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Abstract Recently, a new cosmological framework, dubbed
Ricci cosmology, has been proposed. Such a framework has
emerged from the study of relativistic dynamics of fluids out
of equilibrium in a curved background and is characterised by
the presence of deviations from the equilibrium pressure in
the energy–momentum tensor which are due to linear terms
in the Ricci scalar and the Ricci tensor. The coefficients in
front of such terms are called the second order transport coef-
ficients and they parametrise the fluid response to the pres-
sure terms arising from the spacetime curvature. Under the
preliminary assumption that the second order transport coef-
ficients are constant, we find the simplest solution of Ricci
cosmology in which the presence of pressure terms causes
a departure from the perfect fluid redshift scaling for matter
components filling the Universe. In order to test the viability
of this solution, we make four different ansätze on the trans-
port coefficients, giving rise to four different cases of our
model. On the physical ground of the second law of thermo-
dynamics for fluids with non-equilibrium pressure, we find
some theoretical bounds (priors) on the parameters of the
models. Our main concern is then the check of each of the
case against the standard set of cosmological data in order to
obtain the observational bounds on the second order transport
coefficients. We find those bounds also realising that Ricci
cosmology model is compatible with �CDM cosmology for
all the ansätze.

1 Introduction

The discovery of the late-time accelerated expansion of the
Universe was made in the late 1990s, observing fainter than
previously predicted Type Ia Supernovae (SnIa) [1,2]. Since
then, more and more precise observations, such as Baryon
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Acoustic Oscillation (BAO) [3] and Cosmic Microwave
Background (CMB) anisotropies [4], have pointed in the
same direction making the explanation of these observations
so compelling that it has become one of the central issues of
modern cosmology.

The most successful model in explaining such feature of
our Universe and in fitting the available data (SnIa, BAO,
CMB, Big Bang Nucleosynthesis (BBN) and Large Scale
Structure (LSS)) is the Standard Cosmological Model, bet-
ter known as �CDM [5,6], in which the Universe is well
described below the Planck scale by General Relativity (GR)
and at scales of 100 Mpc and larger each component of the
Universe can be described as a perfect fluid. The Universe
is filled with baryonic matter, radiation, Cold Dark Matter
(CDM) and the cosmological constant �, which is responsi-
ble for the late-time accelerated expansion [7,8].

Despite the success and the simplicity of the �CDM
model, an explanation for the physical nature of CDM and
� is still missing and related to the latter, there are two big
unsolved issues: it is still unclear why � is so small com-
pared to vacuum energy predicted by Quantum Field Theory
(QFT) (fine-tuning problem) and why it becomes important
only at very late times (coincidence problem) [9,10].

More recently, as soon as we entered in the era of precision
cosmology, tensions in the data started to appear. The most
important example is the Hubble tension [11]. On one hand,
from the CMB anisotropy measurements from Planck [4],
for the value of the Hubble parameter H0 we have H0 =
(67.36 ± 0.54) km s−1 Mpc−1, by assuming �CDM as the
fiducial cosmological model. On the other hand, the local
measurements of the same parameter point towards greater
values, among which from the Hubble Space Telescope we
have H0 = (74.03 ± 1.42) km s−1 Mpc−1 [12], with a 4.4σ

discrepancy with the early-universe value above fromPlanck.
Currently, this discrepancy does not seem to be due to sys-

tematic effects in either early-time or late-time measurements
and may point to new physics beyond �CDM [13,14].
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Because of these issues, in the last decades, a great vari-
ety of models, which try to explain the late-time accelerated
expansion of the Universe without resorting to the cosmo-
logical constant �, have been proposed [15,16] which also
try to address the Hubble tension problem [17]. For reviews
on the experimental status of some of these theories beyond
�CDM, see Refs. [18,19].

In most of the alternative models, the matter components
filling the Universe are usually treated as perfect fluids. A
slightly unconventional path to explain late-time accelerated
expansion, which we consider in this paper is modifying the
usual matter content by adding dissipative or viscous terms
in the energy–momentum tensor (EMT) describing perfect
fluids. For recent reviews, see Refs. [20,21].

Most of the best explored viscous models so far are those
involving bulk viscosity where a term proportional to the
Hubble function is added to one or more matter components
of the Universe, giving rise to a modified effective pressure
for them. These models may differ from one another in the
assumptions made on the bulk viscosity coefficient and/or
on the matter content of the Universe. For this reason, the
effective pressure arising from viscosity can be important
either in the early stages of the Universe or at the present
time.

In the first case, fall all those models in which the inflation
is driven by viscosity [22–32]. A relevant feature of these
models is that by admitting viscosity, one is able to avoid
singularity in the Universe as well as to grow the Universe
in size in oscillatory sequences.

In the second case, the models that can describe the late-
time accelerated expansion of the Universe are considered
[33–46]. These models have revealed to be successful in
reproducing the background evolution of the Universe at late
time while attempting to solve the problems of �CDM, unify
or replace the dark components of the Universe and be com-
patible with the large structure formation. It is still debated
whether viscous terms in the pressure may or may not con-
tribute to relieve the Hubble tension [47–49].

Recently, with the purpose of describing the inflationary
epoch of the Universe, a new framework, dubbed Ricci cos-
mology, has been proposed [50]. This framework involves
second order corrections in gradients of the metric tensor gμν

to the perfect fluid EMT, which arise in out-of-equilibrium
relativistic fluid dynamics theory [51].

In this paper we explore the viability of a simple solution
in such a framework to describe at the background level the
late-time accelerated expansion of the Universe, relieving at
the same time the Hubble tension. The structure of the work
is as follows. In Sect. 2, we shortly review the relativistic
fluid dynamics theory from which Ricci cosmology emerges.
In Sect. 3, we describe the features of our solution in the
Ricci cosmology framework. In Sect. 4, we present statistical
analysis and the data used to put constraints on the parameters

of our model. In Sect. 5, we show and discuss our results. In
Sect. 6, we draw conclusions about the viability of the model
in light of the cosmological data taken into account.

2 Near-equilibrium fluid dynamics

To understand the features of Ricci cosmology, it is useful to
discuss some basics of fluid dynamics.

