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Abstract It is well known that massive 3D gravity admits
solutions that describe Lifshitz black holes as those consid-
ered in non-relativistic holography. However, the determina-
tion of the mass of such black holes remained unclear as many
different results were reported in the literature presenting dis-
crepancies. Here, by using a robust method that permits to
tackle the problem in the strong field regime, we determine
the correct mass of the Lifshitz black hole of the higher-
derivative massive gravity and compare it with other results
obtained by different methods. Positivity of the mass spec-
trum demands an odd normalization of the gravity action. In
spite of this fact, the result turns out to be consistent with
computations inspired in holography.

1 Introduction

The holographic description of d-dimensional strongly cor-
related, non-relativistic systems with anisotropic scale invari-
ance and no Galilean symmetry has been studied long
time ago [1]. This consists of a geometrical realization that
involves a especial type of static d + 1-dimensional space-
times, known as Lifshitz metrics. These read

2 rEoa e
ds =—ﬁdt +r—2dr +£—2dx €))]
with7 € R, r € R.¢, and dx? being the flat metric on R¢~!;
here, we will considerd = 2,sox € R. The parameter z € R
is the so-called dynamical exponent, and £ is a length scale
associated to the spacetime curvature. Despite having finite
scalar curvature invariants, the spacetimes (1) with 0 # z #
1 are singular; they are geodesically incomplete for timelike
geodesics ending at r = 0. For z = 1, in contrast, the metric
(1) is locally equivalent to AdS3 spacetime, and the case
z = 0 corresponds to the space product R x AdS;. For z

2e-mail: gaston@df.uba.ar (corresponding author)

generic, spacetimes (1) enjoy scale invariance

o

t—e%t, r—e’r, x—ex, (2)

with o being an arbitrary constant. This scaling symmetry,
together with the translations in ¢# and x, generate the full
isometry group. The cases z = 0 and z = 1 are of course
especial, having 4 and 6 Killing vectors and generating the
groups Rx SL(2,R)and SL(2, R) x SL(2, R), respectively.
For z arbitrary, the Killing vectors are

H=90, P=0,, D=2ztd;—rd,+ x0x, 3)

and generate the nilpotent isometry algebra

[P,H]=0, [D,P]=P, [D,H=zH. “)

The geometric configuration that would holographically
describe 2-dimensional Lifshitz-type systems with dynami-
cal exponent z at finite temperature are 3-dimensional black
holes that asymptote (1) at large r. This motivates the search
for sensible models that admit such black holes as exact solu-
tions. This is actually a hard problem due to the validity of
Birkhoff-type theorems in a large variety of systems, pre-
cluding the existence of static black hole configurations of
the type required. This is the reason why the construction
of asymptotically Lifshitz black holes typically involves the
introduction of exotic matter content or non-minimal cou-
plings to the gravity sector. However, it turns out that, in 3
dimensions, there exists a remarkably simple model admit-
ting Lifshitz black holes. This is given by the massive defor-
mation of 3-dimensional Einstein theory with no additional
fields. It was shown in [2] that, if one considers the parity-
even massive 3D gravity proposed in [3], a static Lifshitz
black hole solution with dynamical exponent z = 3 can be
analytically constructed. While other models admitting Lif-
shitz black holes are known in 3 dimensions, these either
include additional fields [4,5] or exotic gravity field equa-
tions [6]. This makes the simple instances of Lifshitz black
hole scarce. An example of this is massive gravity itself,
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where it has been proven [7] that such static black holes only
exist for z = 1 and z = 3. This is why the solution of [2] is
particularly interesting.

Simple scaling arguments show that the mass of the z = 3
Lifshitz black hole of 3D massive gravity — see (14) below—
takes the form

Lt
M = +
T onGes

where 7 is a dimensionless coefficient, G is the Newton con-
stant, r is the horizon radius, L is the length of the segment
in which x takes values, and ¢ is the length scale that appears
in (1) and which relates to the scalar curvature of the black
hole as follows

&)

2 rer
R:K—z(—13+4r—2). ©®)
It is usual to consider the black hole solution with the coordi-
nate x = @£ being periodic with period 27 £. This of course
breaks the scaling symmetry, making the isometry group to
be R x SO(2) even asymptotically. Here, we will consider
¢ € [0,2r], namely L = 2 ¢.

