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Abstract We present a novel solution describing mag-
netized spacetime outside an electrically charged massive
object equipped with NUT parameter. To get the solution, we
employ the Ernst magnetization to the Reissner–Nordstrom–
Taub–NUT spacetime as the seed. After discussing some
physical aspects of the spacetime, we show that the extremal
entropy of a magnetized Reissner–Nordstrom–Taub–NUT
black hole can be reproduced by using the Cardy formula.

1 Introduction

Reissner–Nordstrom black hole is an exact solution in the
Einstein–Maxwell theory describing the spacetime outside a
collapsing object with an electric charge. Despite it is very
unlikely for a collapsing matter to maintain a significant
amount of electric charge in the real world, the Reissner–
Nordstrom solution has been one of the most studied object in
gravitational researches [1] especially related to black holes
[2–5]. Moreover, inspired by the Kerr/CFT correspondence,
the charged black hole/CFT holography has been investigated
[6–8] where some properties of extremal or near extremal
Reissner–Nordstrom black holes can be reproduced by using
some two-dimensional conformal field theory approach.

In addition to the black hole with electric charge, there
also exist exact solutions describing a black hole immersed
in an external magnetic field. A solution where the magnetic
field is considered as some perturbations in the spacetime was
introduced by Wald [9], and for the case of a strong magnetic
field was proposed by Ernst [10]. In the proposal by Ernst,
the magnetized spacetime is obtained by using a Harrison
type of transformation applied to a seed solution in Einstein–
Maxwell theory. For example, one can use the Kerr–Newman
solution as the seed to obtain the magnetized Kerr–Newman
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spacetime [10]. Setting the mass, electric charge, and rotation
parameters in the magnetized Kerr–Newman solution yields
the Melvin magnetic universe [11]. Interestingly, the pres-
ence of an external magnetic field does not change the area
of the embedded black hole, but rather deforms the surface
as reported in [12]. Various studies on black holes in external
magnetic field can be found in literature [13–29]. Some of
these studies are motivated by the possibility of strong mag-
netic field around a black hole due to the presence of rotating
hot plasma in its surrounding.

Kerr–Newman–Taub–NUT (KNTN) black hole of Einstein–
Maxwell theory is parameterized by the NUT parameter l,
in addition to the well-known other black hole parameters,
namely mass m, rotation a, and electric charge q [1]. The
Taub–NUT solution is a special case of this KNTN family,
obtained after setting the rotational parameter a and electric
charge q to vanish. Despite the obscure realization of the
NUT parameter in our real world, spacetime solutions with
NUT charge have been used to extend our understanding of
gravity in many ways. For example, the motion of charged
test particle was studied in [30], the area product and mass
formula is investigated in [31], and the gravitomagnetism
in this spacetime is reported in [32]. Furthermore, solution
with NUT parameter can also exist in gravitational theo-
ries beyond Einstein–Maxwell, for example in scalar–tensor
[33], Randall–Sundrum braneworld [34], and low energy het-
erotic string [35] theories. In a recent work [36], the authors
show that the Misner string contribution to the Taub–NUT–
AdS entropy can be renormalized by introducing the Gauss–
Bonnet term.

In this paper we consider the a = 0 limit of KNTN family,
namely the Reissner–Nordstrom–Taub–NUT (RNTN) solu-
tion, as the seed to be magnetized. The magnetized Reissner–
Nordstrom spacetime had been reported decades ago [12]
where the author used Reissner–Nordstrom solution as the
seed, and the associated Kerr/CFT correspondence study was
carried out in [37]. The significance of magnetized Reissner–
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Nordstrom–Taub–NUT (MRNTN) solution at the moment
is more theoretical rather than practical to our understand-
ing of black holes. The linear approximation introduced by
Wald [9] to model a black hole immersed by the magnetic
field is found to be sufficient in describing the black hole and
magnetic field interaction. Nevertheless, one would like to
know how our present black hole thermodynamical relations
can extend to the case of the charged black hole with NUT
parameter immersed in a fully non-linear external magnetic
field. These are interesting since the black hole mechanics
for magnetized spacetime and spacetime with NUT parame-
ter are still under development [19,38–40].

To get the magnetized solution, we employ the Ernst mag-
netization transformation to the RNTN spacetime. Our study
differs from the work by Frolov et al. [41] in the sense that if
all parameters in the solution except magnetic field param-
eter are switched off, we get the Melvin magnetic universe
[11]. After establishing the magnetized solution, aspects of
the spacetime such as Hawking temperature and thermody-
namics are discussed. We then test the conjectured extremal
Kerr/CFT correspondence for the new spacetime solution,
where we can recover the extremal entropy by using the
asymptotic symmetry group method [42–44].

In fact, this Kerr/CFT correspondence conjecture has been
applied to black hole case with NUT parameter [45,46], and
to magnetized black holes in the absence of NUT parameter
[37,47,48]. It motivates us to investigate the Kerr/CFT exten-
sion to the case of magnetized Reissner–Nordstrom–Taub–
NUT spacetime solution introduced in this paper. In fact, the
U (1)×SL (2, R) symmetric form of the near horizon geom-
etry of extremal magnetized Reissner–Nordstrom–Taub–
NUT spacetime showed in Sect. 4 confirms the possibility
to extend Kerr/CFT holography to the case of magnetized
Reissner–Nordstrom–Taub–NUT solution [43]. Despite the
fact where it seems unlikely we can find some astrophysical
process that requires the new spacetime solution presented
in this paper, for example, massive charged object with NUT
charge immersed in a strong magnetic field, the Kerr/CFT
correspondence investigation for this spacetime can test how
general the correspondence can extent.

The organization of this paper is as follows. In the next
section, we construct the MRNTN solution by employing the
Ernst magnetization to the RNTN spacetime as the seed. The
area, entropy, Hawking temperature, and thermodynamics of
the black hole in the spacetime are discussed in Sect. 3. In
Sect. 4, we compute the entropy of extremal MRNTN black
hole using microscopic formula. Finally, we give conclusions
and discussions. In this paper, we consider the natural units
c = h̄ = kB = G4 = 1.

2 Construction of magnetized
Reissner–Nordstrom–Taub–NUT spacetime

2.1 Ernst magnetization

RNTN spacetime is an exact solution of Einstein–Maxwell
equations,

Rμν = 2FμαF
α
ν − 1

2
gμνFαβF

αβ, (2.1)

where Fμν = ∂μAν − ∂ν Aμ is the field strength tensor.
Unlike the Reissner–Nordstrom solution as its null NUT
counterpart, RNTN spacetime lacks of the asymptotic flat-
ness due to the presence of NUT parameter. Nevertheless,
many aspects of RNTN spacetime have been studied in lit-
erature, including its rotating generalization known as the
Kerr–Newman–Taub–NUT solution. The tunneling method
calculation for Hawking temperature from the black hole was
performed in [49,50], the thermodynamics studies are pre-
sented in [38–40,51], area and Smarr formulas are discussed
in [31,52], the motion of test particle in this spacetime are
studied in [30,53], and the possibility of destroying a RNTN
black hole is investigated in [2]. However, RNTN spacetime
solution studied in these works has not incorporated some
non-perturbative external magnetic fields1 as considered by
Ernst and Wild in [10,12] for Reissner–Nordstrom and Kerr
black holes. This section is dedicated to construct a mag-
netized version of RNTN spacetime by following the Ernst
method [10]. As we have mentioned before that the magne-
tized Reissner–Nordstrom solution has been reported in [12],
the new spacetime presented in this paper can be considered
as the Taub–NUT generalization to that solution.

