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Abstract This study is devoted to explore the physical
aspects of wormhole geometry under embedded class-1
spacetime in f (T, τ ) gravity, where τ denotes the trace of
the energy-momentum tensor and T is the torsion. We derive
the embedded class-1 solutions by considering spherically
symmetric static spacetime. The shape function is calculated
in the framework of embedded class-1 spacetime. It is nec-
essary to mention here that the calculated shape function
can be used in other modified theories of gravity. To com-
plete this study, we take diagonal and off-diagonal tetrad, and
try to build a comparison by considering the validity region
of energy conditions in embedded class-1 spacetime. The
embedded surface diagram is given to understand the con-
nection between the two different regions of spacetime. The
validity regions of all the energy conditions are calculated.
A detailed graphical analysis is provided for validity regions
of all the energy conditions. The presence of exotic matter
is confirmed in both the cases as the null energy condition is
violated.

1 Introduction

Some concrete results admit that the Universe is undergoing
a continuous and accelerating expansion [1–10]. An ambigu-
ous and mysterious force famous as Dark Energy (DE) with
negative pressure is alleged responsible as a strong candi-
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date for this rapid accelerated expansion phenomenon of the
Universe. Some other approaches may also be available to
counter this mysterious DE. But a more prominent approach
to understanding this reversed pressure force is to modify
the the Einstein theory of gravity known as general relativ-
ity (GR). To service this motivation, a lot of modifications
of GR such as f (R) gravity, f (T ) gravity etc have been
proposed [11–13]. Considering teleparallel equivalent of GR
(TEGR) as a starting point, one can approach the modified
gravity theory with matter-coupling. As a choice, Harko et al.
[14], have suggested such matter-coupled theory named as
f (T, τ ) gravity. In this particular modification, gravitational
Lagrangian is composed by the arbitrary function compris-
ing the torsion scalar T and trace τ of the energy-momentum
tensor. The f (T, τ ) modification [15–22], explains gravity
in a completely different way while compared to other tor-
sion or curvature-based gravity theories, which is formulated
from the tetrad field. Two types of tetrads were suggested in
[67]. In the current work we use both tetrad formalism cases,
i.e., diagonal and off-diagonal tetrad.

An interesting topic in modern cosmology is the discus-
sion about the existence and formation of wormholes solu-
tions. A wormhole (WH) is a short tunnel or passage to con-
nect two or more different parts of the same or departing
Universes. Primarily they were proposed as a mechanism to
understand GR [23]. Optimistic observational confirmations
about the existence of WHs in GR have been presented in
literature [24–30]. A recent study [31], mentioned two types
of WHs characterized as static and dynamic. The confirma-
tion of exotic matter can be checked from the violation of
null energy condition (NEC) [23,32]. This violation of the
energy conditions is one of the core requirement for the exis-
tence of a WH structure. It was challenging for researchers
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to construct the WH solutions in GR. Whereas GR admits
WH solutions, it requires modifying the matter part with the
necessary inclusion of additional term (as a known fact, nor-
mal matter satisfies the energy conditions that is an adverse
condition for the existence of WHs). So the inclusion of extra
terms permits the violation of energy conditions by providing
the environment for WHs in GR. Einstein and Rosen [33], in
1935, expressed the mathematical formalism for WHs in GR
and suggested the WH solutions famed as Lorentzian worm-
holes or Schwarzchild wormholes. Numerous authors in lit-
erature [34–48] have developed WH solution by generating
different admissible and viable results with the inclusion of
several types of exotic fluids like quintom, scalar field mod-
els, non-commutative geometry and electromagnetic field,
and discussed the energy conditions for different modified
theories of gravity. Some valuable stable results for WHs
without the inclusion of exotic matter are also discussed in
the literature [49,50].

Morris and Thorne [23], expressed that the human being
can travel through the throat of a WH. They discussed the
static and spherically symmetric WHs in GR theory by pre-
senting traversable WHs basic formulation. The study pre-
sented by Morris et al. [23], claims that the presence of exotic
matter has an important contribution in the structural forma-
tion of WHs in the case GR. This exotic matter is a source
of repulsive force having EoS ω < −1/3. Recent studies
also support this concept by taking it as a deriving source
of accelerated expansion of our Universe. During the last
century, GR remained a successful theory. Only addition of
cosmological constant or other sources like Chaplygin gas or
the quintessence fields etc. is needed to elaborate accelerated
expansion of the observable Universe. But some other ways
are also available to explain the DE by modification of grav-
ity. Some WH solutions in modified gravity theories have
been studied in literature [51–56]. In this study, we apply the
principle of f (T, τ ) gravity to calculate the WH solutions.
For this purpose, we apply the renowned Karmarkar condi-
tion (KC) under embedded spacetime by following the work
presented in the literature [57,59]. Karmarkar [60], devel-
oped a condition of embedding class-1 spacetime for a static
and spherically symmetric line element. A lot of work is
presently showing the compact object configurations based
on KC. Kuhfittig [57], have developed a WH geometry by
utilizing KC and shown that the embedding approach may
also provide the foundation for detailed WH solutions. In a
recent work Farasat and Iffat [58], have explored WH solu-
tions in f(R) gravity by using Karmarkar condition.

We structure our paper as follows. In Sect. 2 of this paper,
we present the traversable WH geometry embedding formal-
ism. In Sect. 3 we discuss the basics of f (T, τ ) gravity and
field equations for the WH geometry. In Sect. 4 we write
some necessary detail about our WH solutions using diag-
onal tetrad. In Sect. 5 we discuss the WH solutions using

off-diagonal tetrad. And in the last part we conclude our dis-
cussion about the obtained WH solutions.

2 The geometry of traversable wormhole and
embedding diagram

Our motive in this study is to discuss WH solutions using
KC with embedded class-1 spacetime. For this purpose, we
start with spherically symmetric and static spacetime with
the following line element

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdφ2, (1)

where, ν(r) and λ(r) only functions of the radial coordinate
r . The nonzero components of the Riemann curvature tensor
are expressed as

Rμυηγ = �(�ςη�υγ − ϒμγ ϒνη),

with

0 = ϒμν; n − ϒνη; ν.