The first attempts to construct a consistent theory of dissi-
pative fluids on a general curved spacetime are due to Eckart
[52] and Landau and Lifshitz [53] in the first half of the
twentieth century. After these first efforts which have been
proven to be plagued with stability and causality problems,
in the 1960s Müller [54] and in the 1970s Israel and Stewart
[55,56] succeeded to solve these issues, as shown in [57].

Since then, further developments occurred which culmi-
nated in the theory of relativistic fluid dynamics without con-
served charges reviewed in [51], with an equivalent formu-
lation for a fluid with a U (1) symmetry based on an action
principle, proposed by Kovtun and Shukla [58]. In the rest
of the section, we will follow [51].

2.1 General construction

A perfect fluid at the equilibrium in a curved spacetime is
described by the energy–momentum tensor (EMT)

Tμν

(0) = ρuμuν + P(ρ)hμν (1)

where ρc2 is the energy density of the fluid as seen by a
comoving observer with the fluid 4-velocity uμ and hμν =
gμν + uμuν/c2 is the 3-spatial metric of the hypersurface
orthogonal to the fluid 4-velocity. The pressure P(ρ) is the
equilibrium pressure of the relativistic fluid, whose form rep-
resents the equation of state (EoS) of the fluid. In general, a
perfect fluid at the equilibrium has a barotropic EoS given by

P(ρ) = wρc2 (2)

where w is the constant EoS parameter depending on the
nature of the fluid.

The energy density ρc2, the fluid 4-velocity uμ and the
metric gμν which fully characterise the description of the
perfect fluid go under the name of hydrodynamic fields.

If the fluid is slightly out-of-equilibrium for the presence
of dissipative effects or anisotropic non-stationary expan-
sion, the perfect fluid description above is not enough to
accurately characterize its dynamics, and gradients of such
hydrodynamic fields are needed.

In general, the EMT can be written as

Tμν = Tμν

(0) + Tμν

(1) + Tμν

(2) + · · · (3)
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where the subscripts (0), (1), (2), . . . indicate the number of
gradients in each term of Tμν .

In order to obtain such higher order corrections to the
perfect fluid EMT (1) scalars, vectors and tensors of such
gradients are constructed and combined into tensors in such
a way to split the contributions into a traceless part πμν ,
referred to as the shear stress tensor

πμν = T<μν>

(1) + T<μν>

(2) + · · · (4)

where 〈· · · 〉 indicates symmetrization over the indices and
subtraction of the trace, and a trace part �hμν , with

� = 1

d − 1

(
Tμ

(1)μ + Tμ

(2)μ

)
+ · · · (5)

which is called the bulk stress.
The form of these corrections is further constrained by the

conservation equation of motion for the full EMT

∇μT
μν = 0 (6)

and by the fact that the fluid energy flux is not modified by
the corrections at any order, i.e.

uμT
μν

(i) = 0, (7)

meaning that the energy density ρc2 seen by an observer
comoving with the fluid is not modified by the non-
equilibrium terms. This choice corresponds to the so-called
Landau frame.

Instead, from the corrections above, it is evident that the
local pressure P(ρ) departs from its equilibrium expression

pef f (i) = P(ρ) + π i
i,LRF + � (8)

where in the second term there is no summation over i .
When we neglect anisotropies, that is possible on cos-

mological scales which we are interested in here, the last
equation simplifies to

pef f = P(ρ) + �, (9)

which is an isotropic non-equilibrium pressure, due to inter-
nal friction in a fluid and can be responsible, in the cosmo-
logical context for the late-time accelerated expansion of the
Universe.

At the first-order, the construction described above gives
rise to the well-known expression

Tμν

(1) = −ησμν − ζhμν∇λu
λ. (10)

The term σμν = 2∇<μuν> is the well-known shear viscos-
ity which becomes relevant in presence of anisotropies, and
the second term is the bulk viscosity, which has been used in
alternative cosmological models to Dark Energy and Infla-
tion.

The shear viscosity coefficient η and the bulk viscosity
coefficient ζ , are collectively called first order transport coef-
ficients.

By applying the same reasoning used for the first order cor-
rection Tμν

(1) , the second order correction to the perfect fluid

EMT Tμν

(2) can be obtained, by considering all the linearly
independent scalars, vectors and rank-two tensors, contain-
ing exactly two gradients of the fundamental hydrodynamic
fields and of the metric gμν . The full details of the second
order shear tensor π

μν

(2) and of the second order bulk stress
�(2) can be found in [51].

Here, we are only interested in those terms in the second
order bulk pressure �(2) appearing in the Ricci cosmology
framework proposed in [50], namely

�(2) = ξ5R + ξ6u
λuρRλρ, (11)

where Rλρ is the Ricci tensor and R is the Ricci scalar. The
coefficients ξ5 and ξ6 are two of the second order trans-
port coefficients, which parametrize the response of the non-
equilibrium fluid to the change of the background. These
terms are the only terms at the second order which are van-
ishing in Minkowski spacetime and non-zero in a curved
spacetime.

In principle, a term like ξ7u2R = ξ7uλuλR could also be
added into (11), with a new second order transport coefficient
ξ7. However, since u2 = −c2 is a scalar, it can be reabsorbed
in the first of the terms appearing in Eq. (11), via the redefi-
nition of the transport coefficient ξ5 as ξ̃5 = ξ5 − c2ξ7.

In the following, we will assume the second order trans-
port coefficients constant and we will study their impact on
the usual scaling of pressureless matter, radiation and cos-
mological constant with the redshift.

3 Ricci cosmology

3.1 Ricci cosmology model

Let us assume that GR describes gravity in our Universe and
it is well described at large scales by the FLRW metric

ds2 = −c2dt2 + a2(t)δi j dx
i dx j (12)

where a(t) is the scale factor.
The Universe is assumed to undergo the usual sequence

of radiation, matter and Dark Energy dominated epochs in
which the contributions of the other matter components to
the energy budget of the Universe is small and can be safely
ignored.

The effective pressure of such matter components, due
to the background expansion, gets modified by the terms in
Eq. (11) and it is given by

pef fc = wcρcc
2 + ξ5c R + ξ6cu

αuβ Rαβ, (13)

where the subscript c ranges onm, r,� which stands for mat-
ter, radiation and cosmological constant, respectively, and ξ5c
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and ξ6c are the second order transport coefficients assumed
constant and different for every matter component.