As a start, let us review the Ernst magnetization prescrip-
tion which is basically a type of Harrison transformation.
We consider the following stationary and axial symmetric
line element,

ds2 = f (ωdt − dφ)2 + f −1
(
e2γ dχdχ̄ − ρ2dt2

)
, (2.2)

that is known as the Lewis–Papapetrou–Weyl (LPW) type of
metric. In the metric above, the functions f , γ , and ω depend
on χ , and we have used the − + ++ signs convention for
the spacetime. Now let us also consider two kind of complex
potentials, namely the electromagnetic Ernst potential

� = Aφ + i Ãφ, (2.3)

and the gravitational one

E = f + ��̄ − i�. (2.4)

1 Perturbative or weak external magnetic fields in a black hole back-
ground was introduced by Wald [9], and has been extended to some
other general black hole cases [41].
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Note that the real part of the potential � is the Aφ component
of the vector potential Aμ, and the imaginary part comes from
the vector field Ãμ which builds the dual field strength tensor
F̃μν = ∂μ Ãν − ∂ν Ãμ where F̃μν = 1

2εμναβFαβ . To find the
solution for At component, we can use

− i
ρ

f
∇ Ãφ = ∇At + ω∇Aφ. (2.5)

The twist potential � in gravitational potential (2.4) is related
to the metric functions and vector potential by

− i∇� = f 2

ρ
∇ω + 2�̄∇�. (2.6)

Using these two potentials above, the Einstein–Maxwell
equations (2.1) can be rewritten in the form of wave equations
known as the Ernst equations [1],
(E + Ē + ��̄

)∇2E = 2
(∇E + 2�̄∇�

) · ∇E, (2.7)

(E + Ē + ��̄
)∇2� = 2

(∇E + 2�̄∇�
) · ∇�, (2.8)

There exist some transformations that leave the two Eqs. (2.7)
and (2.8) above to be invariant, for example the Harrison
transformation [54]. In [10] Ernst showed that one can per-
form a magnetization of a known spacetime using a type of
Harrison transformation, namely

E → E ′ = �−1E and � → �′ = �−1 (� − bE) , (2.9)

where

� = 1 − 2b� + b2E . (2.10)

Above, the constant b represents the strength of external
magnetic field in the spacetime.2 The transformation (2.9)
leaves Eqs. (2.7) and (2.8) unchanged for the new potentials
E ′ and �′ from which a new set of solutions

{
A′

μ, g′
μν

}
to

the Einstein–Maxwell equations can be extracted.
The magnetization transformation (2.9) acting on the

potentials E and � yields the transformed metric functions
in the LPW form (2.2) as the followings

f ′ = Re
{E ′}− �′�̄′ = f

|�|2 , (2.11)

and

∇ω′ = |�|2 ∇ω + ρ

f

(
�∇�̄ − �̄∇�

)
, (2.12)

while γ remains unchanged. Since all the incorporating func-
tions in the metric (2.2) depend onρ and z only, one can define
the operator ∇ in the flat Euclidean space

dχdχ̄ = dρ2 + dz2, (2.13)

where we have dχ = dρ+idz and ∇ = ∂ρ+i∂z accordingly.

2 Here we use a quite different label for the strength of magnetic field,
where in some other works [37,47,48] is used B = 2b instead.

However, the typical spacetime solution in Einstein–
Maxwell theory that contains black hole can be expressed in
the Boyer–Lindquist type coordinate system {t, r, x = cos θ,

φ}. Therefore, we could bring the LPW line element (2.2)
into a Boyer–Lindquist type, where some terms in the line
element can be rewritten as

dχdχ̄ = dr2

�r
+ dx2

�x
, (2.14)

with �r = �r (r) and �x = �x (x). Accordingly, the corre-
sponding operator ∇ will read ∇ = √

�r∂r + i
√

�x∂x , and
Eq. (2.5) allows us to write

∂r At = �x

f
∂x Ãφ − ω∂r Aφ, (2.15)

and

− ∂x At = �r

f
∂r Ãφ + ω∂x Aφ, (2.16)

after using ρ2 = �r�x . The two Eqs. (2.15) and (2.16) are
useful later in obtaining the At component associated to the
magnetized spacetime according to (2.9). To complete some
details on magnetization procedure, another subtleties that
may be required to obtain the magnetized solution are

∂rω
′ = |�|2 ∂rω − �x

f
Im
{
�∂x�̄ − �̄∂x�

}
, (2.17)

and

∂xω
′ = |�|2 ∂xω + �r

f
Im
{
�∂r �̄ − �̄∂r�

}
. (2.18)

In the next section, this Ernst magnetization procedure will
be employed with the RNTN solution as the seed to obtain
the MRNTN spacetime.

2.2 Magnetized Reissner–Nordstrom–Taub–NUT
spacetime

Let us start with the RNTN line element

ds2 = −�r (dt + 2lxdφ)2

r2 + l2
+ (r2 + l2)�xdφ2

+(r2 + l2)

(
dr2

�r
2 + dx2

�x
2

)
, (2.19)

where �r = r2 − 2mr +q2 − l2 and �x = 1 − x2. Together
with the vector potential

Aμdxμ = qr (dt + 2lxdφ)

r2 + l2
, (2.20)

the metric (2.19) solve the Einstein–Maxwell equation (2.1).
In getting the magnetized version of RNTN solution above,
we need to bring the seed metric (2.19) into the LPW form
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(2.2). It is straightforward to show that the associated metric
functions are

f =
(
r2 + l2

)2 + x2
(
3l4 − r4 + l2

{
8mr − 6r2 − 4q2

})
(
r2 + l2

) ,

(2.21)

ω = 2lx�r(
r2 + l2

)2 + x2
(
3l4 − r4 + l2

{
8mr − 6r2 − 4q2

}) ,

(2.22)

ρ2 = �x�r , (2.23)

and

e2γ f −1 = r2 + l2. (2.24)

By using these functions and vector solution (2.20), one can
find the corresponding gravitational potential

E = l3
(
1 + 3x2

)+ il2
(
3r�x + 2mx2

)+ l
(
6mrx2 − 3x2

{
r2 + q2

}− r2
)+ ir

(
q2x2 + r2�x

)

l + ir
, (2.25)

and the electromagnetic one

� = −iqx (ir − l)

ir + l
. (2.26)