These values intimate the space-like or time-like manifold.
The Karmarkar condition [60], is expressed as

R2323R1414 = R1224R1334 + R1212R3434, (2)

where, R2323 �= R1414 �= 0. From Eq. (2) we get the dif-
ferential equation after plugging the Riemann tensor compo-
nents as:

−
(
ν′(r)λ′(r) + ν′(r)2 − 2

(
ν′′(r) + ν′(r)2

))

+ν′(r)λ′(r)
1 − eλ(r)

= 0, eλ(r) �= 1 (3)

By employing integration on Eq. (3) we get a following rela-
tion

eλ(r) = 1 + Aeν(r)ν
′2(r) (4)

where A is an integration constant. The WH geometry is
given as:

ds2 = eν(r)dt2 − 1

1 − S(r)
r

dr2 − r2dθ2 − r2sin2θdφ2.

(5)

We call the metric function ν(r) the red-shift function as
ν(r) → 0 when r → ∞. In this discussion we assume the
red-shift function as [61,62]

ν(r) = −2ζ

r
, (6)

where ζ is an arbitrary constant. From Eqs. (1) and (5) we
can get the following relation for the shape function

eλ(r) = Log

[
r

r − S(r)

]
. (7)
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Fig. 1 shows the evolution of embedding diagram

Here S is known as the WH shape function. By using Eqs. (4,
5, 7) we can derive the shape function, which is calculated
as

S(r) = r − r5

r4 + 4ζ 2Ae− 2ζ
r

. (8)

According to Morris [23], the shape function for a traversable
WH solution should meet the necessary limitations i.e (1).

S(r) − r = 0 at r = r0, (2). S(r)−r S
′
(r)

S(r) > 0 as r = r0,

(3). S
′
(r) < 1 and (4). S(r)

r → 0 as r → ∞, where r0 is
called WH throat radius and r is the radial coordinate such
as r0 < r < ∞. To tackle with the problem a free parameter
L is introduced by adding it in Eq. (8). In the new form it

is S(r) = r − r5

r4+4ζ 2Ae− 2ζ
r

+ L . By utilizing the above Eq.

(1) we get A = r4
0 (r0−L)

4ζ 2e
−2ζ
r

. By considering these values of

unknowns Eq. (8) takes the new form as

S(r) = r − r5

r4 + r4
0 (r0 − L)

+ L , 0 < L < r0. (9)

Now, we discuss the embedding surface diagram and
extract the specifically required conditions to symbolize the
embedded wormhole configuration. To take specific spher-
ical symmetric space-time with an equatorial slice, we use
θ = 2π and t = const. in Eq. (1), which then becomes

ds2 =
(

1 − S(r)

r

)−1

dr2 + r2dφ2, (10)

Equation (10) can be embedded into 3-D Euclidean space-
time with cylindrical symmetry, which is expressed as

ds2
� = dg2 + dr2 + r2dφ2. (11)

The above Eq. (11) can be rewritten as

ds2
� =

(
1 +

(
dg

dr

)2)
dr2 + r2dφ2. (12)

By matching Eqs. (10–12), we get the following relation

dg

dr
= ±

(
r

S(r)
− 1

)−1/2

. (13)

The embedded surface diagram is shown in Fig. 1. The con-
nection between upper Universe g > 0 and Lower Universe
g < 0 at r0 can be confirmed from Fig. 1.

In order to complete this study, we discuss the energy
conditions, i.e., weak energy condition (WEC), null energy
condition (NEC), dominant energy condition (DEC), and
strong energy condition (SEC), are defined as:

WEC : ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0,

NEC : ρ + pr ≥ 0, ρ + pt ≥ 0,

DEC : ρ ≥ 0, ρ − |pr | ≥ 0, ρ − |pt | ≥ 0,

SEC : ρ + pr ≥ 0, ρ + pt ≥ 0, ρ + pr + 2pt ≥ 0.

The above bounds in f (T, τ ) gravity are satisfied by the
normal matter. To explore the WH construction, we shall
examine the validity regions for energy bounds. The invalid
region of NEC confirms the violation, which is the necessary
requirement for WH construction.

3 f (T, τ) gravity

The Lagrangian or action is considered a foundation in the
basic formulation of any theory of gravity. The f (T, τ ) the-
ory is the extended form of f (T ) theory with minimal matter
coupling τ . The action for f (τ, T ) gravity is written as

s =
∫

dx4e{ 1

2k2 f (T, τ ) + L(M)}, (14)
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where, e = det
(
eAμ

) = √−g, k2 = 8πG = 1 and,
τ = δεα

γ τ
γ
εα = [ρ,−pr ,−pt ,−pt ]. Here, Lm based on

tetrad field represents the Lagrangian density. Some impor-
tant aspects, ie., contorsion, torsion, and super potential are
necessary for the f (T, τ ) theory, which are given as:

T λ
ευ = eϑ

λ(∂εe
ϑ

υ − ∂υe
ϑ

ε), (15)

K ευ
λ = −1

2

(
T ευ

λ − T υε
ρ − Tλ

ευ
)
, (16)

Sλ
ευ = 1

2

(
K ευ

λ + δε
λT

γ ε
γ − δυ

λT
γ ε

γ

)
. (17)

where T defines the Lagrangian density as:

T = T λ
κυ Sλ

κυ. (18)

4 CASE-I (diagonal tetrad)

The calculations of field equations for this theory are based
on tetrad, which is a key element in torsional theories of
gravity. The diagonal tetrad is calculated as:

eη
γ =

[
e

ν(r)
2 , e

λ(r)
2 , r, r sin θ

]
, (19)

where e = eν(r)+λ(r)r2 sin θ . The relativistic anisotropic
source of fluid is expressed as

e-m
τ αψ = (ρ + pt )uαuψ − pt gαψ + (pr − pt )vαvψ, (20)

where uα = e
a
2 δ0

α and vα = e
b
2 δ1

α . The energy density,
and the pressure components are expressed by ρ, pr , and pt
respectively. By using the spherically symmetric spacetime
and anisotropic source of matter with the action of f (T, τ )

theory, we get the following set of equations
[
e−1∂ε(ee

α
a S

ψε
α ) + eα

a T
ε
aαS

aψ
ε

]
fT

+eα
a S

ψε
α ( fT T ∂εT + fT τ ∂ετ )