The Ricci scalar R and the projection of the Ricci tensor
Rαβ along the fluid 4-velocity uα for the FLRW background
are given by

R = 6

c2 (2H2 + Ḣ)

uαuβ Rαβ = R00 = −3(H2 + Ḣ) (14)

where H ≡ ȧ
a is the Hubble function.

In view of the recent claims of some cosmological dipoles
(dark energy dipole, fine structure constant α dipole, CMB
dipole, galaxies dipole etc.) [59–61] which are related to
anisotropies in the universe, one could think of the extension
of Ricci cosmology discussion onto homogeneous Bianchi
type or spherically-symmetric off-center observer models
[62]. In the simplest anisotropic case of Bianchi models and
inhomogeneous Lemaitre–Tolman–Bondi models, the four-
velocity vector is orthogonal to the constant time hypersur-
faces (uα = δα

0 ) [63] and so Eqs. (14) are easily extendible.
For the Bianchi type I it can be done by replacing H to the
right-hand side of these equations by the sum of the Hub-
ble parameters as defined for each direction in space i.e.
H → ∑3

i=1 Hi , Hi = ȧi/ai , where i = 1, 2, 3 or x, y, z. It
is interesting to note that including tilt [64] (hypersurfaces
are not orthogonal to four-velocity) would bring the mat-
ter more complicated. This is because in tilted models one
obtains imperfect fluid EMT and this complication adds to
deviation caused by the Ricci terms though it is of a different
nature.

However, in view of the recent discussion of the observa-
tional constraints on anisotropy [65], the anisotropy related
to the shear tensor as expressed in terms of the scalar, vector,
and tensor modes, does not play an important role in the uni-
verse. In particular, there is a tight bound on the amplitude
of a dipole both from �CDM setting and cosmography [66].

The effective pressure in Eq. (13) can be seen to be anal-
ogous to the model of nonlinear bulk viscosity for the Dark
Energy proposed in [34]. The two models coincide when the
phenomenological parameter introduced in [34], are ζ0 = 0,
ζ1 = −4ξ5�/c2 and ζ2 = −4ξ5�/c2 + ξ6�, while the other
coefficients are zero.

The conservation equation of the energy density ρcc2 for
such out-of-equilibrium cosmic fluid is given by

ρ̇c + 3H

(
ρc + pef fc

c2

)
= 0, (15)

with the energy density related to the Hubble function via the
first Friedmann equation

H2 = 8πG

3
ρc, (16)

in the epoch dominated by the matter component c.

By inserting Eq. (13) in Eq. (15), using the expressions in
Eq. (14), the equation for the energy density becomes

ρ̇c + 3H

[
ρc(1 + wc)

+ 6ξ5c

c4 (2H2 + Ḣ) − 3ξ6c

c2 (H2 + Ḣ)

]
= 0. (17)

By replacing cosmic time derivatives with redshift deriva-
tives and using Eq. (16) to express the Hubble function in
terms of the energy density, after rearranging the terms, the
last equation becomes

− (1 + z)
dρc(z)

dz

(
1 + 2ξ̂5c − ξ̂6c

)

+
[
3(1 + wc) + 8ξ̂5c − 2ξ̂6c

]
ρc(z) = 0 (18)

where the reduced second order transport coefficients

ξ̂5c ≡ 12πGξ5c

c4 , and ξ̂6c ≡ 12πGξ6c

c2 , (19)

have been defined. From the differential equation (18), we
find for the energy density the following expression

ρc(z) = ρc0(1 + z)
3(1+wc)+8ξ̂5c−2ξ̂6c

1+2ξ̂5c−ξ̂6c . (20)

Hence, the squared Hubble function for a flat Universe filled
with matter, radiation and cosmological constant, all having
a modified redshift scaling, reads

H2(z)

H2
0

= �m(1 + z)3+δm + �r (1 + z)4+δr + ��(1 + z)δ�

(21)

where we have defined the dimensionless energy density
parameter for the generic matter component c as

�c ≡ ρc0

ρcri t
= 8πG

3H2
0

ρc0 (22)

with the relation �� +�m +�r = 1 valid in a flat Universe.
Furthermore, the deviation parameters from usual scaling

for matter, radiation and Cosmological Constant, i.e. δm , δr
and δ�, which appear in Eq. (21), can be easily derived from
Eq. (20) and are given by

δm = 2ξ̂5m + ξ̂6m

1 + 2ξ̂5m − ξ̂6m
, (23)

δr = 2ξ̂6r

1 + 2ξ̂5r − ξ̂6r
, (24)

and

δ� = 8ξ̂5� − 2ξ̂6�

1 + 2ξ̂5� − ξ̂6�

, (25)

respectively.
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3.2 Thermodynamical priors

Before entering the observational bounds on the parameters
of our models, we impose some physical bounds on them by
applying the Second Law of Thermodynamics which says
that the entropy of a system S never decreases [67]. These
bounds can then be treated as priors for further statistical
considerations.

For a fluid with energy E = ρc2V in a volume V , with
temperature T and pressure p, from the First Law of Ther-
modynamics

dE = TdS − pdV (26)

the conservation equation for the energy density of such a
fluid can be derived

ρ̇ + 3H
(
ρ + p

c2

)
− T

V

Ṡ

c2 = 0. (27)

By comparing the last equation with Eqs. (13) and (15), we
find a the following differential equation for the entropy S

T

V
Ṡ = −3H

(
ξ5R + ξ6u

αuβ Rαβ

)
. (28)

From the thermodynamic relation for enthalpy H ≡ E +
pV = T S, the entropy can be expressed as

S =
(
ρc2 + p

) V

T
. (29)

By dividing the last two equations, we arrive at

Ṡ

S
= − 3H

ρc2 + p

(
ξ5R + ξ6u

αuβ Rαβ

)
. (30)

This must be valid for each matter component filling the
Universe.

