kt · εt , x) for every x in each
time slice. Since in general one does not have a closed form
expression or a simple numerical routine to compute the field
values, such an approach might not be possible.

A more feasible approach would consist on first comput-
ing the field values for all positions and times. This would
require evaluating the field O(Nt × N 2

s ) times, which would
defeat the purposes of the present strategy since it requires
exponentially many classical evaluations of A. Nonetheless,
we notice that in practice a small number of qubits nQ is
needed to have a sufficiently good discretization (see Sect. 5),
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Fig. 2 Outline of the
implementation of the time
evolution operator U . Here we
detail the kth

t time step, as
indicated in Eq. 7

and thus the actual number of field evaluations needed could
in practice be performed by a classical computer.

Once one has evaluated all the relevant field values, they
are stored in a classical memory (double lines in Figs. 1 and
2) which are loaded onto the circuit as parameters to the
basic gates implementing Eq. 9. We illustrate this procedure
in “Appendix B”, that requires solving a system of linear
equations with N 2

s independent variables, which following
the same arguments as above should be doable in practice,
at least for near term small system applications4. Clearly
the implementation of the operator UA would greatly bene-
fit from native implementations of quantum diagonal gates,
where each entry exponentiates a circuit input [35].5

After performing this operation and transforming back
to the momentum basis, this block is iterated until kt = Nt ,
where the time evolution section of the algorithm terminates.

3.4 Measurement

Having prepared the state |ψL〉 = ∑
q ψ

q
L |q〉 one could sim-

ply measure all the 2nQ qubits, obtain the probabilities |ψq
L |2

for every q and reconstruct the underlying probability dis-
tribution. However, such a strategy requires a exponentially
large number of measurements. This constraint is a direct
consequence of the quantum nature of the simulation, absent
from classical simulations where information can be easily
retrieved.

In this section, we assume that the initial condition of
the state was that of a quark with p = 0. In this case the
coefficients |ψq

L |2 are directly related to the single particle
broadening distribution; see “Appendix C”. This statement is
only true after having averaged over all field configurations,
the so called medium average, which in our strategy is per-
formed at the end of the algorithm. For each of the m field
configurations one runs the algorithm the necessary number
of times to extract the expectation value of some classical
variable χ (to be detailed below). Then, one averages over
all m expectation values

4 We note however that this linear system only has to be solved once
for each nQ .
5 Quantum strategies to simulate the time evolution of the background
field could also be coupled to our strategy. This could in principle sim-
plify the implementation of UA.

〈χ〉M = 1∑m
i=1 pA(i)

m∑
i=1

pA(i)〈χ〉(i)QM , (10)

where pA− = pA, the i superscript denotes a particular field
configuration, running up to m, and 〈.〉M denotes the average
over field configurations while 〈.〉QM denotes the (quantum
mechanical) expectation value.

The numerical value form depends on field fluctuations. In
jet quenching, these are typically Gaussianly distributed, fol-
lowing the prescription of the Mclerran–Venugopalan (MV)
model [36,37] and are encapsulated in the field-field corre-
lator [36–39]. We note however that in our approach, one
is not constrained to assume the MV prescription, nor does
one need to explicitly construct any field correlator. In addi-
tion, due to the formal similarities between jet quenching
and saturation physics [40], the physical origin of A−, either
generated from hot and dense quark gluon plasma, the ini-
tial glasma or from cold nuclear matter, is not constrained.
This means that our approach should be able to explore the
evolution of the jet quenching parameter q̂ , both in time and
in orthogonal spatial directions [41], for different medium
models. The only practical constraint is that the larger the
background field fluctuations become, the larger m must be,
despite this only leading to a linear increase in cost for run-
ning the full algorithm.

We then focus the remaining discussion on the case of a
fixed field configuration and how to extract q̂ for thatA−. We
add an ancilla qubit to the circuit and perform the Hadamard
test detailed in Fig. 3.