In the literature, different authors, using different meth-
ods to compute the conserved charges in higher-curvature
theories, have arrived to different results for the value of n
in (5). This raises the question about the correct value of
the gravitational energy in the Lifshitz spacetime. The dis-
crepancy among different authors can be explained by the
difficulty of computing conserved charges for solutions of
higher-derivative theories that exhibit non-standard asymp-
totics. The problem with this is twofold: firstly, there exists
an ambiguity in the choice of counterterms when higher-
derivatives terms are present; secondly, the empty Lifshitz
spacetime is actually singular, what makes the problem of
identifying the correct reference background less clear. This
results in that not all the machinery that we have at hand when
dealing with asymptotically maximally symmetric space-
times can actually be successfully applied to the case of
Lifshitz spacetimes. This led the people to consider many
different methods, with different degree of success. In [8],
for example, the author considered the Wald formula to com-
pute the entropy and inferred the mass from the first law of
black hole mechanics, having found (5) with n = —1/4. In
[9], in contrast, the authors considered a method involving
dimensional reduction and found n = 1/16.In[10], the value
n = —1/4 was found by defining a holographic stress-tensor
and computing the quasi-local energy. In [27], the authors
adapted the Abbott-Deser-Tekin (ADT) approach [22] to
spaces with non-constant curvature and found n = 7/8. In
[12], the authors made a very interesting analysis of the Lif-
shitz black hole thermodynamics and showed that this was
consistent with || = 1/4. The value n = +1/4 was found in
[13] considering another adaptation of ADT. Here, by con-
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sidering a robust method that dispenses with the analysis of
the large-radius asymptotia and permits to deal with the prob-
lem in the strong field regime, we will show that the correct
value for the mass of the z = 3 Lifshitz black hole of the
massive 3-dimensional gravity is (5) with n = —1/4. In par-
ticular, this implies that the mass of the black hole is negative
for positive G and, therefore, as usual in massive 3D gravity,
one needs to consider the wrong sign of the Newton constant
in order to make sense out of the Lifshitz background.

2 Massive 3D gravity

Let us begin by reviewing the 3-dimensional massive gravity
theory and its solutions. The action of the theory is

I= ﬁ d3x¢?g[R —o— #(RWR‘“’ — %Rz)].
@)

This theory exhibits two local degrees of freedom organized
in a way that there is a massive spin-2 mode of mass m. At
linearized level, and around maximally symmetric spaces,
the theory coincides with the spin-2 Fierz-Pauli theory [3].
This implies that action (7) describes a ghost-free theory. At
full non-linear level, the field equations take the form

1
Rp.v - ERguU +)‘guv - K;w =0, (8)

2m?

with
1
Kuw =2V?R,, — S (VuVuR + guwV*R) — 8R,,R”,

+§RRM T %g,w (24R“ﬁRaﬁ _ 13R2) . ©)
In the infinite mass limit, m? — 0o, where the local degrees
of freedom decouple, the theory reduces to 3-dimensional
Einstein gravity.

Being a quadratic-curvature theory, for generic values of A
and m the field equations (8)-(9) may admit two maximally
symmetric solutions. That is to say, generically there exist
two values of the effective cosmological constant; these are

[ a
Ay =2m? +2m* 1 - — (10)

assuming m? > A. This means that the theory has two natu-
ral vacua, which can be either Minkowski or (A)dS spaces,
depending on the range of parameters. The effective cosmo-
logical constants (10) give the curvature radius of the solution
¢ =1//=Ax; > > 0 for AdS;. This is equivalent to say

A:—g%(ljtﬁ). (11)

For A1 < 0, the theory admits asymptotically AdS3 solu-
tions, including Bafiados—Teitelboim—Zanelli (BTZ) black
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holes [14] and other interesting solutions [15, 16]. The theory
also admits solutions (1) for arbitrary z provided the coupling
constants take the values

1 1
m2e? = _§(Z2 —3z41), A= —E(z2 +z41);

12)

which in particular demands A¢2 < 0.