For a matter component with energy density ρcc2,
barotropic EoS parameter wc and the constant reduced sec-
ond order transport coefficients ξ̂5c and ξ̂6c, the entropy S in
terms of the scale factor, after a simple calculation, reads

S(a) = S0a
− 1

1+wc

[
8ξ̂5c−2ξ̂6c−δc(2ξ̂5c−ξ̂6c)

]
+3(2ξ̂5c−ξ̂6c)

. (31)

As we have already mentioned, from the Second Law of
Thermodynamics for an isolated system, for each epoch of
the Universe, there must be an increase of entropy

�S ≥ 0. (32)

Thus, by specializing Eq. (31) to each matter components
of the Universe and using the expressions for δm , δr and δ�

found above, we have direct or indirect constraints on the
deviation parameters.

For the cosmological constant, the entropy is given by

S(a) = S0a
3(2ξ̂5�−ξ̂6�), (33)

which increases for 2ξ̂5� − ξ̂6� ≥ 0.

For pressureless matter, the entropy reads

S(a) = S0a
−δm , (34)

which increases for δm ≤ 0.
Finally, for radiation, it holds

S(a) = S0a
− 3

4 δr , (35)

which increases for δr ≤ 0.
In the next section, we describe the statistical analysis and

the data we use to put bounds on the parameters of our model.

4 Statistical analysis and data

In order to assess the viability of the model described in the
previous section and determine the relative importance of the
two contributions to the out-of-equilibrium, we test against
data four special cases of the model described above, with
four different ansätze on the transport coefficients.

In the Table 1, we report the assumptions made on the
constant second order transport coefficients with physical
priors on the deviation parameters derived from the physical
requirement of the increase of entropy, we use in our statisti-
cal analysis, together with the usual priors on the cosmologi-
cal parameters in common with �CDM (0 < �b < �m < 1,
0 < h < 1).

In the first two ansätze, we have that the Ricci scalar and
the time-time component of the Ricci tensor in the effective
pressure have the same effect in the change of the scaling of
the matter components filling the Universe. The difference
between the two cases is in the way radiation is treated: in
ansatz 1, radiation is assumed to be unaffected by the modify-
ing pressure terms, while in ansatz 2, radiation fluid deviates
from conformality due to the pressure terms.

In the last two ansätze, instead, each fluid differs from
the other for the transport coefficients which characterise its
response to both Ricci scalar and time-time component of
the Ricci tensor. Analogously to the previous ansätze, we
consider two different behaviours for radiation.

In the fits of the special cases of our model, we combine
the following data sets we have on the background evolution
at large scales of the Universe: Type Ia Supernovae (SNeIa)
from the Pantheon sample [68], the Mayflower sample of
Gamma Ray Bursts (GRBs) [69], the Early-Type Galaxies
(ETG) used as Cosmic Chronometers (CC) [70–72], the data
on the Hubble parameter H0 from the H0LiCOW collab-
oration [73,74], Baryon Acoustic Oscillations (BAO) from
different surveys [75–79], and the last Planck release for the
Cosmic Microwave Background (CMB) [80].

In order to evaluate the performance of our model in reliev-
ing the Hubble tension, we consider two different combina-
tions of our data sets: the late time data set including only
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Table 1 The table reports the assumptions on the reduced second order transport coefficients and the priors on the deviation parameters δm , δr and
δ� appearing in the Hubble function for each ansatz on the transport coefficients imposed on our model, derived in the Appendix A

Assumptions on ξ̂5 and ξ̂6 Priors on δm , δr and δ�

Ansatz 1 ξ̂5r = ξ̂6r = 0 and ξ̂5m = ξ̂5� ≡ ξ̂50, ξ̂6m = ξ̂6� ≡ ξ̂60 δr = 0, δm ≤ 0 and δm ≤ δ� < 3 + δm

Ansatz 2 ξ̂5r = ξ̂5m = ξ̂5� ≡ ξ̂50 and ξ̂6r = ξ̂6m = ξ̂6� ≡ ξ̂60 δ� = 4δm − 3δr , δm ≤ 0 and −1 + δm < δr ≤ δm

Ansatz 3 ξ̂5r = ξ̂6r = 0 and ξ̂5m = ξ̂6m , ξ̂5� = ξ̂6� δr = 0, δm ≤ 0 and δ� ≥ 0

Ansatz 4 ξ̂5r = ξ̂6r , ξ̂5m = ξ̂5�, ξ̂6m = ξ̂6� δr ≤ 0, δm ≤ 0 and δ� ≥ 0

late time measurements of cosmological observables (SNeIa,
CC, H0LiCOW, GRBs and BAO from WiggleZ), and the full
data set which combines these observations with early time
observations (CMB and BAO data from SDSS).

To find the best fit parameters of our model for each ansatz,
we minimise the total χ2 given by the sum of all the χ2

associated with the data from the probes listed above

χ2 = χ2
SN + χ2

G + χ2
H + χ2

HCOW + χ2
BAO + χ2

CMB (36)

by using our own implementation of a Monte Carlo Markov
Chain (MCMC).

Then, to see under which assumptions on the transport
coefficients our model can fit the data better than �CDM,
we have fitted �CDM to the same data sets and we have
compared each of the ansätze on our model to it by means of
the Bayes factor.

Given a generic model Mi , with π(θ i |Mi ), the prior prob-
ability of its set of parameters θ i , and its likelihood function
Li (D|θ i , Mi ) ∝ e−χ2/2, the Bayesian evidence Ei is defined
as the probability of the data D given the model Mi with a
set of parameters θ i

Ei =
∫

dθiLi (D|θ i , Mi )π(θ i |Mi ). (37)

Then, to compare the fit of this model to that of another
model Mj , tested against the same set of data, in general
depending on a different set of parameters θ j , we compute
the Bayes factor defined as

Bi
j = Ei

E j
, (38)

where E j is the Bayesian evidence of the model Mj . The last
model Mj , in our case, is �CDM while the model Mi is one
of the four special cases of our model.

Then, we can evaluate the performance of our model with
respect to �CDM in fitting the data for each ansatz con-
sidered, by using the Jeffreys’ Scale [81]: if lnBi

j < 1,
the evidence in favour of model Mi is not significant; if
1 < lnBi

j < 2.5, it is substantial; if 2.5 < lnBi
j < 5, it

is strong; if lnBi
j > 5, it is decisive, while negative values

of lnBi
j can be instead interpreted as evidence against model

Mi and thus, in favour of model Mj .

4.1 Type Ia supernovae

The Pantheon catalogue contains 1048 Type Ia Supernovae
(SnIa), used as standard candles, in the redshift interval
0.01 < z < 2.26 [68].