+eψ
a f

4
−

(
eα
a τ

ψ
α + pte

ψ
a

2

)
fτ = eα

a

e-m
T

ψ

α

4
. (21)

Torsion scalar T in Eq. (18) is calculated as

τ(r) = 2e−λ(r)
(
ν′(r) + 1

r

)

r
. (22)

After utilizing Eqs. (15–17, 22) in Eq. (21) we get the follow-
ing expressions for energy density and pressure components

ρ = −e−λ(r)

r

(
fττ τ

′ + fτ TT
′)

−
(

τ(r) − 1

r2 − e−λ(r)
(
λ′(r) + ν′(r)

)

r

)
fτ
2

+ f

4

−1

2
fT (pt + ρ), (23)

pr =
(

τ(r) − 1

r2

)
fτ
2

− f

4
+ fT

2
(pt − pr ), (24)

pt = e−λ(r)

2

(
ν′(r)

2
+ 1

r

) (
fττ τ

′ + fτTT
′)

+
[
τ(r)

2
+ e−λ(r)

[
ν′′(r)

2
+

(
ν′(r)

4
+ 1

2r

)

×
[
ν′(r) − λ′(r)

]]]
fτ
2

− f

4
. (25)

The above field equations are based on diagonal tetrad,
which is only compatible with the linear model of f (T, τ )

gravity. Any other form of model of f (T, τ ) gravity follows
some solar constraints [63,64], in case of diagonal choice of
tetrad. By taking into account the choice of tetrad we apply
linear model of the form f = αT (r) + β(τ)(r) + φ. Where
α is any arbitrary constant, β is coupling parameter and φ is
cosmological constant calculated in [65]. After solving Eqs.
(23–25) and Eq. (22) and considering the function of f (T, τ )

theory we get the split form of ρ, pr and pt

ρ = − 1

4(β − 1)(β + 2)r2

[
e−λ(r)

[
2αβ − 4α + αβr2λ′(r)ν′(r)

−2αβr2ν′′(r) − αβr2ν′(r)2 + βr2φeλ(r) + 2r2φeλ(r)

−αβrλ′(r) − 2αβeλ(r) − 3αβrν′(r) + 4αrλ′(r) + 4αeλ(r)
]]

,

(26)

pr = 1

4(β − 1)(β + 2)r2

[
e−λ(r)

[
2αβ − 4α + αβr2λ′(r)ν′(r)

−2αβr2ν′′(r) − αβr2ν′(r)2 + βr2φeλ(r) + 2r2φeλ(r)

+3αβrλ′(r) − 2αβeλ(r) + αβrν′(r) + 4αeλ(r)4αrν′(r)
]]

, (27)

pt = 1

4(β − 1)(β + 2)r2

[
e−λ(r)

[
− 2αβ + αr2λ′(r)ν′(r)

−2αr2ν′′(r) − αr2ν′(r)2 + βr2φeλ(r) + 2r2φeλ(r) + αβrλ′(r)

+2αβeλ(r) − αβrν′(r) + 2αrλ′(r) − 2αrν′(r)
]]

. (28)

By incorporating Eqs. (6,7), the components of WH geom-
etry we obtain the final expressions representing solutions
in form of density ρ, radial pressure pr and tangential pres-
sure pt :

ρ = 1

4
(
β2 + β − 2

)
r5

×
[
r
(−(β + 2)r4φ − 2αβζ(r − 2ζ ) + αr((β − 4)r − 2βζ)S′(r)

)

+αβ
(−4ζ 2 + r2 + 4ζr

)
S(r)

]
, (29)

pr = 1

4
(
β2 + β − 2

)
r5

×
[
r
(
(β + 2)r4φ

−2αζ(2βζ − 5βr + 4r) + αβr(2ζ + 3r)S′(r)
)

+αS(r)
(
4βζ 2 + (4 − 5β)r2 + 4(2 − 3β)ζr

) ]
, (30)

pt = 1

4
(
β2 + β − 2

)
r5
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Fig. 2 Shows the evolution of energy density ρ

×
[
r
(
(β + 2)r4φ − 2αζ(2ζ + (β − 2)r)

+αr(2ζ + (β + 2)r)S′(r)
)

+αS(r)
(
4ζ 2 + (β − 2)r2 + 2(β − 3)ζr

) ]
. (31)

After replacing the shape function from Eq. (9) in above
equations we get

ρ = 1

4
(
β2 + β − 2

)
r5

[
r
[αrr4

0 (L − r0)
(
r4

0 (L − r0) + 3r4
)
((β − 4)r − 2βζ)

(
r4

0 (r0 − L) + r4
)2

−(β + 2)r4φ

−2αβζ(r − 2ζ )
]

+ αβ
(−4ζ 2 + r2 + 4ζr

)

×
(

− r5

−Lr4
0 + r4 + r5

0

+ L + r

)]
, (32)

pr = 1

4
(
β2 + β − 2

)
r5

[
r
[αβrr4

0 (L − r0)(2ζ + 3r)
(
r4

0 (L − r0) + 3r4
)

(
r4

0 (r0 − L) + r4
)2

+(β + 2)r4φ − 2αζ(2βζ

+(4 − 5β)r)
]

+ α

(
− r5

−Lr4
0 + r4 + r5

0

+ L + r

)

× (
4βζ 2 + (4 − 5β)r2 + 4(2 − 3β)ζr

) ]
, (33)

pt = 1

4
(
β2 + β − 2

)
r5

[
r
[αrr4

0 (L − r0)
(
r4

0 (L − r0) + 3r4
)
(2ζ + (β + 2)r)

(
r4

0 (r0 − L) + r4
)2

+(β + 2)r4φ − 2αζ(2ζ

+(β − 2)r)
]

+ α

(
− r5

−Lr4
0 + r4 + r5

0

+ L + r

)

(
4ζ 2 + (β − 2)r2 + 2(β − 3)ζr

) ]
. (34)

The energy conditions for the diagonal case are given in the
Appendix I.