One first transforms the ancilla, which can be either pre-
pared in the state |0〉 or in the superposition 1/

√
2(|0〉+i |1〉),

by the Hadamard gate H = H†, and then applies a unitary
transformation V on the physical state if the ancilla is in the
state |1〉. Finally the transformation on the ancilla is reversed
and one measures the qubit. We associate the measured value
to a random variable χ which takes the values −1 if we
observe the state |0〉 and +1 if the state |1〉 is generated. This
strategy is not the only possible one, but it is particularly sim-
ple and inexpensive in terms of extra ancillas and number of
gate operations.

One can show that if the ancilla is in the initial state |0〉
(see “Appendix D”), then

〈χ〉QM ≡ 〈ψL |V + V †|ψL〉 = �〈ψL |V |ψL〉 . (11)
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Fig. 3 Circuit representation of
the measurement strategy

On the other hand, if the ancilla is prepared in the state
1/

√
2(|0〉 + i |1〉), we have that

〈χ〉QM = �〈ψL |V |ψL〉 , (12)

which when combined give access to both the real and imag-
inary parts of the expectation value of the unitary operator
V .

Let us consider first the case where V = Vα =
exp(iαP2). Then

�〈ψL |Vα|ψL〉 = 〈cos(αP2)〉QM , (13)

and

�〈ψL |Vα|ψL〉 = 〈sin(αP2)〉QM , (14)

from which one extracts 〈eiαP2〉QM, by definition. We also
have that

〈eiαP2〉QM = 1 +
∞∑
k=1

iαk

k! 〈〈2k〉〉 , (15)

where 〈〈2k〉〉 ≡ 〈P2k〉QM corresponds to the expectation
value of the 2k power of the momentum operator. Eq. 15 can
be viewed as the (even) moment generating function, and it is
easily related to the cumulants of the underlying broadening
distribution. Also, in the case where initial state effects are
absent, a2

d〈〈2〉〉 = q̂ L , where we inserted a2
d to get the correct

dimensions.
Furthermore, one has the freedom to vary α such that, for

small enough α, only linear variations are relevant

〈eiαP2〉QM ≈ 1 + i
α

a2
d

q̂ L → 〈sin(αP2)〉QM ≈ α

a2
d

q̂ L . (16)

Notice that the left hand side corresponds to a quantity read-
ily extracted from the quantum computer, while the right
hand side is written in terms of the physical jet quenching
parameter.

If one includes higher order α corrections, then one has
access to the even moments of the momentum distribution
and the respective cumulants. One can thus imagine varying
α and from the observed evolution retrieving 〈〈2k〉〉 moments
via a numerical fit. Of course, such a strategy, on top of
the additional polynomial cost in m, would increase the cost
of running the algorithm by the number of α values to be
explored.

If one is only interested in extracting q̂ (which is the most
relevant medium parameter for jet quenching), one could
consider the unitary V = exp(i F(P2)), with F(P2) =
arccos(P2). Then, for the case where the ancilla is initially
set to |0〉, we obtain

〈X〉QM = 〈ψL | cos(arccos(P2))|ψL〉 = 〈〈2〉〉 . (17)

In principle, one could implement this protocol following
[34] (see also “Appendix B”), provided an efficient arithmetic
oracle could be constructed.

4 Treating color evolution

In this section we assume that the initial quark probe is in the
fundamental SU (3) representation. As a consequence, the
HA component of the Hamiltonian now has a non-trivial color
structure, i.e. A · T = AaT a = 1

2 A
aλa , where λa denotes

the eight Gell-Mann matrices. To deal with this modification,
we further split the time evolution operator to take the form
U = UK · UA1 · UA2 . . .UA8 . Additionally, we must track
the color of the quark as it evolves. To do that, we add a new
register with two qubits, which stores the color state of the
quark. In particular we use the following map between the
logical and physical states: |0, 0〉 ≡ |red〉 = |R〉, |0, 1〉 ≡
|green〉 = |G〉, |1, 0〉 ≡ |blue〉 = |B〉 and |1, 1〉 ≡ |W 〉, with
the latter state not being physical and therefore absent from
any calculation.