Furthermore, from (2.10), these two potentials provide us

� = 1 + i2bqx(ir − l)

ir + l

+ b2

ir + l
{l3(1 + 3x2) + il2(3r�x + 2mx2)

+l(6mrx2 − 3x2{r2 + q2} − r2) + ir(q2x2 + r2�x )}.
(2.27)

Finally, we can get the magnetized Ernst potentials E ′ and
�′ after inserting (2.25), (2.26), and (2.27) into (2.9). The
resulting magnetized line element can be written as

ds2 = 1

f ′

{
−ρ2dt2 + e2γ

(
dr2

�r
+ dx2

�x

)}

+ f ′ (dφ − ω′dt
)2

, (2.28)

where the functions appearing in metric above read

f ′ =
{(
r2 + l2

)2 + x2
(
3l4 − r4 + l2

{
8mr − 6r2 − 4q2

})}

6∑
k=0

f̄k lk
,

(2.29)

where

f̄0 = r2[b4r4�2
x + 2b2r2�x (1 + b2q2x2)

+1 + b2q2x2(6 + b2q2x2)],

f̄1 = −8bqxr(1 − b2x2q2 − 2b2r2x2 + 3b2mrx2),

f̄2 = 1 + b2x2q2(9b2x2q2 − 2) + r4b4(15x4 + 7 − 6x2)

−8r3b4mx2(5x2 + 1)

+4r2b2(3b2x2q2 + 1 − 3x2 + 3b2x4q2 + 9b2m2x4)

−16rb2mx2(2b2x2q2 − 1),

f̄3 = −8b3qx(mx2 + 2r),

f̄4 = b2[4b2m2x4 + 24b2r x2�xm − 9b2x4(r2 + 2q2)

−6x2(q2b2 + 5b2r2 − 1) + 7b2r2 + 2],
f̄5 = 0,

f̄6 = b4(1 + 3x2)2,

and

ω′ =

5∑
k=0

ω̄k xk

(
r2 + l2

)2 + x2
(
3l4 − r4 + l2

{
8mr − 6r2 − 4q2

}) ,

(2.30)

where

ω̄5 = b4l(4l2m2 + 4r3m − 4l2mr − r4 + 6r2l2

−4q2r2 − 4q2l2 + q4 + 3l4)�r ,

ω̄4 = −2b3q(4l2m + r3 − 3rl2)�r ,

ω̄3 = −2b2l(b2l4 − 2b2l2q2 + 6b2l2r2 − 2b2l2mr

−2b2q2r2 − 3q2 + b2r4 + 2b2r3m)�r ,

ω̄2 = 2bqr(b2q2r2 − 3b2l2q2 − 2b2r3m − 4b2l2r2

+r2 + 6b2l2mr + 4b2l4 + l2),

ω̄1 = −l(b4l4 − 6l2b4r2 − 1 − 3b4r4)�r ,

ω̄0 = −2rqb(r2 + l2)(b2l2 + 1 − b2r2).

Furthermore, the accompanying vector solution to this mag-
netized metric can be expressed in the following compact
form

A′
μdxμ = dt

∑6
k=0 c̄k x

k + dφ
∑4

k=0 d̄k x
k

∑4
k=0 f̄k xk

. (2.31)

The functions c̄k and d̄k appearing in the numerator of r.h.s.
in Eq. (2.31) are

c̄6 = b6q{q4r − (2r3 − 8l2m + 10rl2)q2 − 12rl2m2

+16r2l2m − 2r3l2 − 8l4m + r5 + 9rl4}�r ,

c̄5 = −2b5l{7q4 + (2r2 − 12mr − 10l2)q2 + 4l2m2

+4mr3 + 6r2l2 − 4l2rm − r4 + 3l4}�r ,

c̄4 = qb4{(b2r + 8b2m)l6 + (3r + 5b2r3 + 4b2r2m

−8q2b2m + 12b2rm2 − 10q2b2r − 8m)l4

+((−5r5 + 4r3m2 − 4q2r3 + 16mr4 − 20q2r2m

+9q4r)b2 + 44mr2 − 26r3 − 28rm2 + 6q2r + 8q2m)l2
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−r5 + 3q4b2r3 + 12q2r2m − 4mr4 − 2q2b2r5 − 9q4r

+4b2mr6 + 2q2r3 − b2r7 − 4q2b2mr4},
c̄3 = −4b3l{(1 − b2l2 + 5b2r2)q4

+(4rb2l2m − 8mr + 4b2r4 − 12r3b2m + 6r2

−12b2l2r2 − 2l2)q2 + (4r4m2 − r6 − 4l2r2m2

+16l2r3m − 5l2r4 + l6 + 5l4r2)b2 + r4 − 2r2l2

+l4 + 4r2m2 + 4l2rm − 4mr3},
c̄2 = b2qr{(3l2r4 − 20l2r3m − 11l4r2 + 3q2r4 + 14l2r2q2

−9l4q2 + 6l4rm + 9l6 − r6 − 2mr5)b4

+(44r2l2 − 14q2r2 + 6l2q2 − 2l4 + 6r4

+4mr3 − 36l2rm)b2 − 9q2 − r2 + 6mr + 5l2},
c̄1 = −2bl{(6l2r2q2 + 3q2r4 − l4q2 + 3l2r4 − 7l4r2

+3r6 − 6mr5 + l6 + 2l4rm − 12l2r3m)b4

+(4l2rm − 4mr3 − 4r2l2 − 6q2r2 − 2l2q2 + 2r4

+2l4)b2 + 2mr + l2 − q2 − r2},
c̄0 = qr(1 − 5b6r2l4 − 5b4r4 + 5b6r4l2 − 18b4r2l2

−l6b6 + b6r6 + b2l2 − 5b2r2 − l4b4),

and

d̄4 = −b3{(12q2r2 − 32mrq2 − 40mr3

+36r2m2 + 15r4 + 9q4)l2 + r2(q2 − r2)29l6

+(4m2 − 18q2 + 24mr − 9r2)l4},
d̄3 = 6b2lq{3mr2 − q2r + l2m − 2r3},
d̄2 = b{(−12l2r2q2 + 6l2r4 + 2r6

+8l2r3m − 2q2r4 + 6l4q2 − 6l6 − 24l4rm + 30l4r2)b2

+r4 + l2q2 − 8l2rm + 6r2l2 − 3q2r2 − 3l4},
d̄1 = 2qrl(1 + 6b2l2),

d̄0 = −b(l2 + r2)(b2l4 + l2 + 6b2l2r2 + b2r4 + r2),

while the function f̄k in the denominator are

f̄4 = b4{4l2m2(9r2 + l2) + 8rl2m(3l2 − 5r2 − 4q2)

+r6 + (15l2 − 2q2)r4 + (q4 + 12l2q2 − 9l4)r2

−18l4q2 + 9l6 + 9l2q4},
f̄3 = 8b3lq{q2r − 3mr2 − l2m + 2r3},
f̄2 = 2b2{(12l4rm + 3l6 − 4l2r3m + q2r4 + 6l2r2q2

−3l2r4 − 15l4r2 − 3l4q2 − r6)b2

−r4 + 3q2r2 + 8l2rm − 6r2l2 + 3l4 − l2q2},
f̄1 = −8bqrl{1 + 2b2l2},
f̄0 = (l2 + r2){l4b4 + 6b4r2l2 + 2b2l2 + 2b2r2 + b4r4 + 1}.