It can be confirmed from the left panel of Fig. 2 that the
energy density, i.e., ρ ≥ 0 in r0 ≤ r < 3.5 and ρ < 0 in
3.5 ≤ r ≤ 7 with 0 < α ≤ 10 for the specific value of
β = 10. It is also noticed from the same panel ρ ≤ 0 in
r0 ≤ r < 3.5 and ρ > 0 in 3.5 ≤ r ≤ 7 with −10 < α ≤ 0
for the specific value of β = 10. The right panel of Fig. 2
provides the valid region of energy density with α = 5 for
−10 ≤ β ≥ 10. It can be seen from the left part of Fig. 3 that
the expression, i.e., ρ+ pr ≤ 0 in r0 ≤ r < 5 for 0 < α ≤ 10
with β = 10. The expression ρ+pr is also noticed negative in
5 ≤ r ≤ 7 for −10 < α ≤ 0 with β = 10. It can be checked
from the right part of Fig. 3 that ρ + pr ≤ 0 in r0 ≤ r < 5
for −2 < β ≤ 10 with α = 5. Further, ρ + pr is also seen
negative in 5 ≤ r ≤ 7 for −10 < β ≤ −2 with α = 5. The
negative and invalid region of ρ + pr shows the violation of
null energy condition. The violation of null energy condition
confirms the presence of exotic matter, which is necessary
requirement for the compatible and traversability for the WH
existence. The valid region for ρ − pr can be verified from
the Fig. 4 by left and right apart for the different choices of
involved parameters. Figures 5 and 6 provide the detail of
valid region for ρ + pt and ρ − pt respectively. The valid
region for the strong energy condition is shown in Fig. 7 for
the different ranges of involved parameters. All the energy
conditions for diagonal tetrad are summarized in Table 1.

5 CASE-II (OFF-diagonal tetrad)

TEGR has a unanimous geometric formulation for the ges-
ticulations of gravitational field. The root formulation of this
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Fig. 3 Shows the evolution of ρ + pr

Fig. 4 Shows the evolution of ρ − pr

Fig. 5 Shows the evolution of ρ + pt

123
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Fig. 6 Shows the evolution of ρ − pt

Fig. 7 Shows the evolution of ρ + pr + 2pt

theory is dependent on the tetrad field. The known real-
ity about these fields is that they are generic ingredients
to link the Dirac spinor fields with the gravitational field,
also tetrad fields provide a detailed explanation about the
reference frames in line element over a manifold. Gener-
ally, without the boundary conditions imposed on the tetrad
fields, TEGR is invariant under the global Lorentz group
SO(3,1) structure. Therefore, gauge transformations cannot
exclude the six degrees of freedom furnished by the tetrad
fields (which is genuinely relative to the metric tensor) like
the Einstein–Cartan theory, as it exhibits local SO(3,1) sym-
metry. Contrarily, reference frame is designed based on the
six ingredients of the acceleration tensor [66], which is the
main source for specification of inertial anticipations of the
frame. It is valuable to express that in TEGR the tetrad frame-
work governs both the gravitational field and reference frame.
As the f (T, τ ) gravity is dependent on the coupling of matter
term τ with the torsion T , so the tetrad framework is essential

in the set up of this matter coupled theory. In development of
field equations, tetrad contributes as a defining role. In view
of Tamanini and Boehmer [67], two types of tetrads can be
used as good and bad (poor) tetrads. Use of diagonal tetrad
is not a suitable choice as it forces some solar system con-
straints [63,64]. Here, in this section we inject good tetrad
in field equations. to minimize the discrepancies of diagonal
tetrad.

eη
γ =

⎛
⎜⎜⎜⎜⎝

e
ν(r)

2 0 0 0

0 e
λ(r)

2 sin θ cos φ r cos θ cos φ −r sin θ sin φ

0 e
λ(r)

2 sin θ sin φ r cos θ sin φ r sin θ cos φ

0 e
λ(r)

2 cos θ −r sin θ 0

⎞
⎟⎟⎟⎟⎠

(35)

where e describes eη
γ which is given as eν(r)+λ(r)r2 sin θ . Tor-

sion T (r) and its derivative T ′(r) relative to “r”, calculated
from Eq. (18) in case of the off diagonal tetrads are given by
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Table 1 Summery of energy conditions in extended teleparallel gravity with diagonal tetrad

Expressions α β

Valid region for diagonal tetrad

ρ ρ ≥ 0 in r0 ≤ r < 3.5 for α ∈ [0, 10] ρ ≥ 0 in r0 ≤ r < 4.0 for β ∈ [1, 10]
ρ ≥ 0 in 3.5 ≤ r ≤ 7 for α ∈ [−10, 0) ρ ≥ 0 in 2.8 ≤ r ≤ 7 for β ∈ [−10,−2)

ρ + pr ρ + pr ≥ 0 in 5 ≤ r < 7 for α ∈ [0, 10] ρ + pr ≥ 0 in 5 ≤ r < 7 for β ∈ [−2, 10]
ρ + pr ≥ 0 in r0 ≤ r ≤ 7 for α ∈ [−10, 0) ρ + pr ≥ 0 in r0 ≤ r < 5 for β ∈ [−10, 2)

ρ − pr ρ − pr ≥ 0 in r0 ≤ r < 4.5 for α ∈ [0, 10] ρ − pr ≥ 0 in r0 ≤ r < 4.7 for β ∈ [1, 10]
ρ − pr ≥ 0 in 4.5 ≤ r ≤ 7 for α ∈ [−10, 0) ρ − pr ≥ 0 in 4.3 ≤ r < 7 for β ∈ [−10,−2)

ρ + pt ρ + pt ≥ 0 in r0 ≤ r < 2.7 for α ∈ [0, 10] ρ + pt ≥ 0 in r0 ≤ r < 2.7 for β ∈ [−2, 10]
ρ + pt ≥ 0 in 2.7 ≤ r ≤ 7 for α ∈ [−10, 0) ρ + pt ≥ 0 in 2.7 ≤ r ≤ 7 for β ∈ [−10,−2)