The relevant observable for this data set is the distance
modulus μSN , defined as

μSN = mSN − MSN (39)

where mSN is the apparent magnitude and MSN is the abso-
lute magnitude of the SnIa.

Given θ , the vector of the cosmological parameters of
the model under consideration, the distance modulus μSN is
related to the luminosity distance dL , by the formula

μSN (z, θ) = 5 log dL(z, θ) + μ0, (40)

where μ0 is an offset parameter which we marginalize over,
following Ref. [82], and the luminosity distance dL is given
by

dL(z, θ) = c

H0
(1 + z)

∫ z

0

dz′

E(z′, θ)
, (41)

where E(z, θ) = H(z, θ)/H0.
The total χ2

SN associated to this sample is

χ2
SN = �μSNC

−1
SN�μSN (42)

where C SN is the covariance matrix and �μSN = μSN −
μobs
SN is the difference between the theoretical value and the

observed one of the distance modulus of the supernovae in
the sample.

In view of some recent works [83,84] it is worth to add
a further comment on the “statistical” role played by the
constant μ0 in our analysis. In fact, it is well known that is
contains both the Hubble constant and the zero point abso-
lute magnitude MB , and that the uncertainty on the latter
reflects into an additional (i.e. respect to the cosmological)
uncertainty on the former. It is also known that there is a
possible dependence of the zero point absolute magnitude
MSN on the host galaxy environment (see, e.g. [85,86] and
references therein).

Assuming that such information is actually included in
the SNeIa data made available for cosmological purposes,
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authors from [83] point out that marginalization over H0

and marginalization over MSN end in different results which
should be taken into account in the context of the present
Hubble tension debate, and that the latter marginalization
should be preferred. In [83] the authors develop a way to
include it; but we must point out that their total χ2 always
contain a prior on H0 or on MSN .

In our work we have decided to follow a more conservative
approach: we have no prior at all, neither on H0 nor on MSN ,
and we have only marginalized over μ0 in Eq. (40). Thus,
the two marginalized expressions Eqs. (19) and (21) of [83]
are the same.

4.2 Gamma ray bursts

We consider 79 Gamma Ray Bursts (GRBs) from the
Mayflower sample in the redshift range 1.44 < z < 8.1
[69]. Analogously to the case of the Type Ia Supernovae,
the observable for the GRBs is the distance modulus μGRB ,
defined as in Eq. (40), with the corresponding offset param-
eter μ0 marginalized over as for the Type Ia Supernovae.

The total χ2
GRB for this sample is given by

χ2
GRB = �μGRBC

−1
GRB�μGRB (43)

where �μGRB = μGRB − μobs
GRB .

4.3 Cosmic chronometers

Passively-evolving Early-Type Galaxies (ETGs), i.e. galax-
ies with low star formation rate and old stellar populations,
can be used as standard clocks or Cosmic Chronometers
(CC).
Differently from other probes, they give us direct informa-
tion about the Hubble function over redshift ranges, from the
formula

H(z) = −(1 + z)−1 dz

dt
(44)

where dz
dt is inferred from observations.

The sample used in our data analysis covers the range 0 <

z < 1.97 [70–72].
The χ2

H reads as

χ2
H =

29∑
i=1

(H(zi , θ) − Hobs(zi ))2

σ 2
H (zi )

(45)

where σH (zi ) are the statistical errors on the measured values
of the Hubble function Hobs(zi ).

4.4 H0LiCOW

The H0LiCOW collaboration [73] uses 6 strong gravitation-
ally lensed quasars with multiple images to put constraints
on the value of the Hubble parameter H0 [74].
In order to constrain the parameters of our model, we use the
so-called time-delay distance, which is defined by

D�t ≡ (1 + zL)
DLDS

DLS
(46)

where zL is the lens redshift, and DS , DL and DLS repre-
sent the angular diameter distances from the source to the
observer, from the lens to the observer, and between source
and lens, respectively, with the angular diameter distance
given by

DA(z, θ) = c

H0

1

1 + z

∫ z

0

cdz′

E(z′, θ)
. (47)

The χ2 for the H0LiCOW data

χ2
HCOW =

6∑
i=1

(D�t,i (θ) − Dobs
�t,i )

2

σ 2
D�t,i

(48)

where σD�t,i are the statistical errors on the measured time-
delay distances Dobs

�t,i .

4.5 Baryon acoustic oscillations

In the following, we report the five BAO data sets used in our
analysis.

From the WiggleZ Dark Energy Survey [87] the physical
observables taken into account are the acoustic parameter

A(z, θ) = 100
√

ωm
DV (z, θ)

cz
(49)

with ωm = �mh2, and the Alcock–Paczynski distortion
parameter

F(z, θ) = (1 + z)
DA(z, θ)H(z, θ)

c
(50)

where DA is the angular diameter distance defined in Eq. (47)
and DV is the volume distance given by

DV (z, θ) =
[
(1 + z)2D2

A(z, θ)
cz

H(z, θ)

]1/3

. (51)

From the SDSS-III BOSS DR12 [77], the quantities

DM (z, θ)
r f id
s (zd)

rs(zd , θ)
, H(z)

rs(zd , θ)

r f id
s (zd)

(52)

are considered, where DM denotes the comoving distance

DM (z, θ) = c

H0

∫ z

0

1

E(z′, θ)
dz′ (53)
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and rs is the sound horizon

rs(z, θ) =
∫ ∞

z

cs(z′)
H(z′, θ)

dz′, (54)

which is evaluated at the dragging redshift zd in Eq. (52).
In the same expression, r f id

s (zd) is the sound horizon eval-
uated at the dragging redshift zd , considering a fiducial cos-
mological model.