3 Lifshitz black hole

A remarkable surprise occurs at z = 3, where the theory
admits an extra static black hole solution [2]. This happens
on a curve in the parameter space where

A= 13m>. (13)

On this curve, the following black hole solution exists

4 2 2 2
- ¢
r (r r*) di? + (—) dr? +rtde?,
r2—r2

ds? = ——
PTTele 2

(14)

where t € R and r € R.(y. We consider ¢ periodic with
period 2. r4 is an integration constant that represents the
horizon location, and ¢ is given by ¢ = —1/2m?) =
—13/(2%).

Metric (14) is not locally conformally flat, so it is neither a
solution of Einstein theory nor of conformal gravity. Further-
more, it is not a solution of the parity-odd Topologically Mas-
sive Gravity model. It has isometry group R x SO (2), gen-
erated by the Killing vectors d;, d,. The spacetime described
by (14) exhibits a regular event horizon at » = r, provided
r4+ > 0. This horizon shields a curvature singularity that
exists at r = 0; there, the Ricci scalar invariant (6) together
with other invariants like R, R*" diverge. When r; = 0,
metric (14) reduces to the Lifshitz space (1) with z = 3.
For generic values of 7, the metric still asymptotes Lifshitz
space (1) with z = 3 at large r, meaning that it is asymp-
totically, locally invariant under the rescaling t — e,
r— e ’r, ¢ — e%¢. Actually, the solution also exhibits
such a scaling symmetry at finite » provided, in addition to
rescaling the coordinates, one also rescales the parameter as
ry — e~ “r4. This leaves the black hole metric invariant.
On the one hand, this is consistent with the fact that all the
curvature invariants of the Lifshitz black hole depend only on
the ratio r_%_/ r2. On the other hand, this provides us with an
argument to anticipate the functional dependence of the mass,
this being given in (5). We will compute the mass explicitly
below.

4 Conserved charges

Boundary charges in d-dimensional theory of gravity, as well
as in a d-dimensional gauge theory, are usually understood
as integrals of (d — 2)-form potentials of the free theory,
obtained this by linearizing the solution around an appro-
priate background configuration. These conserved (d — 2)-
forms are in correspondence with the so-called reducibility
parameters of the background geometry. In [18], a closed
(d — 2)-form for the fully interacting theory has been con-
structed. It admits a closed form in terms of a one parameter
family of solutions to the fully interacting theory admitting
one such reducibility parameter. Here, we will consider the
method of [17,18] to compute the charges. This method is
fully constructive and robust, and it can be easily adapted to
the massive deformation of gravity theory in 3 dimensions.
Applying itin the deep bulk region, we will compute the mass
of the Lifshitz black hole for the fully interacting theory.

The expression of the functional variation of the conserved
charge associated to the Killing vector £ is

2

1
30[%; 8,88l = ——

7Y
167G J, 49V 8wk ls, 3¢, (1)

where 8g,, = hy, is a perturbation around a solution g,
and where k*V is the surface 1-form potential. In the case of
the massive 3D gravity, this form is given by three different
contributions, namely

m 1 3

ny __ _ kv nv
K=k = 3 k02 T g2 ko (16)

the first contribution being the one coming from the Einstein—
Hilbert term:

K

0.1 = §aV[“h”]a _ S[“Vahv]a _ ha[“Vafv]

1
+elmyip 4 Ehv[/‘g“]. (17)

The other two contributions come from the higher-derivative
terms in the action (7); they are [19]

1
WY g2y 73
ko2 = Vkon T 5ka
—Zk?()[ﬁ)R;] _ ZVaéﬂVaV[”hE] _ 45“Ra,gv[“h”]”
+28M RV nP + 28, R*1VghVIP
+2£ 1PV RY) + 2nP gV, RY]
—(8R + 2R hop)ViHer! — 36 RUAVVIR
—gl RV, b — RAFVVIEY, (18)
and

k(') =2Rkj ) +4EH VISR + 28 RVIHEY — 2l p IV, R,
(19)
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with /1, = 88,0, SR = —R*Phep + V¥VPheg — V2h, and
h=hj.