We now detail how to implement HA1 , with the other val-
ues ofa following analogous implementations. The first Gell-
Mann matrix is given by

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ →

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ≡ λ̃1 , (18)

where in the second step we have embedded λ1 into the two
qubit Hilbert space. The action of λ̃1 is thus to color rotate the
quark state between the |R〉 and |G〉 states, which can lead
to a non-trivial evolution in color space. One can diagonalize
the above matrix using a control Hadamard gate CH
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Fig. 4 Implementation of the (infinitesimal) time evolution operator
generated by HA1

CH =

⎛
⎜⎜⎝

1/
√

2 1/
√

2 0 0
1/

√
2 −1/

√
2 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (19)

such that we can write HA1 , in kth
t time interval, in terms of

a diagonal operator (here we drop all spacetime dependence
for readability)

e− igεt
2 A1⊗λ̃1 = (1 ⊗ CH)e− igεt

2 A1⊗σ̃ Z
(1 ⊗ CH) . (20)

Here we made use of the extended Pauli operator σ̃ Z =
diag(1,−1, 0, 0).6 Finally, to compute the exponential of the
tensor product we notice that

e−i gεt2 A1⊗σ̃ Z |x〉 ⊗ |c〉 =
∑
n

(−igεt )n

2nn! (A1(X)σ̃ Z )n |x〉|c〉

= |x〉
∑
n

(−igεt A1(x))n

2nn! (σ̃ Z )n |c〉 ,

(21)

where |c〉 denotes the two qubits register storing the state of
the quark in color space. From the previous equation it is easy
to observe that only |0, 0〉 and |0, 1〉 states result in a phase,
the former with a −i prefactor and the latter with a +i . Notice
however, that due to the application of the diagonalizing gate
1 ⊗ CH , the evolution in the physical RGBW basis is off-
diagonal. The implementation of Eq. 20 is given in Fig. 4.

Clearly this strategy is only possible as long as the quark
is in a small color representation – in the previous example,
the color degrees of freedom were treated by adding only
two extra qubits and doubling the number of time evolution
operators UAa , for each a.

Another important consequence of including non-trivial
color evolution is the fact that the final and initial state are
differential in color. Therefore, when preparing the state one
has to set colors either according to some initial state pre-
scription or in an equitative way. Consequently, in the mea-

6 To be more precise, this definition takes σ̃ Z to be non-unitary, unlike
σ Z . This is done, in order to ensure that only the |R〉 and |G〉 states
transform non-trivially.

surement protocol the output must be color averaged, which
can be performed classically.7

5 Numerical estimates for the circuit parameters

In the previous sections we gave a conceptual outline on how
to quantum compute the single particle momentum broaden-
ing distribution and from it extract meaningful physical infor-
mation. Here we give a rough estimate on the typical values
for the circuit parameters based on estimates for the typi-
cal physical scales obtained from jet quenching/saturation
physics phenomenology.

Let us first estimate the lattice spacing as and the num-
ber of qubits necessary per dimension nQ . For that we recall
that, when traversing a dense medium of length L , the quark
will acquire an average transverse momentum of the order
of the saturation scale, 〈 p2〉 ∼ q̂ L ≡ Q2

s . We are inter-
ested in length scales L of the order of the nuclear radius
of heavy elements, like Pb or Au, which we take to be L ∼
O(10 fm) = O(50 GeV−1). The value of the jet quenching
parameters q̂ varies drastically between different experimen-
tal set-ups, due to the different energy scales being explored.
To bridge RHIC, LHC and EIC experimental conditions, we
assume that O(0.1 GeV2fm−1) ≤ Oq ≤ O(10 GeV2fm−1)

[25,42,43]. The saturation scale Q2
s is then approximately

bounded by Q2
s ∼ O(1 − 100 GeV2).