The dragging redshift zd can be estimated numerically as
[88]

zd = 1291
ω0.251
m

1 + 0.659 ω0.828
m

[1 + b1 ω
b2
b ] (55)

with ωb = �bh2 and the coefficients b1 and b2 given by

b1 = 0.313 ω−0.419
m [1 + 0.607 ω0.6748

m ] (56)

b2 = 0.238 ω0.223
m , (57)

respectively.
The sound speed for coupled photons and baryons, appear-

ing in Eq. (54), in �CDM is given by

cs(z) = c√
3(1 + R̄b(1 + z)−1)

, (58)

where R̄b is baryon-to-photon density ratio parameter, given
by

R̄b = 31500�bh
2(TCMB/2.7)−4 (59)

with the CMB temperature TCMB = 2.726 K, while for our
model, it must be modified as

cs(z) = c√
3
(
1 + R̄b(1 + z)−1−δr+δm

) (60)

with

R̄b = 31500�bh
2

(
1 + δm

3

1 + δr
4

) (
TCMB

2.7

)−4

, (61)

due to the modified scaling of matter and radiation
parametrized by δm and δr , respectively.

The other measurements for BAO used in the data analysis
are the following:

• from the combination of void-galaxy cross-correlation
with BAO and galaxy RSD in the CMASS galaxy catalog
of the BOSS DR12 [79]

DA(z = 0.57)

rs(zd)
= 9.383 ± 0.077, (62)

H(z = 0.57)rs(zd) = (14.05 ± 0.14)103 km/s (63)

• from eBOSS DR14, a spherically-averaged BAO dis-
tance [76]

DV (z = 1.52) = 3843 ± 147
rs(zd)

r f id
s (zd)

Mpc (64)

• from eBOSS DR14, by combining the quasar Lyman-α
autocorrelation function with the quasar Lyman-α cross-
correlation measurement [78,89]

DA(z = 2.34)

rs(zd)
= 36.98+1.26

−1.18 (65)

c

H(z = 2.34)rs(zd)
= 9.00 ± 0.22. (66)

For each BAO probe, the χ2 is given by

χ2
BAO = �X BAOC−1

BAO�X BAO (67)

where �X BAO = X BAO − X BAO
obs is the difference between

the predicted and observed values for the observables of each
probe.

4.6 Cosmic microwave background

The last data set we use is given by the Cosmic Microwave
Background (CMB).

The CMB data we include in our data set are the shift
parameters [90] from the last Planck data release [80]: the
physical baryon density parameter ωb, the angular scale of
the sound horizon at recombination

la(θ) ≡ π
DM (z∗, θ)

rs(z∗, θ)
, (68)

and the scaled distance to recombination

R(θ) ≡
√

�mH2
0
DM (z∗, θ)

c
(69)

with the sound horizon rs and DM evaluated at the recom-
bination redshift z∗, which is given by the fitting formula
[91]

z∗ = 1048[1 + 0.00124 ω−0.738
b ](1 + g1 ω

g2
m ) (70)

with the factors g1 and g2 given by

g1 = 0.0783 ω−0.238
b

1 + 39.5 ω−0.763
b

(71)

g2 = 0.560

1 + 21.1 ω1.81
b

, (72)

respectively.
Therefore, the χ2 for the CMB data is

χ2
CMB = �XCMBC−1

CMB�XCMB (73)
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where �XCMB = XCMB−XCMB
obs is the difference between

the predicted and observed values for the quantities in the
vector X = {ωb, la, R}.

5 Results and discussion

The results of the fits of our model for the four ansätze are
reported in the Tables 2, 3, 4 and 5.

At 1σ level, we note that the values of the cosmological
parameters are indistinguishable from those corresponding
to the standard �CDM and so we have not found a relief of
the Hubble tension with any of our ansätze.

From the fits with late time data sets, we have found milder
upper or lower bounds on the deviation parameters of our
model, with respect to the bounds obtained by using the full
data set comprising late and early-time cosmological data
which show more constraining power. The only exception is
represented by δ� for the ansätze 1 and 2 which is compatible
with zero in the fits with only late time data sets.

Regarding the second order transport coefficients, the fits
of the model with the first two ansätze imply that ξ50 is com-
patible with zero, while ξ60 < 0 from the physical require-
ment of the increase of entropy for both models. The bound
is tighter when the full data set is considered.

For the last two ansätze, only upper or lower bounds can
be put on the transport coefficients with significantly milder
bounds coming from the fit with only late time data set taken
into account.

Moreover, the bounds we have found from the fit directly
for the deviation parameters δm , δ� and δr and indirectly
for the constant second order transport coefficients ξ5 and
ξ6 are compatible with the theoretical bounds taken by us as
priors derived by assuming the validity of the Second Law
of Thermodynamics and presented in Table 1.

For the deviation parameters δm , δr and δ�, in Fig. 1
we also show the 1σ and 2σ contour plots of the poste-
rior, obtained from the fit with the full data set, projected
in the parameter plane δ� − δm , and in Fig. 2 we show the
1σ and 2σ contour plots of the same posterior projected in
the parameter plane δr − δm . From the comparison of these
contours, we can conclude that they substantially overlap for
all the considered cases and therefore, there is no significant
observational difference between them.

Furthermore, from the negative values of the Bayesian
factors reported in the Tables 2, 3, 4 and 5, it can be concluded
that none of the considered cases of our model has a better
fit than �CDM to our set of data.

As a final remark, an analogous Hubble function to that
considered in this paper has been previously studied in Refs.
[92,93]. In those papers, the Hubble function arised in the
framework of Quantum Field Cosmology proposed by Wein-
berg [94]. In his framework, the gravitational constant varies

with redshift and consequently, the cosmological constant
acquires a dependence on the redshift.

The differences between our results and the precedent
findings stem from different aspects. In the proposed “vary-
ing �”CDM model (�̃CDM), the scaling of matter and radi-
ation is modified by the same deviation parameter δG that
comes from the redshift dependence of the Newton constant
G, and the deviation parameter for the cosmological constant
δ� is related to δG by

δ� �
(

�r + �m

��

)
δG (74)

for δ�, δG � 1, with the consistency relation δGδ� > 0.
In our model, instead, we have δm �= δr , and the Eq. (74)

does not hold so that the consistency relation is not compat-
ible with our physical requirements for the deviation param-
eters, which are not constrained to be much smaller than
unity. Our results are also not fully comparable when δ� and
δG are taken as two independent parameters in the so-called
extended “varying �”CDM model (e�̃CDM), with the last
parameter still describing the deviation from usual scaling for
both matter and radiation. Because of these differences, we
have obtained different constraints on our model parameters
with respect to those obtained in [92,93].