As said, we will address the computation of the charges in
the region of the space where the theory is fully interacting.
To do so, we find convenient to take the phase space of metric
in their near-horizon form. We will consider the near horizon
boundary conditions studied in [20]; namely, near the horizon
consider the metric in the form

ds? = guvdxtdx’ = f(v, @) dv* — 2k (v, @) dvdp
+2h(v, ) dvdg + R*(v, ¢) dp?, (20)

where v € R, p > 0, and ¢ € [0, 2] with period 2. The
metric functions are of the form

f.9)==2kp+g3) (@) p*+

k) =1-g @) p* + -

h(v, @) = g3} (@) p + 852 (@) p* + -+

R*(,¢) = g0 (@) + g5 (0) p + 850 (9. v) > + - -

where the ellipsis stand for functions of v and ¢ that van-
ish at least as fast as O(p>) near the surface p = 0 where
the horizon is located. Notation is such that g,(lnv) are the p-
independent functions that accompany the order O(p") in the

power expansion. In the expressions above, gg?p, gf)}p), gé}(g,

2 2 2
g, g5, and g( )

¢, while k =

21

are arbitrary functions of the coordinate

-3 g,(w) corresponds to the surface gravity at

the horizon and thus is constant. We have also fixed g,()},) =0,
and we could have even set the gauge g,, = 1 together with
8pp = 0.

As a first check that this way of computing the charges
actually works, let us illustrate the calculation considering
the BTZ black hole. We evaluate (15) for the Killing vector
& = 0, and realize the functional variation by varying the
parameter r4; that is, we perform r4 — ry + 8ry. This
induces a variation of the near horizon form of the BTZ metric
guv —> &uv + 88w, with

2
Oguv = =5 POr% dv? +2(ry + p)dry de?, (22)
and after integrating we find
2 1
dy: g, 6g] = (1- ) , 23

which is actually the correct result for the mass of the BTZ
black hole in the massive gravity theory. Qg stands for an
arbitrary constant, which encodes the degree of arbitrariness
of a method that yields an expression for the variation of the
charge, § O, and not for the charge itself. We can set Q¢ = 0,
which corresponds to take a specific zero-energy reference
background. This arbitrariness, however, does not affect the
dependence of with the parameters.

In addition, in order to check this method, we can try to
follow the same steps to compute the mass of the generaliza-

@ Springer

tion of the BTZ black hole that, for massive gravity theory,
was found in [15,16]; see Eqgs. (24)—(25) in the latter refer-
ence. This black hole, which only exists when 2m2e? = —1,
has non-constant curvature, is asymptotically AdS3 in a way
that is weaker than the standard Brown-Henneaux boundary
conditions, and presents two horizons; let us denote r the
location of the horizons and 67+ their independent variations.
This yields

1
S8 = =5z p (ry = 8r ) dv? +2(ry + p)dry.dg?, (24)

which gives

(ry —r)?
16G¢2

This actually coincides with the correct value of the mass;
see Eq. (8) in [24]; see also (12) in [23], cf. Eq. (49) therein.
In the particular case r— = —r4 the solution reduces to the
static BTZ black hole, and in that case (25) reduces to (23) for
2m*¢*> = —1. This indicates that the method of computing
the mass from the near horizon charges is working perfectly,
even in the case of black holes with non-constant curvature.
At this point, one might wonder why this near horizon com-
putation is giving the correct value of the mass and not, as in
[20], the product between the Hawking temperature and the
Bekenstein-Hawking entropy, cf. [21,23]. The answer is that,
while the near horizon boundary conditions considered here
are exactly the same as in [20], the way in which we imple-
ment the functional variation here is different: Here, we do
not consider variations in the space of metrics that keep the
horizon temperature constant, but we consider arbitrary vari-
ations in a one- or two-parameters family. In other words, §g
in (15) here generically yields § g(o) # 0. As aresult, we cor-
rectly reproduce the black hole mass from the near horizon
computation, with the appropriate numerical factor.

In the case of the BTZ black hole, the same result (23) can
be obtained by resorting to the ADT method, which amounts
to consider linearized solutions around the AdS3 vacuum in
the asymptotic, near boundary region. However, in the case
of the z = 3 Lifshitz black hole, the method that resorts to the
linearization of the metric in the large-r region does not lead
to the correct result for the mass. The reason why it happens
has been explained in [19]. In that case, the computation
yields

0l0y; g, 6gl = + Qo. (25)

M=-—". (26)

We confirm this output, which is not the correct result for the
z = 3 Lifshitz black hole. The correct value for the mass of
the latter can be obtained as we did above for the case of the
z = 1 solutions. However, this would first require to put the
solution (14) in the near horizon form (20)—(21). To achieve
so, we define coordinates
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dr 3 —r3
=1 — 64 —_, = + . 27
v / r2(r? — r42_) P 3¢2 @7

We observe that p = 0 at the horizon r = r, and it holds
that

62
r—ry~—p+0(p?) (28)
ry
for small p. The change of variable (27) suffices to put metric
(14) in the form (20)-(21) with

3
- N S SN (| B
vV 2k v o g 1 v =
(29)

which in particular yields the surface gravity k = r}r /0.