Setting the ultraviolet momentum cutoff induced by the
digitization pmax. to be much larger than the saturation scale
Qs , we obtain

| pmax.| ≈ 2π

as
� O(1 − 10 GeV) , (22)

thus

as � O(1 − 10 GeV−1) = O(0.1 − 1 fm) . (23)

Conversely, we require that the momentum space discretiza-
tion is neither too coarse nor too fine. A simple way to ensure
this is to impose

μ < ad < Qs ∼ μ

Qs
<

1

Ns
< 1 , (24)

with μ an infrared (model dependent) regulator, related to
the medium Debye mass; typically μ ∼ O(0.1 − 1 GeV)

[25,44,45] and we used the previous estimates to reduce the
problem to the ratio between the soft and hard scales at play.
Recalling that Ns = 2nQ , we obtain

1 < Ns < 100 ⇐⇒ 0 < nQ < 7 . (25)

7 This is not necessary if the qubits storing the color information are
not measured.
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Thus, one roughly needs O(27 = 128) states per dimension
to adequately discretize the problem. In practice this number
will have to be larger since the correct energy ratio should be
μ/| pmax.|, which here we took | pmax.| = Qs . This is a rather
rough lower bound, and larger values should be considered
such that the peak of the broadening distribution is well cap-
tured. Even so, one would expect that (roughly) nQ < 20,
which means that Ns < O(106). This allows us to argue
that the classical operations detailed in the previous sections
needed to implement UA can be performed in a classical
computer.

Let us now consider the longitudinal scales entering the
problem and estimate the number of time steps Nt . We recall
that in the multiple soft scattering approximation, one usually
requires that the mean free path of the quark λ is much larger
than the typical correlation length in the medium 1/μ. This
ensures that spatially delocalized scattering centers are not
color correlated. On the other hand we also have that in order
for a scattering to occur λ ≤ L , leading to

1 ≥ λ

L
� 1

μL
. (26)

It is also typical to define the opacity of the medium as
χmed. ≡ L/λ [46,47], corresponding to the expected number
of in-medium scatterings. Therefore, it is natural to identify
χmed. ∼ Nt = L ′/εt . We can then write

1 ≤ Nt � μL �⇒ 1 ≤ Nt � O(100) . (27)

The remaining circuit parameter that directly depends on
the physics one wants to explore ism, the number of field con-
figurations to be generated. As alluded above, the numerical
value for m intrinsically depends on the model/prescription
for the gauge field and its fluctuations, and therefore it is tied
to the its physical origin. As such, and since in our treatment
we have avoided discussing details of the background, we
leave an estimation of this parameter for future work where
a model for A is chosen.

6 Conclusions and outlook

In this paper we have outlined a quantum simulation algo-
rithm to extract the jet quenching parameter q̂ . Our approach
is a hybrid one, with the in-medium jet evolution being quan-
tum simulated, while the background field is treated as an
external stochastic parameter, given as an input to the algo-
rithm. The connection to standard jet quenching language
is immediate, unlike more recent efforts which rely on open
quantum system formulation of jet quenching [13], still not
fully developed (see however [48,49]).

The overall algorithm requires 2nQ + l qubits (assum-
ing one can re-use ancillas) and O(Nt × polylogNs) basic
gate operations. However, there is an underlying classical

cost coming from the m × Nt × N 2
s evaluations of the gauge

field. This is the major drawback of our strategy, since it is
not guaranteed that the classical evaluations of A can be per-
formed efficiently. Additionally, there is an overall additional
polynomial cost in the measurement section, if one decides
to scan several values of α. For an actual implementation in
a NISQ device [50], these constraints should not be limiting
and we hope in the future more efficient algorithms can also
be found. Nonetheless, we expect that our method can not
outperform current classical approaches.

In future work, we plan to implement our strategy in one
spatial dimension (assuming azimuthal symmetry), bench-
marking to known results for q̂ from jet quenching phe-
nomenology. This would allow a better understanding of the
merits of our quantum approach, compared to known classi-
cal methods.

Going beyond α0
s effects is of course of extreme rele-

vance and the main motivation of our work. Indeed, since
broadening is a classical effect, there is little advantage in
applying quantum computing techniques to study it. How-
ever, a natural but non-trivial next step would be to include
parton branching into the evolution operator. This is a purely
quantum effect. If one is able to quantum simulate such a
process efficiently, then interference contributions, inacces-
sible to classical Monte Carlo codes, can be exactly taken
into account. The major obstacle to overcome is the fact that
particle number is no longer conserved, and thus a new for-
mulation of the problem is needed. Nonetheless, since broad-
ening is a key element of in-medium propagation, the present
algorithm provides a first step in this direction.
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Appendix A: Discretization and encoding details

In this appendix we give the details on the discretization of
the quantum mechanical system considered in the main text
and the map to the qubits available in the quantum computer.
The discussion in this appendix is quite standard and can be
found in quantum mechanics/computing textbooks [24,51].