Nevertheless, analogously to what we have found for our
model, the two models �̃CDM and e�̃CDM, tested against
the combined set of CMB distance prior data from Planck
2018, BAO and SNIa Pantheon compilation, partially over-
lapping our more extended full data set, result to be compat-
ible with �CDM. Similarly as in our model, these models
can not fit the data better than �CDM and cannot relieve the
Hubble tension, unless the local measurement by the SH0ES
team [12] is added to the data set.

6 Conclusion

In this paper we have explored for the first time the phys-
ical consequences of the recently proposed framework of
Ricci cosmology on the late time Universe. We have derived
a simple solution of Ricci cosmology under the preliminary
assumption that the second order transport coefficients are
constant. Such an assumption of the non-zero transport coef-
ficients induced some small deviations from perfect fluid
scaling of the Universe matter components (dust, radiation,
cosmological term).

Further, the basic constraints (priors) for the parameters
made of transport coefficients and describing deviations from
the standard cosmology have been obtained from the phys-
ical requirement of the increase of entropy according to the
second law of thermodynamics.

Then, we have fitted the full and the late time cosmologi-
cal data sets reported in Sect. 4 (supernovae, GRBs, cosmic
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Table 2 In the table, we report
the constraints on our model
parameters for ansatz 1 and
�CDM, both tested against the
same combination of data sets.
From the reported Bayes factors,
our model with ansatz 1 is
disfavoured with respect to
�CDM for both late and full
data sets

�CDM �CDM Ansatz 1 Ansatz 1
Full Late Full Late

h 0.673+0.003
−0.003 0.713+0.013

−0.012 0.668+0.004
−0.005 0.713+0.014

−0.014

�m 0.319+0.005
−0.005 0.292+0.017

−0.016 0.319+0.005
−0.005 0.307+0.023

−0.022

δm > −0.001 > −0.241

δ� 0.002+0.003
−0.002 0.1410.192

−0.153

�� 0.681+0.005
−0.005 0.708+0.016

−0.017 0.681+0.005
−0.005 0.693+0.022

−0.023

ξ50 (N) 0.969.57−8.69 × 1038 −7.086.37−6.89 × 1040

ξ60 (kg/m) > −4.66 × 1022 > −7.90 × 1024

lnBi
j 0 0 −1.56+0.04

−0.04 −0.59+0.03
−0.03

Table 3 In the table, we report
the constraints on our model
parameters for ansatz 2 and
�CDM, both tested against the
same combination of data sets.
From the reported Bayes factors,
our model with ansatz 2 is
disfavoured with respect to
�CDM for both late and full
data sets

�CDM �CDM Ansatz 2 Ansatz 2
Full Late Full Late

h 0.673+0.003
−0.003 0.713+0.013

−0.012 0.667+0.005
−0.005 0.713+0.013

−0.013

�m 0.319+0.005
−0.005 0.292+0.017

−0.016 0.319+0.005
−0.005 0.306+0.023

−0.022

δm > −0.0007 > −0.244

δr > −0.003 > −0.388

δ� < 0.007 0.151+0.189
−0.160

�� 0.681+0.005
−0.005 0.708+0.016

−0.017 0.681+0.005
−0.005 0.694+0.022

−0.023

ξ50 (N) 0.791.59−0.93 × 1039 −6.976.27
−6.85 × 1040

ξ60 (kg/m) > −5.39 × 1022 > −8.13 × 1024

lnBi
j 0 0 −1.56+0.04

−0.03 −0.59+0.02
−0.03

Table 4 In the table, we report
the constraints on our model
parameters for ansatz 3 and
�CDM, both tested against the
same combination of data sets.
From the reported Bayes factors,
our model with ansatz 3 is
disfavoured with respect to
�CDM for both late and full
data sets

�CDM �CDM Ansatz 3 Ansatz 3
Full Late Full Late

h 0.673+0.003
−0.003 0.713+0.013

−0.012 0.667+0.004
−0.007 0.711+0.013

−0.013

�m 0.319+0.005
−0.005 0.292+0.017

−0.016 0.319+0.005
−0.005 0.304+0.023

−0.021

δm > −0.001 > −0.256

δ� < 0.004 < 0.277

�� 0.681+0.005
−0.005 0.708+0.016

−0.017 0.681+0.005
−0.005 0.696+0.021

−0.023

ξ5m (N) > −1.03 × 1039 > −2.53 × 1041

ξ5� (N) < 2.35 × 1039 < 1.55 × 1041

ξ6m (kg/m) > −1.14 × 1022 > −2.20 × 1024

ξ6� (kg/m) < 2.62 × 1022 < 1.72 × 1024

lnBi
j 0 0 −1.53+0.03

−0.04 −0.68+0.02
−0.03

chronometers, H0LiCOW, BAO, CMB), we have found the
bounds on the parameters of Ricci cosmology realising that
for our simple model it is compatible with standard �CDM
cosmology which statistically still fits better to the data. In

order to answer the question if Ricci cosmology may give
some stronger effects on the evolution of the universe it is per-
haps advisable to release the assumption of the constancy of
the transport coefficients. This investigation is left for future
work.
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Table 5 In the table, we report
the constraints on our model
parameters for ansatz 4 and
�CDM, both tested against the
same combination of data sets.
From the reported Bayes factors,
our model with ansatz 4 is
disfavoured with respect to
�CDM for both late and full
data sets

�CDM �CDM Ansatz 4 Ansatz 4
Full Late Full Late

h 0.673+0.003
−0.003 0.713+0.013

−0.012 0.701+0.012
−0.011 0.712+0.013

−0.013

�m 0.319+0.005
−0.005 0.292+0.017

−0.016 0.322+0.005
−0.005 0.303+0.023

−0.020

δm > −0.002 > −0.245

δr > −0.001 > −199

δ� < 0.091 < 0.269

�� 0.681+0.005
−0.005 0.708+0.016

−0.017 0.678+0.005
−0.005 0.697+0.020

−0.023

ξ5m (N) > −1.86 × 1039 > −2.42 × 1041

ξ5r (N) > −1.76 × 1039 > −3.18 × 1042

ξ5� (N) < 4.95 × 1040 < 1.50 × 1041

ξ6m (kg/m) > −2.08 × 1022 > −2.72 × 1024

ξ6r (kg/m) > −1.96 × 1022 > −3.54 × 1025

ξ6� (kg/m) < 5.53 × 1023 < 1.67 × 1024

lnBi
j 0 0 −2.01+0.04

−0.03 −0.63+0.04
−0.03

Fig. 1 1σ and 2σ contour plots in the parameter plane δ� − δm for
the four ansätze (Ansatz 1 – blue; Ansatz 2 – grey; Ansatz 3 – green;
Ansatz 4 – red)
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Appendix A: Priors derivation

The general expressions for the deviation parameters in terms
of the constant reduced second order transport coefficients
are given by

δm = 2ξ̂5m + ξ̂6m

1 + 2ξ̂5m − ξ̂6m
, (A1)

δr = 2ξ̂6r

1 + 2ξ̂5r − ξ̂6r
, (A2)

δ� = 8ξ̂5� − 2ξ̂6�

1 + 2ξ̂5� − ξ̂6�

. (A3)

Now, we specialize them to the four relevant cases of this
paper.