The solutions (2.28) and (2.31), which will be referred as
the magnetized Reissner–Nordstrom–Taub–NUT (MRNTN)
solution, can be considered as the Taub–NUT extension of
magnetized Reissner–Nordstrom black holes proposed in
[10]. For a black hole immersed in the magnetic field, the
area of its horizon is the same to that of the non-magnetized
one [37,47,48]. As one would expect, the same result appears
here where the radii of MRNTN black hole is that of
the RNTN horizons, namely r± = m ± √

m2 − q2 + l2.

Accordingly, the extremal conditions for the magnetized and
non-magnetized RNTN black hole also coincide, namely
m2 + l2 = q2.

3 Some aspects of the spacetime

3.1 Kretschmann scalar

In studying the curved spacetime, Kretschmann scalar K =
RαβμνRαβμν can be used to identify the existence of true
singularity at origin in the spacetime. It is well known that
a spacetime with NUT parameter is regular at the origin,
but suffers the conic singularity where the periodicity of φ

coordinate is no longer 2π . Note that the conic singularity in
spacetime coming from the presence of NUT parameter dif-
fers to that as the result of external magnetic field. The latter
case can be cured by performing a scaling in φ coordinate
[14].

Obviously, the full expression for Kretschmann scalar of
MRNTN spacetime is lengthy even at x = 0. Nevertheless,
the regularity of this quantity at origin can be identified by
looking at its denominator, where the Kretschmann scalar
can be expressed as

K ∼ 1
(

6∑
k=0

cklk
)6 , (3.1)

with

c6 = b4(3x2 + 1)2,

c5 = 0,

c4 = b2(4b2m2x4 + 24b2mrx4 − 18x4q2b2 − 9b2r2x4

+24b2mrx2 − 6b2q2x2 − 30b2r2x2 + 7b2r2 + 6x2 + 2),

c3 = −8b3qx(mx2 + 2r),

c2 = 36b4m2r2x4 − 32b4mq2r x4 − 40b4mr3x4 + 9b4q4x4

+12r2b4q2x4 + 15r4b4x4 − 8b4mr3x2

+12r2b4q2x2 − 6r4b4x2 + 7r4b4

+16b2mrx2 − 2b2q2x2 − 12b2r2x2 + 4b2r2 + 1,

c1 = −8bqrx(3b2mrx2 − b2q2x2 − 2b2r2x2 + 1),

c0 = r2(b4q4x4 − 2r2b4q2x4 + r4b4x4

+2r2b4q2x2 − 2r4b4x2 + r4b4 + 6b2q2x2 − 2b2r2x2

+2b2r2 + 1).

So it is easy to notice that this quantity is not singular for r =
0 and non-vanishing l. Moreover, after setting the external
magnetic field parameter b and electric charge q vanish in
Eq. (3.1), the Kretschmann scalar for Taub–NUT spacetime
can be recovered, i.e.

K = 48

(r2 + l2)6 {(l4 − ml3 + 3l3r + 3l2mr − 3l2r2
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Fig. 1 Plots of the dimensionless Kretschmann scalar, i.e. K ∗ =
m4Rαβμν Rαβμν , for q = 0.1. The case of bm = 0.1 are represented by
the solid lines, and bm = 0.5 by the dashed lines. The black lines are
the cases of l = 0, red lines are l = 0.5, and blue lines are l = 0.6

+3mr2l − r3l − mr3) × (l4 + ml3 − 3l3r

+3l2mr − 3l2r2 − 3mr2l + r3l − mr3)}. (3.2)

To proceed with some numerical studies, let us consider
the quantity (3.1) on equator where its full expression is given
in the appendix. Some results are presented in Fig. 1 where
we find that the typical behavior of spacetime with NUT
parameter appear, i.e. the corresponding Kretschmann scalar
at origin is regular or finite. As comparison, we also provide
the null case of NUT parameter, where the singularity at
origin still exist in the spacetime with external magnetic field.

3.2 Electric charge and angular momentum

Indeed, as a generalization of the Reissner–Nordstrom space-
time solution, there is an electric charge associated to the
MRNTN spacetime. Following [20], the corresponding elec-
tric charge can be found as

Q = |�(x = 1)|2
2

[
Ãφ

]x=−1

x=1
=
∑6

k=0 hkr
k

∑6
j=0 h̃kr

k
, (3.3)

where

h6 = −16 b4l2q(4 b2l2 + b2q2 + 3),

h5 = 16 qb4l2m(16 b2l2 + 3 b2q2 + 9),

h4 = q(192b6l6 − 336b6l4m2 − 112b6l4q2

−36b6l2m2q2 − 28b6l2q4 − b6q6 + 112b4l4

−108b4l2m2 − 88b4l2q2 − 5b4q4

+20b2l2 + 5b2q2 + 1),

h3 = −4qb2l2m(128b4l4 − 36b4l2m2 − 80b4l2q2

−9b4q4 + 48b2l2 − 30b2q2 + 7),

h2 = −4qb2l2(48b4l6 − 80b4l4m2 − 68b4l4q2

+60b4l2m2q2 + 20b4l2q4 + 3b4q6

+20b2l4 − 8b2l2m2

−24b2l2q2 + 10b2q4 + 4l2 − 5q2),

h1 = qb2l4m(64b4l4 + 4b4l2m2 − 92b4l2q2

+33b4q4 + 12b2l2 − 2b2q2 + 1),

h0 = ql4(64b6l6 + 16b6l4m2 − 144b6l4q2

−12b6l2m2q2 + 108b6l2q4 − 27b6q6

+16b4l4 + 12b4l2m2 − 8b4l2q2

−3b4q4 − 4b2l2 − b2q2 − 1),

h̃6 = 16 b4l2,

h̃5 = −16 b3l(3 blm + q),

h̃4 = −16b4l4 + 36b4l2m2 + 24b4l2q2 + b4q4

+24b3lmq − 8b2l2 + 6b2q2 + 1,

h̃3 = −8lb(4b3lmq2 + b2q3 − 2blm − q),

h̃2 = −2l2(8b4l4 − 20b4l2m2

−5b4q4 − 16b3lmq − 2b2q2 − 1),

h̃1 = 8bl3(6b3l3m − 4b3lmq2

+2b2l2q − b2q3 + 2blm + q),

h̃0 = l4(16b4l4 + 4b4l2m2

−24b4l2q2 + 9b4q4 + 8b3lmq + 8b2l2 − 2b2q2 + 1).