We discretize space using a two dimensional lattice, with
lattice spacing as and Ns lattice sites per dimension, with
the spatial cut-off (per dimension) given by as(Ns − 1). We
write the position ket |x〉 = |asn〉,8 with n a two dimensional
integer vector. Conversely, the momentum induced lattice
has a spacing ad = 2π

Nsas
(with an associated dimensionless

integer vector q) and the two bases are related by a Fourier
transform

| p〉 =
∫
x
e−i p·x |x〉 → a2

s

∑
n

e−2π i q·n
Ns |nas〉 , (A.1)

|x〉 =
∫
p
ei p·x | p〉 → a2

d

(2π)2

∑
q

e2π i q·n
Ns |qad〉 , (A.2)

where
∫
x = ∫

d2x and
∫
p = ∫

(2π)−2d2 p and we provide
the discretized version of the Fourier integrals. Using that

〈x| p〉 = e−i p·x → e−2π i n·q
Ns , (A.3)

one can show that

〈x| y〉 = δ(2)(x − y) = δn,m

a2
s

, (A.4)

〈 p|k〉 = (2π)2δ(2)(k − p) = (2π)2
δqk,q p

a2
d

, (A.5)

where we used the closure identity

∑
n

e2π i n·q
Ns = N 2

s δq,0 . (A.6)

We define the dimensionless basis states

|n〉 = as |x〉 , |q〉 = ad
2π

| p〉 , (A.7)

which satisfy 〈n|m〉 = δn,m, 〈q p|qk〉 = δq p,qk and 〈n|q〉 =
N−1
s exp(−2π i N−1

s n·q). The Fourier transforms in this nor-

8 Notice that |x〉 has the same mass dimension as x−1.

malization take the form

|n〉 = 1√
N 2
s

∑
q

e2π i q·n
Ns |q〉 , (A.8)

|q〉 = 1√
N 2
s

∑
n

e−2π i q·n
Ns |n〉 . (A.9)

It is also natural to introduce the operators P = p/ad and
X = x/as , satisfying X̂|n〉 = n|n〉 and P̂ |q〉 = q|q〉. Insert-
ing this operator definitions into Eq. 2, one can extract the
dimensionless Hamiltonian H = asH, given in Eq. 5.

The map to the 1/2-spin registers in the quantum computer
is achieved by decomposing each component of the vector
n = (n1, n2) in the binary basis, e.g.

n1 =
2nQ−1∑
i=0

n(i)
1 2i , (A.10)

where n(i)
1 ∈ {0, 1} and we assume that there are nQ qubits

available, such that 2nQ = Ns is total number of possible
states. If n(i)

1 = 0 then we associate a qubit in the state

|↑〉 = |0〉 to it; conversely if n(i)
1 = 1 we assign |↓〉 = |1〉.

Then, for example, the ket state |n〉 = |3, 3〉 with nQ = 2 is
given by two registers storing the overall state |1, 1〉⊗ |1, 1〉.
Following Eqs. A.8 and A.9, the transformation between the
momentum and position basis is achieved by applying a stan-
dard quantum Fourier transform (qFT) [24].

Finally, in this appendix and in the main text we have
restricted ourselves to considering lattices over positive inte-
ger values of n and q. In an actual implementation, one would
have to consider signed values, since, in general, there is no
condition that physically constrains the system to positive
values.9 In principle, signed values can be dealt with by, for
example, including an extra qubit that stores the sign of the
state (similar to the encoding used in [25]) or using a two’s
complement encoding. This caveat requires one to modify
circuits we detail in the main text to accommodate for the
new encodings. In general, one should be able to do this
without incurring in an exponential number of extra qubits
or basic gate operations,10 nor does it lead to any new con-
ceptual challenge that must be addressed. As such, we do
not further discuss this issue in the paper and leave it for a
future work where we tackle a detailed implementation of
the algorithm.