ρ − pt ρ − pt ≥ 0 in 1 ≤ r < 2.7 for α ∈ [0, 10] ρ − pt ≥ 0 in 1.5 ≤ r < 7 for β ∈ [−2, 10]
ρ − pt ≥ 0 in r0 ≤ r ≤ 1 for α ∈ [−10, 0) ρ − pt ≥ 0 in r0 ≤ r ≤ 0.8 for β ∈ [−10,−2)

ρ + pr + 2pt ρ + pr + 2pt ≥ 0 in r0 ≤ r < 1.6 for α ∈ [0, 10] ρ + pr + 2pt ≥ 0 in r0 ≤ r < 1.5 for β ∈ [−2, 10]
ρ + pr + 2pt ≥ 0 in 1.6 ≤ r ≤ 7 for α ∈ [−10, 0) ρ + pr + 2pt ≥ 0 in 1.6 ≤ r ≤ 6.4 for β ∈ [−10,−2)

Invalid region for diagonal tetrad

ρ ρ < 0 in 3.5 ≤ r ≤ 7 for α ∈ [0, 10] ρ < 0 in 4.0 ≤ r ≤ 7 for β ∈ [1, 10]
ρ < 0 in r0 ≤ r ≤ 3.5 for α ∈ [−10, 0) ρ < 0 in r0 ≤ r ≤ 2.8 for β ∈ [−10,−2)

ρ + pr ρ + pr < 0 in r0 ≤ r < 5 for α ∈ [0, 10] ρ + pr < 0 in r0 ≤ r < 5 for β ∈ [−2, 10]
ρ + pr < 0 in 5 ≤ r ≤ 7 for α ∈ [−10, 0) ρ + pr < 0 in 5 ≤ r ≤ 7 for β ∈ [−10,−2)

ρ − pr ρ − pr < 0 in r0 ≤ r < 4.5 for α ∈ [0, 10] ρ − pr < 0 in 4.7 ≤ r < 7 for β ∈ [−2, 10]
ρ − pr < 0 in 4.5 ≤ r ≤ 7 for α ∈ [−10, 0) ρ − pr < 0 in r0 ≤ r ≤ 4.3 for β ∈ [−10,−2)

ρ + pt ρ + pt < 0 in 2.7 ≤ r < 7 for α ∈ [0, 10] ρ + pt < 0 in 2.7 ≤ r < 7 for β ∈ [−2, 10]
ρ + pt < 0 in r0 ≤ r ≤ 2.7 for α ∈ [−10, 0) ρ + pt < 0 in r0 ≤ r ≤ 2.7 for β ∈ [−2, 10)

ρ − pt ρ − pt < 0 in r0 ≤ r < 1.0 for α ∈ [0, 10] ρ − pt < 0 in r0 ≤ r < 1.2 for β ∈ [−2, 10]
ρ − pt < 0 in 1 < r ≤ 7 for α ∈ [−10, 0) ρ − pt < 0 in .8 ≤ r ≤ 7 for β ∈ [−10,−2)

ρ + pr + 2pt ρ + pr + 2pt < 0 in 1.8 ≤ r < 7 for α ∈ [0, 10] ρ + pr + 2pt < 0 in 1.6 ≤ r < 6.9 for β ∈ [−2, 10]
ρ + pr + 2pt < 0 in r0 ≤ r < 1.8 for α ∈ [−10, 0) ρ + pr + 2pt < 0 in r0 ≤ r ≤ 1.6 for β ∈ [−10,−2)

T (r) =
2e−λ(r)

(
e

λ(r)
2 − 1

) (
e

λ(r)
2 − rν′(r) − 1

)

r2 , (36)

T ′ = −
4e−λ(r)

(
e

λ(r)
2 − 1

) (
e

λ(r)
2 − rν′(r) − 1

)

r3

+
e− λ(r)

2 λ′(r)
(
e

λ(r)
2 − rν′(r) − 1

)

r2

−
2e−λ(r)

(
e

λ(r)
2 − 1

)
λ′(r)

(
e

λ(r)
2 − rν′(r) − 1

)

r2

+ 1

r2 2e−λ(r)
(
e

λ(r)
2 − 1

)

[
1

2
e

λ(r)
2 λ′(r) − rν′′(r) − ν′(r)

]
. (37)

Generalized field equations of f (T, τ ) gravity for off diag-
onal tetrad by using Eqs. (20, 21) and (35) in form of ρ, pr
and pt

ρ = −
e− λ(r)

2

(
e− λ(r)

2 − 1
) (

fTTT ′ + fTτ τ
′)

r

−1

2
fT

(
− e−λ(r)

(
1 − rλ′(r)

)

r2 − 1

r2 + T (r)

2

)
+ f

4
+ 1

2
fτ

×(pt + ρ), (38)

pr =
(
e−λ(r)

(
rν′(r) + 1

)

r2 − 1

r2 + T (r)

2

)
fT
2

− f

4
− 1

2
fτ (pt − pr ), (39)

pt = 1

2
e−λ(r)

(
− e

λ(r)
2

r
+ ν′(r)

2
+ 1

r

)
(
fTTT

′ + fTτ τ
′)

+
[
e−λ(r)

((
ν′(r)

4
+ 1

2r

) (
ν′(r) − λ′(r)

) + ν′′(r)
2

)

+T (r)

2

] fT
2

− f

4
. (40)

In our discussion we use a generic f (T, τ ) model which
involves higher powers of torsion and is defined as

f (T, τ ) = αT n(r) + βτ(r) + φ, (41)

where α, β and φ are unknown and real arbitrary constant as
explained in section-I V and n �= 0. TEGR is recovered if we
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Fig. 8 Shows the evolution of energy density ρ

Fig. 9 Shows the evolution of ρ + pr

set these parameters α = n = 1, β = φ = 0. By putting n =
2 and φ = 0 we receive a model f (T, τ ) = αT 2(r)+βτ(r),
which had already been used in Harko et al. [14], to study
the cosmic aspects. In literature [21,22], authors worked on
the linear choice of torsion i.e., n = 1 which we use in
section-I V . However, in this section we presented results
for quadratic contribution of torsion by choosing n = 2 by
reducing the Eq. (41) as f (T, τ ) = αT 2(r) + βτ(r) + φ.
After replacing the WH geometry from Eq. (6, 7) and values
from Eqs. (36–37) along with trace term τ = ρ − pr − 2pt
and by using the model (41) for n = 2, we split Eqs. (38–40)
as WH solutions in the form of ρ, pr , pt as:

ρ = (g2(r))2

4(β − 2)(β − 1)r6
[

− 60αβ + 72α + g3(r)g4(r) + g5(r)

+192αβζ
√
g1(r)

r
− g6(r) + g(7)

]
, (42)

pr = (g2(r))2

4(β − 2)(β − 1)r6
[

− 36αβ + 24α + g8(r)g9(r) − g10(r)

+64αβζ
√
g1(r)

r
− g11(r) + g12(r)

]
, (43)

pt = (g2(r))2

4(β − 2)(β − 1)r6

[
12αβ − 24α + 1

g2(r)
g13(r)

+g14(r) + g15(r) + g16(r)

]
, (44)

where gi (r), {i = 1, . . . , 16} are given in the Appendix II.
The energy conditions for the off-diagonal case are given in
the Appendix III.

It can be observed from the left panel of Fig. 8 that ρ ≥ 0
in r0 ≤ r < 2.8 and ρ < 0 in 2.8 ≤ r ≤ 7 with 0 <

α ≤ 10 with β = 10. It is also perceived from the same
panel ρ ≤ 0 in r0 ≤ r < 2.8 and ρ > 0 in 2.8 ≤ r ≤ 7
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Fig. 10 Shows the evolution of ρ − pr

Fig. 11 Shows the evolution of ρ + pt

Fig. 12 Shows the evolution of ρ − pt
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Fig. 13 Shows the evolution of ρ + pr + 2pt

with −10 < α ≤ 0 with β = 10. The right panel of Fig. 8
provides the valid region of energy density with α = 5 for
−10 ≤ β ≥ 10. It can be checked from the left part of Fig.
9 that ρ + pr ≤ 0 in r0 ≤ r < 3.2 for 2 < α ≤ 10 with
β = 10. The null energy condition, i.e., ρ + pr is also seen
negative in 3.2 ≤ r ≤ 7 for −10 < α ≤ 2 with β = 5. It is
verified from the right portion of Fig. 9 that ρ + pr ≤ 0 in
3.2 ≤ r < 7 for 2 < β ≤ 10 with α = 5. Further, ρ + pr is
also observed negative in 3.2 ≤ r ≤ 7 for −10 < β ≤ 2 with
α = 5. The invalid region of ρ + pr from Fig. 9 shows the
negative region which violate the null energy condition. The
invalidity of null energy condition approaches to the presence
of the exotic matter, which is fundamental requirement for
for the WH existence. The positive region for ρ − pr can
be confirmed from the Fig. 10 by the both penal. Figures 11
and 12 express the valid and invalid regions for both ρ + pt
and ρ − pt respectively. The valid and invalid regions for the
strong energy condition are shown in Fig. 13 for the different
ranges of involved parameters. All the energy conditions for
off-diagonal tetrad are summarized in Table 2.

6 Equilibrium analysis

Here we provide the equilibrium analysis for two different
models in f (T, τ ) gravity. For this purpose, we shall con-
sider the Tolman–Oppenheimer–Volkoff (TOV) equation for
f (T, τ ) gravity which is defined as

2�

r
− dpr

dr
− a′

2
(ρ + pr )

− (2β)

β + 1

(
−1

4

dpr
dr

− dpt
dr

+
dρ
dr

4

)
= 0. (45)

The above T OV equation can be rearranged as, Fg +Fh +
Fa + Fe = 0 where Fg = a′(r)

2 (ρ + pr ), Fh = dpr
dr , Fa =

2�
r , and Fe = (2β)

β+1

(
− 1

4
dpr
dr − dpt

dr +
dρ
dr
4

)
. Here Fa , Fh , Fg

and Fe represent the anisotropic, hydrostatic, gravitational
forces, and extra force, respectively.

The balancing behavior of four the different forces via
TOV equation can be checked from Fig. 14 for both the diag-
onal and off-diagonal cases under particulars values of the
involved parameters. In both the cases, it is observed that
balanced behavior of the TOV equation provides the stable
configuration for the existence of WHs.

7 Conclusion

The main focus of this work was to investigate the WH
solutions in f (T, τ ) gravity. In this paper, we carried the
useful discussion for WH geometry in the embedded class-
1 spacetime. As the first attempt, we derived the embed-
ded class-1 solutions by taking spherically symmetric static
spacetime with an anisotropic source of matter. The shape
function is calculated in the framework of embedded class-1
spacetime. A debate regarding the existence of the wormhole
and the construction of its solutions with different aspects
is among the most interesting challenges in modern astro-
physics. Recently, Falco et al. [68,69] discussed the equations
of motion of a test particle in the equatorial plane around a
WH geometry influenced by a radiation field in the precise
of general relativistic and in extended gravity by considering
Poynting–Robertson effect. They have established a diagnos-
tic to distinguish a black hole from a WH, which numerous
and different observational data can quickly be reinforced.
Falco and his coauthors [70] have presented an approach to
reconstruct WH solutions through extended theories of grav-
ity in the weak gravitational field limit. In the weak-field
limit, GR reduces to the Newtonian theory. Still, the obser-
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Table 2 Summery of energy conditions in extended teleparallel gravity with off-diagonal tetrad

Expressions α β

Valid region for off-diagonal tetrad

ρ ρ ≥ 0 in r0 ≤ r < 2.8 for α ∈ [0, 10] ρ ≥ 0 in r0 ≤ r < 2.8 for β ∈ [1, 10]
ρ ≥ 0 in 2.8 ≤ r ≤ 7 for α ∈ [−10, 0) ρ ≥ 0 in 2.8 ≤ r ≤ 7 for β ∈ [−10, 2)

ρ + pr ρ + pr ≥ 0 in 3.2 ≤ r < 7 for α ∈ [0, 10] ρ + pr ≥ 0 in r0 ≤ r < 3.1 for β ∈ [2, 10]
ρ + pr ≥ 0 in r0 ≤ r ≤ 3.27 for α ∈ [−10, 0) ρ + pr ≥ 0 in 3.1 ≤ r < 7 for β ∈ [−10, 2)