This expression is not what one would have expected from
total charge calculation. Even after considering the two-
surface S∞ at spacelike infinity, i.e. taking r → ∞ for the
result in (3.3), we obtain Qr→∞ = −q

(
3 + b2q2 + 4b2l2

)
which is finite, but again not as we would expect. How-
ever, taking l → 0 from Eq. (3.3) gives Ql→0 =
q
(
1 − b2q2

)
, exactly as the total charge of magnetized

Reissner–Nordstrom case [20], without taking the r → ∞
limit.

Now let us turn the total angular momentum by using the
Ernst potential [20],

J = |�(x = 1)|4
8

[
� + 2Aφ Ãφ

]x=−1

x=1
. (3.4)

It turns out the expression for J above is tedious and we omit
to present the full result here. Just like the outcome for Q
above, the obtained result for J in (3.4) is still a function
of radius r . However, considering the two-surface S∞ for
J leads to a singular result. Nevertheless, setting the null
NUT parameter in the last equation gives the expected result
for the magnetized Reissner–Nordstrom spacetime, i.e. J =
−2bq3

(
1 + b2q2

)
.
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3.3 Thermodynamics

Now let us discuss thermodynamical related aspects of
the MRNTN spacetime which are vital in establishing the
Kerr/CFT correspondence [42] for the black hole in the
spacetime. Following the standard formula for black hole
area, we can have the area of horizon as

AH =
2π∫

0

dφ

1∫

−1

dx
√
gφφgxx = 4π

(
r2+ + l2

)
. (3.5)

This is just the area of a RNTN black hole [31], and conse-
quently the corresponding entropy reads

S = A
4

= π
(
r2+ + l2

)
. (3.6)

For the Hawking temperature, we can compute by using
the complex path method in (1 + 1) dimension [55].3 Note
that the calculation presented in [56] applies to a general
stationary and axial symmetric black hole spacetime whose
metric takes the form

ds2 = − f̃ (r, x) dt2 + dr2

g̃ (r, x)
+ C̃ (r, x) hi j (r, x) dx̃ idx̃ j .

(3.7)

In the last equation, we have x̃ i =
[
x, φ̃

]
, and φ̃ = φ − ω′t ,

and it is easy to notice that the line element (2.28) can
be rewritten in this form. Furthermore, let us consider the
geodesic of fixed x = 0 and dφ̃ = 0. This yields that only
the (t − r) sector in the metric which matters. In such con-
sideration, the reading of massless Klein–Gordon equation
∇μ∇μ� is simply
(

∂S

∂r

)2

= 1

f̃ (r) g̃ (r)

(
∂S

∂t

)2

, (3.8)

after employing the Hamilton–Jacobi ansatz for the scalar
field � = exp [−i S (t, r)]. Since the spacetime under dis-
cussion is stationary, we are allowed to consider

S (t, r) = Et + S̃ (r) , (3.9)

which leads to the solution

S (t, r) = E

⎛
⎝t ±

r∫

0

dr√
f̃ (r) g̃ (r)

⎞
⎠ , (3.10)

for Eq. (3.8). Based on this solution, the ingoing and outgoing
fields are

�in = exp

⎡
⎣−i E

⎛
⎝t +

r∫

0

dr√
f̃ (r) g̃ (r)

⎞
⎠
⎤
⎦ , (3.11)

3 The case of Taub–NUT black hole is worked out in [56] and for a
Vaidya black hole in [57].

and

�out = exp

⎡
⎣−i E

⎛
⎝t −

r∫

0

dr√
f̃ (r) g̃ (r)

⎞
⎠
⎤
⎦ , (3.12)

respectively. By imposing that the probability of ingoing par-
ticle must be unity, i.e. Pin = |�in|2 = 1, and by using the
detailed balance principle

Pout = exp (−E/TH ) Pin, (3.13)

finally we can get the Hawking temperature

TH = 1

4

⎛
⎝Im

r∫

0

dr√
f̃ (r) g̃ (r)

⎞
⎠

−1

. (3.14)

Plugging the metric function (2.28) into the last equation, we
have

TH = 1

4

⎛
⎝Im

r∫

0

(
r2 + l2

)
dr

(r − r+) (r − r−)

⎞
⎠

−1

, (3.15)

which then gives us the Hawking temperature for a MRNTN
black hole

TH = r+ − m

2π
(
r2+ + l2

) . (3.16)

Note that the temperature (3.16) is not a function of external
magnetic field parameter b, and is exactly the same to that of
the generic RNTN black hole [31]. This result for Hawking
temperature is in agreement with the one that comes from
the standard formula TH = κ/2π , where

κ =
√

−1

2

(∇μξν

)
(∇μξν) (3.17)

is the corresponding surface gravity. In the equation above,

ξμ∂μ = ∂t − �H∂φ (3.18)

is the associated Killing vector in the spacetime where the
angular velocity at horizon is given by

�H = − gtφ
gφφ

∣∣∣∣
r+

. (3.19)

By employing the first law of rotating spacetime with NUT
charge proposal in [40], authors of [58] study the Smarr rela-
tion and the first law of thermodynamics for the magnetized
Kerr–Newman–Taub–NUT spacetime. The MRNTN solu-
tion studied in this paper is simply the non-rotating seed
limit, i.e. a = 0, of the general spacetime solution con-
structed in [58]. Therefore, here we can adopt the Smarr
relation presented in [58] for the MRNTN spacetime studied
in this paper. It reads
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M = �H Q + 2�HJ + κ

4π
AH + 2ψ+N+ + 2ψ−N−,

(3.20)

where the total mass M changes as

δM = �H δQ + �H δJ + TH δS + ψ+δN+ + ψ−δN−.

(3.21)

The total charge Q is given in (3.3), the Coulomb potential
is calculated using �H = − ξμAμ

∣∣
r+ , the surface gravity

κ is Eq. (3.17), and horizon area AH is presented in (3.5).
The Misner potentials ψ± and Misner charges N± for the
MRNTN spacetime are given by [40,58]

ψ+ = ψ− = 1

8πl
, (3.22)

and

N±ψ± = ± 1

16π

∫

T±
∗dζ , (3.23)

accordingly. In equation above, ζ is the timelike Killing vec-
tor, whereas T− and T+ are the Misner string tubes positioned
at x = −1 and x = 1, respectively. Furthermore, the total
angular momentum J = J + J+ + J− in (3.20) gets contri-
butions from the one computed using (3.4), and those related
to the Misner strings,

J± = ± 1

16π

∫

T±
∗dχ, (3.24)

where χ is the axial Killing vector, i.e. χμ∂μ = ∂φ .
Obviously, from (3.20) we understand that the entropy

S of MRNTN black hole is a function of the incorporated
charges, namely S = S (Q,J , N+, N−). Therefore, we can
define the chemical potentials [44]

1

Tφ

=
(

∂Sext

∂J
)

Q,N+,N−
,

1

Tq
=
(

∂Sext

∂Q

)

J ,N+,N−
,

1

T±
=
(

∂Sext

∂ J

)

J ,Q,N∓
, (3.25)

where Sext is the extremal entropy which obeys the balance
equation

δSext = 1

Tφ

δJ + 1

Tq
δQ + 1

T+
δN+ + 1

T−
δN−. (3.26)

Since the Hawking temperature TH vanishes at extremality,
from Eq. (3.21) we can have

TH δSext = δM − (�ext
H δ J + �ext

H δQ + �+δN+ + �−δN−
)

= 0. (3.27)

The thermodynamical relations (3.25), (3.26), and (3.27)
that we have established above are later required in obtain-
ing the Frolov–Thorne temperature (4.20) near the extremal
MRNTN black hole.