Now, we are ready to evaluate (15) for the Killing vector
& = 0, and realize the functional variation by varying the
parameter §r . This yields the metric variation g, — gv+
8guv with

6r2 2
8guy = —ij Sry dv? + r—z(ri — 2p)sryde*.  (30)

+
And, finally, we obtain
AP P S G1)
v 8O E TG o T O
which is the correct result for the mass; that is, n = —1/4.

We can take Qg = 0 for the vacuum Lifshitz solution to be
massless. The factor L /(27 £) in this expression comes from
the integration on the coordinate x = @£, and it is 1 for the
case ¢ has a period 2.

5 Conclusions

In summary, we conclude that the mass, the entropy and the
temperature of the z = 3 black hole solution are given by

. rj_ 2wy B hr_?_ 32)
4G &’ T hG’ T 2med

respectively. While the entropy can be computed by the Wald
formula, the temperature follows from the standard geo-
metrical methods. These quantities satisfy the first princi-
ple dM = TdS and a Smarr type formula M = ‘—11TS.
Notice that, despite being a solution of a higher-curvature
theory, the Lifshitz black hole happens to satisfy the area
law S o« 2mry /G, though with a special factor. Both the
mass and the entropy turn out to be negative, so the change
G — —G is needed for making sense out of the theory
around this background.

One may wonder what happens in the case of stationary,
non-static black holes. In the case of asymptotically AdS3
rotating black holes, a near-horizon computation in massive

3D gravity was done in [23]. In the case of the rotating ver-
sion of (14), such solution actually exists [25] and can be
analytically constructed by an improper boost acting on the
static metric; however, the resulting spacetime happens not
to be asymptotically Lifshitz.

Before concluding, it would be interesting to compare our
result with those of the literature and to explain the differ-
ences: As said, in [8] the author found the n = —1/4, in
agreement with our (32); see Eq. (2.23) in [8]. The value
n = —1/4 was also found in [10]; see Eq. (5.70) therein. In
order to compare with [10] is is necessary to consider that our
convention for the sign of the Einstein-Hilbert piece in the
gravity action corresponds to o = +1 in that paper; besides,
they consider conventions with the opposite sign for m?; this
is also consistent with (23). In Ref. [9], the authors find the
different value n = 1/16; see Eq. (27) therein. Another dif-
ferent value appears in [27], where n = 7/8 is obtained; see
Eq. (25) therein. In [12], the authors found || = 1/4, see Eq.
(37) therein, which is actually consistent with our result as
they consider the opposite overall sign of the gravity action.
Other computations have been done; see for instance Eq.
(6.7) in [26,27].

Our result turns out to be consistent with holography. One
of the reasons is that it agrees with the result obtained by com-
puting the quasi-local energy with the boundary stress-tensor
[10]. While in the case of bulk theories whose gravity sector
is described by the Einstein-Hilbert action such a computa-
tion follows straightforwardly from the holographic renor-
malization recipe, in the case of higher-derivative theories
such as massive 3D gravity the definition of a holographic
stress-tensor requires additional prescriptions to define the
variational principle and, consequently, to derive the coun-
terterms. This introduces certain degree of ambiguity in the
calculation. Therefore, the fact of having reproduced with
our computation the results of [10] can be regarded as a fur-
ther support of the definition of the quasi-local stress-tensor
proposed therein. Another reason why our result is compati-
ble with holography is that it agrees with the mass spectrum
that leads to reproduce the entropy of the Lifshitz black hole
from the generalized Cardy formula computation [12], which
follows from considering the generalization of the modular
invariance of the partition function of the dual theory to arbi-
trary values of z. This points into the direction of a micro-
scopic derivation of the Lifshitz black hole entropy.
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