1. Ansatz 1

The assumptions on the reduced second order transport coef-
ficients are

ξ̂5� = ξ̂5m ≡ ξ̂50, ξ̂6� = ξ̂5m ≡ ξ̂60 ξ̂5r = ξ̂6r = 0,

(A4)

with the deviation parameters given by

δr = 0, δm = 2ξ̂50 + ξ̂60

1 + 2ξ̂50 − ξ̂60
, and

δ� = 8ξ̂50 − 2ξ̂60

1 + 2ξ̂50 − ξ̂60
. (A5)

From the entropy increase condition for dust and cosmolog-
ical constant, we have

δm ≤ 0 and 2ξ̂50 − ξ̂60 ≥ 0. (A6)

By using these inequalities in the second of Eq. (A5), we
have

2ξ̂50 + ξ̂60 ≤ 0. (A7)

By inverting the relations for δm and δ� in Eq. (A5), we have

ξ̂50 = δm + 1
2δ�

2(3 + δm − δ�)
and ξ̂60 = 2δm − 1

2δ�

3 + δm − δ�

. (A8)

By substituting Eq. (A8) in Eq. (A7), we have

3δm

3 + δm − δ�

≤ 0, (A9)

which together with δm ≤ 0, implies

δ� < 3 + δm . (A10)

From the second inequality in Eq. (A6), we find that

δ� − δm

3 + δm − δ�

≥ 0, (A11)

and by using Eq. (A10), it holds

δ� ≥ δm . (A12)

From inequalities (A10) and (A12), we have the following
prior for δ�

δm ≤ δ� < 3 + δm . (A13)

From the expressions in Eq. (A8) and the last equation we
arrive at the following bound for ξ̂60

ξ̂60 < 0. (A14)

By combining this result with the second inequality in
Eqs. (A6) and (A7), we have

− |ξ̂60|
2

≤ ξ̂50 ≤ |ξ̂60|
2

. (A15)

2. Ansatz 2

The assumptions on the reduced second order transport coef-
ficients are

ξ̂5� = ξ̂5m = ξ̂5r ≡ ξ̂50, ξ̂6� = ξ̂5m = ξ̂6r ≡ ξ̂60, (A16)

with the deviation parameters given by

δm = 2ξ̂50 + ξ̂60

1 + 2ξ̂50 − ξ̂60
, δr = 2ξ̂60

1 + 2ξ̂50 − ξ̂60
. (A17)

and

δ� = 8ξ̂50 − 2ξ̂60

1 + 2ξ̂50 − ξ̂60
= 4δm − 3δr . (A18)

The priors from the increase of entropy are

2ξ̂50 − ξ̂60 ≥ 0, δm ≤ 0 and δr ≤ 0. (A19)

From the first two inequalities, it holds that

2ξ̂50 + ξ̂60 ≤ 0. (A20)

By inverting the expressions in Eq. (A17), we have

ξ̂50 = −δr + 2δm

4(1 − δm + δr )
and ξ̂60 = + δr

2(1 − δm + δr )
.

(A21)

The inequality (A20) can thus be rewritten in terms of δm and
δr as

δm

(1 − δm + δr )
≤ 0, (A22)

which for δm ≤ 0, gives us a lower bound for δr

δr > −1 + δm . (A23)

Furthermore, from the first inequality in Eq. (A19), and the
lower bound in Eq. (A23), we obtain

δr ≤ δm . (A24)
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Thus, the physical bounds on the deviation parameter δr is
given by

− 1 + δm < δr ≤ δm . (A25)

For the reduced transport coefficients, from the first and third
inequalities in Eq. (A19), we arrive at

ξ̂60 ≤ 0, (A26)

which combined with the first inequality in Eqs. (A19) and
(A20), finally gives us

− |ξ̂60|
2

≤ ξ̂50 ≤ |ξ̂60|
2

. (A27)

3. Ansatz 3

The assumptions on the reduced second order transport coef-
ficients are

ξ̂5� = ξ̂6�, ξ̂5m = ξ̂6m, and ξ̂5r = ξ̂6r = 0 (A28)

with the deviation parameters that read

δm = 3ξ̂5m

1 + ξ̂5m
and δ� = 6ξ̂5�

1 + ξ̂5�

. (A29)

The priors from the increase of entropy are given by

δm ≤ 0, and ξ̂5� ≥ 0, (A30)

which imply the following bounds for the deviation parame-
ter δ� and reduced transport coefficient ξ̂5m

− 1 < ξ̂5m < 0, and δ� ≥ 0. (A31)

4. Ansatz 4

The assumptions on the reduced second order transport coef-
ficients are

ξ̂5� = ξ̂6�, ξ̂5m = ξ̂6m, and ξ̂5r = ξ̂6r (A32)

with the deviation parameters that read

δm = 3ξ̂5m

1 + ξ̂5m
, δ� = 6ξ̂5�

1 + ξ̂5�

and δr = 2ξ̂5r

1 + ξ̂5r
.

(A33)

The priors from the increase of entropy are given by

δr ≤ 0, δm ≤ 0, and ξ̂5� ≥ 0, (A34)

which imply the following bounds for the deviation parame-
ter δ� and reduced transport coefficients ξ̂5r and ξ̂5m

− 1 < ξ̂5r < 0, −1 < ξ̂5m < 0, and δ� ≥ 0. (A35)
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