4 Microscopic entropy for the extremal MRNTN black
hole

In this section, we extend the magnetized Reissner–Nordstrom/
CFT correspondence reported in [37] to the case with the
presence of NUT parameter. The first step is to obtain the
near horizon geometry for a MRNTN black hole, which can
be achieved by performing the transformation

t → r0t

λ
, r → re + λr0r, φ → φ + �ext

J
r0

λ
t. (4.1)

In equation above �J = ω′ (r+), and �ext
J is the correspond-

ing quantity evaluated at extremality.
Note that from Eq. (2.6) one can understand that there

exist a gauge freedom for the twist potential, namely � ′ →
� ′+� ′

0 for a constant � ′
0, which leaves the Ernst equations to

be invariant. Recall that � ′ is the magnetized twist potential
satisfying

− i∇� ′ = f ′2

ρ
∇ω′ + 2�̄′∇�′, (4.2)

where f ′, ω′ are the magnetized metric functions, and �′
is the magnetized electromagnetic Ernst potential. We then
apply the near horizon transformation (4.1) above to the
gauged MRNTN metric, with

� ′
0 = 2ml

(
1 + 2b2l2

)

b2
(
l2 − m2

) . (4.3)

The resulting near horizon metric of an extremal MRNTN
black hole takes the U (1)× SL (2, R) symmetric form [43],

ds2 = � (x)

{
−r2dt2 + dr2

r2 + α (x) dx2
}

+γ (x) (dφ + krdt)2 , (4.4)

where r0 = q, α (x) = �−1
x ,

� (x) =
q4
(

4b2
(
l2 − m2

)
x2 + q2

(
1 + q2b2

)2)

(
l2 − m2

)2 , (4.5)

γ (x) = q4�x

� (x)
, (4.6)

and

k = −4q3b
(
1 + q2b2

)

m2 − l2
. (4.7)

Moreover, the associated vector field is

Aμdxμ = L (x) (dφ + krdt) , (4.8)

where

L (x) = q4x
√
q2
(
1 + q2b2

)2 − 4b2
(
l2 − m2

)2
� (x)

. (4.9)
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One can find that the near horizon geometry (4.4) above
possesses the SL (2,R) × U (1) isometry. The SL (2,R)

symmetry is generated by the Killing vectors

K− = ∂t , (4.10)

K0 = t∂t − r∂r , (4.11)

K+ =
(

1

2r2 + t2

2

)
∂t − tr∂r − k

r
∂φ, (4.12)

obeying
[
K0, K±

] = ±K± and
[
K−, K+

] = K0, and the
U (1) symmetry is generated by ∂φ . Interestingly, the pres-
ence of NUT parameter l does not break the SL (2,R)×U (1)

isometry of the near horizon geometry of a magnetized
Reissner–Nordstrom black hole [37]. Furthermore, this isom-
etry hints the compatibility of Kerr/CFT correspondence pre-
scription [42–44] to recover the entropy of extremal black
hole in MRNTN spacetime. Moreover, the authors of [43]
managed to obtain the central charge for a class of near hori-
zon spacetime and vector field solutions in Einstein–Maxwell
theory by using the asymptotic symmetry group (ASG). This
work is reviewed and generalized to a class of gravitational
theories in [44]. Interestingly, the near horizon metric (4.4)
and vector field (4.8) fall into the category discussed in [43],
which then allow us to employ the general results presented in
[43] to establish the Kerr/CFT correspondence to the charged
black hole in MRNTN spacetime.

To ensure that the ASG method can work for the extremal
MRNTN black hole, first we need to consider the following
boundary condition to the near horizon metric

hμν ∼

⎛
⎜⎜⎝

O (r2
) O (r1

) O (r−1
) O (r−2

)
O (1) O (r−1

) O (r−1
)

O (r−1
) O (r−2

)
O (r−3

)

⎞
⎟⎟⎠ , (4.13)

and the following condition for the accompanying vector field

aμdxμ ∼ O(r)dt + O(r−1)dr + O(1)dx + O(r−2)dφ.

(4.14)

Accordingly, the most general diffeomorphisms preserving
the boundary condition for the metric is

ζμ∂μ = ε (φ) ∂φ − r
dε (φ)

dφ
∂r + subleading term (4.15)

which may lead us the associated central charge [37,43,47]

c = cgrav + cgauge, (4.16)

where

cgrav = 3k

+1∫

−1

dx
√

� (x) α (x) γ (x), (4.17)

and

cgauge = 0. (4.18)

Inserting the metric component (4.4) into Eq. (4.16) gives

c = −24q5b
(
1 + q2b2

)

q2 − 2l2
. (4.19)

This result agrees to the central charge associated the near
horizon geometry of an extremal magnetized Reissner–
Nordstrom black hole [37] after taking b = B/2 and l = 0.

Before we can employ the Cardy formula in recovering
the extremal black hole entropy, we need to get the associ-
ated near horizon temperature. Clearly the Hawking temper-
ature (3.16) vanishes in extremal limit, which is typical for
any other extremal black holes. However, since the Hawking
temperature is measured by an observer at infinity, the near
horizon temperature is not necessary vanishing in extremal
state. Using (3.25)–(3.27), we can have

Tφ = lim
r+→m

TH
�ext

J − �J
= − ∂TH

/
∂r+

∂�J
/
∂r+

∣∣∣∣∣
r+=m

, (4.20)

that gives us the Frolov–Thorne temperature near an extremal
black hole under consideration. For an extremal MRNTN
black hole, this temperature reads

Tφ = 2l2 − q2

8πq3b
(
1 + b2q2

) = 1

2πk
, (4.21)

where the constant k is given in (4.7). This result is exactly
what we look for so the Kerr/CFT correspondence can pro-
vide us the holographic entropy calculation of an extremal
MRNTN black hole by using the Cardy formula,

SCardy = π2

3
cTφ. (4.22)

Plugging the central charge (4.19) and Frolov–Thorne tem-
perature (4.21) into the last equation gives us the entropy of
an extremal MRNTN black hole,

Sext. = Aext.