9 However, one can make a smart frame choice such that this is the
case.
10 See for example [52] for an example on how to restrict the qFT to
the first Brillouin zone.
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Appendix B: Time evolution details

In this appendix we detail the key steps to implement the
time evolution operators UK and UA. For convenience and
clarity, and without loss of generality, we will discuss both
cases in one spatial dimension.

The strategy considered to implement UK was first dis-
cussed in [34]. Starting from a state | p〉 (with p now hav-
ing a single component) one wants to generate the state
exp(−isK p2)| p〉, with sK = εt/(2E) a pure real number
which can be easily computed once all circuit parameters are
fixed. This operation can be implemented by i) adding an
ancilla register with l qubits all in state |0〉 ii) assuming that
a quantum black-box (quantum oracle) can be constructed
that given | p〉 outputs |F( p)〉 = | p2〉.

Regarding the first point, the value of l solely depends
on the numerical accuracy one wants to represent p2 in a
binary basis, roughly l ≥ nQ . An efficient quantum oracle
implementing the above operation can always be constructed
as long as a classical analog exists; this is the case for the
operation at hands.

Given both these conditions are satisfied, we then perform
the following set of operations

| p〉 ⊗ |0〉⊗l a1−→ | p〉 ⊗ |F( p)〉
a2−→ exp(−isK F( p))| p〉 ⊗ |F( p)〉
a3−→ exp(−isK F( p))| p〉 ⊗ |0〉⊗l . (B.11)

Let us detail the above three steps. In a first step –a1– one
applies the quantum oracle, with input | p〉 and stores the
output F( p) in the ancilla register. In step a2 one performs a
transformation of the form

|x〉 → exp(−isK x)|x〉 , (B.12)

with sK a real number and |x〉 denotes the binary decomposi-
tion, with l qubits, of an integer number. This exponentiation
operation can always be performed by applying l single qubit
gates R j (ε) = diag(1, e−isK 2 j

), taking into account that x
can be decomposed as

x =
l∑

j=0

x j2
j , (B.13)

where x j ∈ {0, 1}. Acting on a single qubit the above oper-
ator has non-zero matrix elements 〈0|R j (sK )|0〉 = 1 and
〈1|R j (sK )|1〉 = exp(−isK 2 j ); clearly stringing together l
of such operators with increasing values of j

R(sK ) ≡ R0(sK ) ⊗ R1(sK ) ⊗ · · · ⊗ Rl(sK ) , (B.14)

results in a multi-qubit operator implementing the desired
transformation, i.e. R(sK )|x〉 = exp(−isK x)|x〉.

The final step – a3 – consists in erasing the ancilla register
back to the state |0〉⊗l , which can be achieved by applying
the Hermitian conjugate circuit used in step a1.

The implementation of the operatorUA could be done fol-
lowing exactly the same strategy as just described. However,
as mentioned in the main text, this would require having a
way to construct efficient quantum oracles that, for each time
t , given |x〉 output |A(t, x)〉. We expect that for most cases,
this will be difficult to do.

As an alternative we consider that one is handed a
list of Nt × N 2

s values, describing the field values at all
the relevant spacetime points. Then one can implement
UA by stringing together 2nQ single qubit gates Rα,β ≡
diag(exp(iα), exp(iβ)). Such gates can be written as the
product of the exponential of Pauli gates and the R j gate.
In one spatial dimension and for nQ = 1 one simply has
for the kth

t time slice that αkt = −gεt A(kt · εt , 0) and
βkt = −gεA(kt · εt , 1), where the sub-index denotes the
time slice and there are only two spatial lattice points (|0〉
and |1〉). If we now consider nQ = 2 but still a single spatial
dimension, the respective time evolution operator would be
obtained by

Rα,β ⊗ Rσ,γ =

⎛
⎜⎜⎝

ei(α+σ) 0 0 0
0 ei(α+γ ) 0 0
0 0 ei(β+σ) 0
0 0 0 ei(β+γ )

⎞
⎟⎟⎠ ,

(B.15)

for each time slice. By solving the associated system of linear
equations, one can map {α, β, σ, γ } to {A(x)}, which can be
done offline for any t in a classical computer.