ρ − pr ρ − pr ≥ 0 in r0 ≤ r < 7 for α ∈ [0, 10] ρ − pr ≥ 0 in r0 ≤ r < 7 for β ∈ [−10, 1]
ρ + pt ρ − pr < 0 in r0 ≤ r < 7 for α ∈ [−10, 0) ρ − pr < 0 in r0 ≤ r < 7 for β ∈ [−10, 2]
ρ − pt ρ − pt ≥ 0 in 6.2 ≤ r < 7 for α ∈ [0, 10] ρ − pt ≥ 0 in r0 ≤ r < 7 for β ∈ [2, 10]

ρ − pt ≥ 0 in r0 ≤ r ≤ 6.2 for α ∈ [−10, 0) ρ − pt ≥ 0 in 6.4 ≤ r ≤ 7 for β ∈ [−10, 1)

ρ + pr + 2pt ρ + pr + 2pt ≥ 0 in r0 ≤ r < 7 for α ∈ [0, 10] ρ + pr + 2pt ≥ 0 in r0 ≤ r < 7 for β ∈ [−10, 2]
Invalid region for off-diagonal tetrad

ρ ρ < 0 in 2.8 ≤ r ≤ 7 for α ∈ [0, 10] ρ < 0 in 3 ≤ r ≤ 7 for β ∈ [1, 10]
ρ < 0 in r0 ≤ r ≤ 2.8 for α ∈ [−10, 0) ρ < 0 in r0 ≤ r ≤ 2.7 for β ∈ [−10, 2)

ρ + pr ρ + pr < 0 in r0 ≤ r < 3.2 for α ∈ [0, 10] ρ + pr < 0 in 3.1 ≤ r < 7 for β ∈ [2, 10]
ρ + pr < 0 in 3.2 ≤ r ≤ 7 for α ∈ [−10, 0) ρ + pr < 0 in r0 ≤ r ≤ 3.1 for β ∈ [−10, 2)

ρ − pr ρ − pr < 0 in r0 ≤ r < 7 for α ∈ [−10, 0) ρ − pr < 0 in r0 ≤ r < 7 for β ∈ (1, 10]
ρ + pt ρ − pr < 0 in r0 ≤ r < 7 for α ∈ [−10, 0) ρ − pr < 0 in r0 ≤ r < 7 for β ∈ (2, 10]
ρ − pt ρ − pt < 0 in r0 ≤ r < 6.2 for α ∈ [0, 10] ρ − pt < 0 in r0 ≤ r < 7 for β ∈ (1, 2]

ρ − pt < 0 in 6.2 < r ≤ 7 for α ∈ [−10, 0) ρ − pt < 0 in r0 ≤ r < 6.4 for β ∈ [−10, 1]
ρ + pr + 2pt ρ + pr + 2pt < 0 in r0 ≤ r < 7 for α ∈ [−10, 0] ρ + pr + 2pt < 0 in r0 ≤ r < 7 for β ∈ [2, 10]

Fig. 14 Shows the balanced behavior of of Fi

vations on the rotational curves and mass to light ratios of
some galaxies displayed a clear departure from the standard
explanation. Therefore, to address such an issue, modified
theories of gravity have been proposed. The geodesic struc-
ture for the traversable WH is discussed by Chakraborty and
his coauthor Pradhan [71]. They have also shown the Kep-
lerian frequency for the WH geometry. In this continuation,
Falco and his collaborators [72] have calculated epicyclic fre-
quencies for WH geometries. Further, they have checked the
physical implications of their proposed epicyclic methods.

All the necessary properties for the existence of WH in the
current analysis, are satisfied for the particulars values of the
involved parameters, which are reported in [58]. In the cur-
rent analysis, we explored the following necessary aspects
for the WH discussion:

• In this work, we have calculated the filed equations
for f (T, τ ) gravity with both the diagonals for the
anisotropic source of matter for the WH spacetime.
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• We have provided a detailed discussion for embedded
spacetime to be a class-1 solution. We have also com-
bined the basic concept of class-1 spacetime with the
spherically symmetric static spacetime and successfully
calculate the shape function under the embedded space-
time.

• The embedding surface diagram for embedded WH con-
figuration is presented as Fig. 1 undertake the specific
spherically symmetric spacetime with an equatorial slice,
we used θ = 2π and t = const. via Eq. (1).

• We have calculated the validity region for the energy con-
ditions in the framework of diagonal and off-diagonal
tetrads. For the diagonal case, the valid region of energy
conditions, ρ, ρ + pr , ρ − pr , ρ + pt , ρ − pt , and
ρ + pr +2pt for −10 ≤ α < 10 with β = 10 is provided
in Figs. 2, 3, 4, 5, 6 and 7. From the same Figs. 3, 4, 5, 6
and 7, we have also checked the validity of region with
−10 ≤ β < 10 with α = 5 for all the energy conditions.

• For the off-diagonal case, the valid region of expressions
ρ, ρ + pr , ρ − pr , ρ + pt , ρ − pt , and ρ + pr + 2pt
for −10 ≤ α < 10 with β = 10 is presented in Figs. 8,
9, 10, 11, 12, and 13. Further, we have also verified the
positive region with −10 ≤ β < 10 with α = 5 for all
the above mentioned expression, which is also provided
in Figs. 8, 9, 10, 11, 12, and 13.

• In both the cases, the invalid region of ρ + pr shows
the violation of NEC . The violating behavior of NEC
confirms the presence of the exotic matter. The presence
of the exotic matter shows the supremacy and physical
acceptability of embedded spacetime in the study of WH
solutions in f (T, τ ) gravity.

• The stability analysis is provided via TOV equation for
f (T, τ ) gravity in Fig. 14.

• All the energy conditions for diagonal and off-diagonal
tetrad are summarized in Tables 1 and 2 respectively.