4
= πq2. (4.23)

The fact where Eq. (4.23) is just the extremal limit of
Eq. (3.6) allows us to conclude that we have recovered the
macroscopic Bekenstein–Hawking entropy for the extremal
black hole in MRNTN spacetime by using the microscopic
Cardy formula. Obviously, this result supports the conjec-
tured Kerr/CFT correspondence which is considered as an
extension of the AdS/CFT correspondence to rotating or
charged black holes [42–44]. Similar to the outcomes in
previous studies of magnetized black holes [37,47,48], the
MRNTN black hole entropy does not get contribution from
the external magnetic field. The charge q appearing in (4.23)
is simply the conserved electric charge in the seed solution
RNTN spacetime (2.19).
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5 Conclusion

In this paper, we have presented a new solution in Einstein–
Maxwell theory describing the magnetized spacetime outside
a charged mass equipped with NUT parameter. The magne-
tization procedure is performed by using the Ernst prescrip-
tion, applied to the RNTN solution as the seed. We find that
some properties of the MRNTN black hole are just those of
the non magnetized one, for example the area of horizon and
the Hawking temperature.

Inspired by the Kerr/CFT holography investigations for
some magnetized black holes [37,47,48], we extend the
Kerr/CFT conjecture to the case of MRNTN case. To pro-
ceed, first we need to obtain the corresponding near horizon
and accompanying vector solution in an extremal MRNTN
geometry. It turns out that resulting near horizon metric and
the vector field solution are compatible with the general form
that is used in the asymptotic symmetry group method [43].
Therefore, the general formula for the central charge and
Frolov–Thorne temperature established in [43] can apply.
We pursue this in Sect. 4, where we manage to recover the
extremal entropy for a MRNTN black hole by using Cardy
formula as prescribed by Kerr/CFT correspondence [42–44].

The spacetime solution presented in this paper is a gener-
alization to the novel solution reported in our previous work,
namely the magnetized Taub–NUT spacetime [59]. Obvi-
ously, the similar solution generating method should apply
if one considers the Kerr–Taub–NUT solution as a seed.
Discussing the extremal Kerr/CFT correspondence to the
obtained magnetized Kerr–Taub–NUT black hole also worth
our consideration, i.e. extending the works in [47,48] to the
case with NUT parameter. Further extension of this Kerr/CFT
holography to the case of magnetized Kerr–Newman–Taub–
NUT spacetime is also challenging.
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Apprndix A: Near horizon geometry and the twist poten-
tial

Note that one can “gauge” the twist potential � in (2.4) by
adding some constant �0 to it. It results some changes in
the magnetized solutions, and in particular for the metric
functions f ′ → f ′ + � f ′ and ω′ → ω′ + �ω′. These
changes are

�ω′ = − 2b3�0

�xr4 + 2l2(1 − 3x2)r2 + l2(l2 + 3l2x2 − 4q2x2)

×{2b�r (2l
2m − 3rl2 − r3)x3 + 2lq(2q2 + 3r2

−4mr − l2)x2 + b(6rl2 − l�0 + 2r3)x − 2ql(r2 + l2)},
(A.1)

and

� f ′ = −b3�0
�1�2

�3�4
, (A.2)

where

�1 = �xr
4 + (2l2 − 6l2x2)r2 + 8mrl2x2

−4q2l2x2 + 3l4x2 + l4,

�2 = 4bl(3rl2 − l2m − r3 − 2q2r + 3mr2)x2 + 4q(l2 − r2)x

+b(r2 + l2)(�0 − 4rl),

�3 = �2
xb

4r6 + b2(2b2x2q2 + 7l2b2 − 6b2l2x2 + 15b2l2x4

−2b2q2x4 − 2x2 + 2)r4 − 4lb3(2mlx2b + 10blx4m

+�0x
2b + �0b − 4x3q)r3 + (12l2b4x2q2 + 4l2b2

+12l2b4x4q2 − 24lb3mx3q + b4x4q4 + 12lb4mx2�0

−12b2l2x2 + 7b4l4 + �0
2b4 + 6b2x2q2

−9l4b4x4 − 4b3qxC + 1 − 30l4b4x2 + 36l2b4m2x4)r2

+4bl(2lb3m{3l2 − 4q2}x4 + 2b2x3q3

+{4lmb + 3b3�0l
2 + 6l3b3m − 2b3q2�0}x2

−{2q + 4l2qb2}x − b3�0l
2)r + l2b4�0

2

+(4l2b3qx − 4l3b4mx2)�0 + l2

−18l4b4x4q2 − 2b2l2x2q2 + 6l6b4x2

+2b2l4 + 6b2l4x2 + 9l2b4x4q4

+4l4b4m2x4 − 8l3b3qx3m + l6b4

+9l6b4x4 − 6l4b4x2q2,

�4 = �3 − b3�0{4bl(3rl2 − l2m − r3 − 2q2r + 3mr2)x2

+4q(r2 − l2)x + b(r2 + l2)(�0 − 4rl)}.

Appendix B: Kretschmann scalar forMRNTN spacetime
at x = 0

The Kretschmann scalar for MRNTN spacetime evaluated at
equator, i.e. x = 0, can be expressed as
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Kx=0 =