Appendix C: Relation between |ψL〉 and the single par-
ticle momentum distribution

In this appendix we relate |ψL 〉 to the broadening distribution.
The single particle broadening probability for observing a

quark with momentum k due to interactions with the medium
for a time L is given by [15,20,21]

P(L , k) = 1

Nc

∫
x, y

e−ik·(x− y)Tr〈W(L , x)W†(L , y)〉M ,

(C.16)

where W(L , x) is a Wilson line operator along the future
pointing light-cone at a transverse position x, which can be
written in the gauge choice employed in the main text as

W(L , x) = T exp

(
ig

∫ L

0
dt A−(t, x) · T

)
. (C.17)

The above medium average is usually performed by detail-
ing the non-trivial correlators of the background field, in jet
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quenching typically the MV/Gaussian prescription. Using
this further assumption, one can then write the broadening
distribution in terms of a so calleddipole cross-section, which
is typically constrained to recover the Coulomb form at short
distances and to have a model dependent form in the infrared
[44,45].

It is not difficult to check that, in the strict eikonal limit,
where H = HA, the circuit detailed in the main text mirrors
the P distribution. For clarity, we ignore the details in the
implementation of the time evolution operator; additionally,
we assume that the initial state is that of a quark with zero
transverse momentum |ψ0〉 = | p = 0〉.

In this scenario the circuit simplifies significantly since
all but an initial and a final qFT cancel out. Then the system
state transforms as

|0〉 qFT−→ 1√
N 2
s

∑
x

|x〉 UA−→ 1√
N 2
s

∑
x

UA(L , x)|x〉

qFT†

−→ 1

N 2
s

∑
q

[∑
x

UA(L , x)e2π i x·q
Ns

]
|q〉 . (C.18)

The probability of measuring the state |k〉, Pk, is simply
given by

Pk = 1

(N 2
s )2

∑
x, y

e2π i k(x− y)
Ns U †

A(L , y)UA(L , x) . (C.19)

Averaging over all field configurations and noticing that
W(x) = U †

A(x) we obtain

Pk = 1

(N 2
s )2

∑
x, y

e2π i k(x− y)
Ns 〈W(L , y)W†(L , x)〉M , (C.20)

which is just the discretized version of the single particle
broadening distribution P(L , k), as expected (ignoring the
color average, which can be performed as detailed in Sect. 4).
Also, since P is a probability

∫
k P(L , k) = 1, which is

trivially true in the discrete version.
Notice that in our strategy, one does not need to explic-

itly provide a prescription for the field correlators. Of course,
these are embedded in the generated field configurations and
are taken into account (non-perturbatively) by the time evo-
lution operator.

Appendix D: Measurement details

In this appendix we provide some details on the measurement
protocol outlined in the main text.

Taking the initial ancilla state to be |0〉, the measurement
protocol performs

|0〉|ψL〉 V H−→ 1√
2
(|0〉|ψL〉 + |1〉V |ψL〉)

H−→ 1

2
[(1 + V )|0〉|ψL〉 + (1 − V )|1〉|ψL〉] .

(D.21)

Then the expectation value for the random variable χ reads

〈χ〉QM = +1

4
||ψL〉 + V |ψL〉|2 + (−1)

4
||ψL〉 − V |ψL〉|2

= 1

2
〈V + V †〉QM , (D.22)

which is equivalent to the expression in the main text.
The case where the initial ancilla state is |γ 〉 ≡ 1/

√
2(|0〉+

i |1〉), which can be easily generated from the pure state |0〉,
reads

|γ 〉|ψL〉 V H−→ 1

2
((1 + i)|0〉|ψL〉 + (1 − i)|1〉V |ψL〉)

H−→ 1√
8
[((1 + i) + (1 − i)V )|0〉|ψL〉

+((1 + i) − (1 − i)V )|1〉|ψL〉]. (D.23)

Then the expectation value for χ reads

〈χ〉QM = i

2
〈V † − V 〉QM , (D.24)

as indicated in the main text.
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