It can be concluded that the embedded class-1 is suitable for
the WH geometry, which means that the obtained solutions
in the background of f (T, τ ) gravity are viable due to the
presence of the exotic matter.
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Appendix I

ρ + pr = 1

(β + 2)r4
(
r4

0 (r0 − L) + r4
)2

×
[
2αζ

(
r4

0 (r0 − L) + r4)

×
(
L2r4

0 − L
(
r4 + r5

0

)
+ r5

)

−αr
(
L3r8

0 − 2L2r9
0 + Lr8 + 2r4r5

0 (L + 2r)

−2Lr4r4
0 (L + 2r) + Lr10

0

) ]
, (46)

ρ − pr = αL
(−4βζ 2 + (3β − 2)r2 + 4(2β − 1)ζr

) + r3

2
(
β2 + β − 2

)
r5

×
[ 2α(
r4

0 (r0 − L) + r4
)2

[
r4

0 (L − r0)

× (
(β − 2)r4

0 (L − r0) − (3β + 2)r4)

+ζr3 (
(2 − 3β)r4 − (β + 2)r4

0 (L − r0)
) + 2βζ 2r2

× (
r4

0 (r0 − L) + r4) ]
− (β + 2)r2φ

]]
, (47)

ρ + pt = α

2(β + 2)r5
(
r4

0 (r0 − L) + r4
)2

×
[
2ζ 2 (

r4
0 (r0 − L) + r4)

×
(
L2r4

0 − L
(
r4 + r5

0

)
+ r5

)
+ r2

×
(
L2r8

0 (L + 2r) + Lr8 + 2r4r5
0 (L − r)

+2Lr4r4
0 (r − L) + r10

0 (L + 2r) − 2Lr9
0 (L + 2r)

)

+ζr
(
3L3r8

0 − 6L2r9
0 + r8(3L − 2r)

+2r4r5
0 (3L + r) − 2Lr4r4

0 (3L + r) + 3Lr10
0

) ]
, (48)

ρ − pt = 2αL
(−2(β + 1)ζ 2 + r2 + (β + 3)ζr

) + 2r3

4
(
β2 + β − 2

)
r5

×
[ 2α(
r4

0 (r0 − L) + r4
)2

[
− r4

0 (r0 − L)

× (
r4

0 (r0 − L) − 5r4)

−ζr3 (
(2β + 1)r4

0 (L − r0) + r4)

+(β + 1)ζ 2r2 (
r4

0 (r0 − L) + r4) ]
− (β + 2)r2φ

]
,

(49)

ρ + pr + 2pt = 1

2
(
β2 + β − 2

)
r5

(
r4

0 (r0 − L) + r4
)2

×
[
α

(−L3) r8
0

(−4ζ 2 + βr2 + 2(β + 1)ζr
) + L2r4

0

×
(
(β + 2)r5r4

0 φ + 2α

×
(

2(β + 1)ζr
(
r4 + r5

0

)
− 4ζ 2

(
r4 + r5

0

)

+βr2
(
r4 + rr4

0 + r5
0

)))
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−L
[
2(β + 2)r5r4

0 φ
(
r4 + r5

0

)

+α
[
2ζr

[
(β + 1)r8 + (β − 4)r5r4

0 + 2(β + 1)r4r5
0

+(β + 1)r10
0

]
− 4ζ 2

[
r8 + r5r4

0 + 2r4r5
0 + r10

0

]

+βr2
[
r8 − 10r5r4

0 + 2r4r5
0 + 4rr9

0

+r10
0

]]]
+ (β + 2)r5φ

(
r4 + r5

0

)2

+2αr3
[
βr5

0

(
r5

0 − 5r4
)

+ζr3
(
βr4 + (β − 4)r5

0

)

−2ζ 2r2
(
r4 + r5

0

) ]]
. (50)

Appendix II

g1(r) = r
r5

r4
0 (r0−L)+r4 − L

, g2(r) = L − r5

r4
0 (r0 − L) + r4

,

g3(r) = 4α(3β − 4)
(√

g1(r) − 1
)2

(2ζ + r)

r
(
r4

0 (r0 − L) + r4
) (

L2r4
0 − L

(
r4 + r5

0

) + r5
) ,

g4(r) =
[
L3r8

0 − 2L2r4
0

(
r4 + r5

0

)

+L
(
r8 − 4r5r4

0 + 2r4r5
0 + r10

0

)
+ 4r5r5

0

]
,

g5(r) = 16αζ 2
(√

g1(r) − 1
) (

(β − 2)
√
g1(r) + 2

)

r2 ,

g6(r) = 8αζ
(√

g1(r) − 1
) (

3β
(√

g1(r) − 3
) + 8

)

r
,

g7(r) = 48αβ(g1(r))
3/2 + 160αβ

√
g1(r)

−256αζ
√
g1(r)

r
− 64α(g1(r))

3/2

−192α
√
g1(r) − βr6φ

(g2(r))2

+ 2r6φ

(g2(r))2 − 4αβr2

(g2(r))2 + 8αr2

(g2(r))2

+96αβζ

g2(r)
+ 144αβr

g2(r)
− 128αζ

g2(r)

−176αr

g2(r)
− 96αβζ

r
+ 128αζ

r
,

g8(r) = 4αβ
(√

g1(r) − 1
)2

(2ζ + r)

r
(
r4

0 (r0 − L) + r4
) (

L2r4
0 − L

(
r4 + r5

0

) + r5
) ,

g9(r) =
[
L3r8

0 − 2L2r4
0

(
r4 + r5

0

)

+L
(
r8 − 4r5r4

0 + 2r4r5
0 + r10

0

)
+ 4r5r5

0

]
,

g10(r) = 16αζ 2
(√

g1(r) − 1
) (−4β + (β − 2)

√
g1(r) + 6

)

r2 ,

g11(r) = 8αζ
(√

g1(r) − 1
) (−11β + 3(3β − 4)

√
g1(r) + 12

)

r
,

g12(r) = 16αβ(g1(r))
3/2 + 96αβ

√
g1(r)

−64α
√
g1(r) + βr6φ

(g2(r))2

− 2r6φ

(g2(r))2 + 4αβr2

(g2(r))2 − 8αr2

(g2(r))2

+32αβζ

g2(r)
+ 80αβr

g2(r)

− 48αr

g2(r)
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Appendix III
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