12∑
j=0

k2 j l2 j

(
l2 + r2

)6 (
b4l4 + 6b4l2r2 + b4r4 + 2b2l2 + 2b2r2 + 1

)6
,

where

k0 = 8r4(b2r2 + 1)4(126b8m2r10

−144b8mq2r9 − 108b8mr11

+43r8q4b8 + 60r10q2b8 + 24b8r12 + 86r4q4b4

−216b6m2r8 + 676b6mq2r7

+204b6mr9 − 264r6q4b6

−356r8q2b6 − 48b6r10 + 124b4m2r6

−36b4mq2r5 − 148b4mr7

+36b4q2r6 + 40b4r8 + 24b2m2r4

+28b2mq2r3 − 12b2mr5

−48r2q4b2 + 4b2q2r4 + 6m2r2 − 12mq2r + 7q4),

k2 = −16r2(b2r2 + 1)2(261b12m2r14

−204b12mq2r13 − 390b12mr15

+17b12q4r12 + 186b12q2r14

−1230b10m2r12 − 2034b10mq2r11 + 1152b10mr13

+1148b10q4r10 + 1166b10q2r12

−276b10r14 + 1963b8m2r10

−7844b8mq2r9 − 1608b8mr11

+2367r8q4b8 + 3770r10q2b8

+353b8r12 − 972b6m2r8 + 3124b6mq2r7 + 1184b6mr9

−1792r6q4b6 − 1972r8q2b6 − 304b6r10 + 67b4m2r6

+780b4mq2r5 − 174b4mr7 + 1007r4q4b4

−482b4q2r6 + 71b4r8

+286b2mq2r3 − 192b2mr5 − 300r2q4b2

−42b2q2r4 + 36b2r6 + 45m2r2 − 60mq2r − 36mr3

+117b12r16 + 186b2m2r4 + 17q4 + 30q2r2 + 3r4),

k4 = (76992mq2r − 74544m2r2 + 68832mr3

−18056q4 − 35616q2r2 − 15120r4)r16b16

+(43584m2r2 + 304128mq2r − 24096mr3

−139008q4 − 162048q2r2 + 1536r4)r14b14

+(25216m2r2 + 860736mq2r − 43136mr3

−292864q4 − 401216q2r2 + 7520r4)r12b12

+(142240mq2r − 156992m2r2 + 58752mr3 + 52896q4

+23776q2r2 − 8384r4)r10b10

+(11840r4 − 13472m2r2 − 821024mq2r − 46752mr3

+134992q4 + 434464q2r2)r8b8

+(12512mr3 − 28480m2r2 − 230080mq2r

−67008q4 + 67264q2r2 − 2944r4)r6b6

+(3232r4 − 23424m2r2 + 2048mq2r

+6080mr3 + 72960q4 − 23168q2r2)r4b4

+(3648r4 − 960m2r2 + 16672mq2r − 6720mr3

−7136q4 − 10912q2r2)r2b2

+720m2r2 − 480mq2r − 1920mr3 + 56q4

+960q2r2 + 720r4,

k6 = −282096b16m2r16 + 302592b16mq2r15

+184608b16mr17

−75968b16q4r14 − 87840b16q2r16 − 30576b16r18

+328704b14m2r14 + 788224b14mq2r13

−240384b14mr15

−361472b14q4r12 − 386816b14q2r14 + 26592b14r16

+111744b12m2r12 + 550464b12mq2r11

−159104b12mr13 + 48768b12q4r10

−116544b12q2r12 + 3072b12r14

−247488b10m2r10 − 2836512b10mq2r9

−102656b10mr11 + 859872b10q4r8

+1431968b10q2r10 + 24896b10r12

+106656b8m2r8 − 1326080b8mq2r7 − 253472b8mr9

−185408b8q4r6 + 241920b8q2r8 + 40448b8r10

+26240b6m2r6 + 133440b6mq2r5 − 104832b6mr7

+433984b6q4r4 − 209984b6q2r6 + 25952b6r8

+15104b4m2r4 + 78528b4mq2r3

−54464b4mr5 − 58496b4q4r2

−49472b4q2r4 + 15424b4r6

+3648b2m2r2 − 5408b2mq2r − 8064b2mr3

+736b2q4 + 12960b2q2r2 + 384b2r4

−48m2 + 576mr − 96q2 − 720r2,

k8 = 48 + (268032mq2r13 − 277920m2r14 − 14784mr15

−57040q4r12 + 81600q2r14 + 10512r16)b16

+(1483776m2r12 − 400064mq2r11 − 862272mr13

+167488q4r10 + 39360q2r12 + 32256r14)b14

+(431488m2r10 − 4368128mq2r9 − 336448mr11

+1931392q4r8 + 1885312q2r10 − 73600r12)b12

+(353472m2r8 − 3844768mq2r7 − 778176mr9

+147296q4r6 + 474656q2r8 + 66112r10)b10

+(365344m2r6 + 363296mq2r5 − 356704mr7

+1202000q4r4 − 846368q2r6 − 38080r8)b8

+(51328m2r4 + 158304mq2r3 − 50336mr5

−224416q4r2 − 25056q2r4 − 35200r6)b6

+(3968m2r2 − 17952mq2r + 4704mr3

+3584q4 + 51936q2r2 − 19712r4)b4

+(2976mr − 192m2 − 1024q2 − 3648r2)b2,

k10 = 32b2(25599b14m2r12 − 34644b14mq2r11

−24930b14mr13 + 11277b14q4r10 + 20238b14q2r12

+1071b14r14 + 88212b12m2r10 − 138726b12mq2r9

−12444b12mr11 + 61434b12q4r8 + 25294b12q2r10

−11670b12r12 + 21840b10m2r8 − 163042b10mq2r7

+2714b10mr9 + 36932b10q4r6

−18b10q2r8 − 10966b10r10

+15494b8m2r6 − 7751b8mq2r5

−2072b8mr7 + 54377b8q4r4

−52197b8q2r6 − 11380b8r8 + 2327b6m2r4

+7240b6mq2r3 + 10161b6mr5
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−14855b6q4r2 + 3912b6q2r4

−8180b6r6 − 314b4m2r2 − 693b4mq2r

+2254b4mr3 + 287b4q4 + 3057b4q2r2 − 1667b4r4

−6b2m2 + 157b2mr − 114b2q2 − 121b2r2 + 9),

k12 = 16b4(131850b12m2r10 − 175368b12mq2r9

−19044b12mr11

+56531b12q4r8 + 26364b12q2r10

−23898b12r12 + 91464b10m2r8

−223280b10mq2r7 + 174924b10mr9

+91072b10q4r6 − 102512b10q2r8

−61008b10r10 − 13640b8m2r6

−94884b8mq2r5 + 95672b8mr7

+83840b8q4r4 − 108460b8q2r6 − 33652b8r8

+1156b6m2r4 + 27486b6mq2r3

+42360b6mr5 − 37042b6q4r2

−9734b6q2r4 − 18916b6r6 − 1566b4m2r2

−262b4mq2r + 9970b4mr3 + 875b4q4

+9414b4q2r2 + 92b4r4 + 12b2m2

−94b2mr − 432b2q2 + 792b2r2 + 50),

k14 = 32b6(29529b10m2r8 − 46272b10mq2r7 + 74898b10mr9

+17114b10q4r6 − 41874b10q2r8 − 23103b10r10

−13584b8m2r6 − 36336b8mq2r5

+91176b8mr7 + 15912b8q4r4

−50672b8q2r6 + 3894b8r8 − 4964b6m2r4

+19974b6mq2r3 + 8308b6mr5 − 13588b6q4r2

−26766b6q2r4 + 11496b6r6 − 242b4m2r2

+261b4mq2r + 3304b4mr3

+413b4q4 + 8511b4q2r2 + 4550b4r4

+15b2m2 − 411b2mr

−280b2q2 + 1448b2r2 + 25),

k16 = 8b8(534b8m2r6 − 11280b8mq2r5

+195300b8mr7 + 8879b8q4r4

−140052b8q2r6 + 56124b8r8

−30048b6m2r4 + 57044b6mq2r3

+5484b6mr5 − 21772b6q4r2

−98596b6q2r4 + 126480b6r6

+2944b4m2r2 − 300b4mq2r

−21036b4mr3 + 952b4q4 + 44724b4q2r2 + 26392b4r4

+24b2m2 − 1124b2mr − 1152b2q2 + 6072b2r2 − 48),

k18 = −16b10(6345b6m2r4 − 7548b6mq2r3

−10782b6mr5 + 1841b6q4r2

+12450b6q2r4 − 35847b6r6

−1524b4m2r2 + 590b4mq2r + 19188b4mr3

−154b4q4 − 15030b4q2r2 − 13794b4r4

+12b2m2 − 494b2mr + 444b2q2 + 1334b2r2 + 58),

k20 = 8b12(882b4m2r2

−456b4mq2r − 16404b4mr3 + 43b4q4 + 7788b4q2r2

+16758b4r4 − 24b2m2 + 1452b2mr − 416b2q2

−8736b2r2 + 28)

k22 = −48b14(b2m2 − 78b2mr + 14b2q2

+681b2r2 − 18),

k24 = 336b16.
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