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Abstract Black holes immersed in magnetic fields are
believed to be important systems in astrophysics. One inter-
esting topic on these systems is their superradiant stabil-
ity property. In the present paper, we analytically obtain
the superradiantly stable regime for the asymptotically flat
dyonic Reissner–Nordstrom black holes with charged mas-
sive scalar perturbation. The effective potential experienced
by the scalar perturbation in the dyonic black hole back-
ground is obtained and analyzed. It is found that the dyonic
black hole is superradiantly stable in the regime 0 <

r−/r+ < 2/3, where r± are the event horizons of the dyonic
black hole. Compared with the purely electrically charged
Reissner–Nordstrom black hole case, our result indicates that
the additional coupling of the charged scalar perturbation
with the magnetic filed makes the black hole and scalar per-
turbation system more superradiantly unstable, which pro-
vides further evidence on the instability induced by magnetic
field in black hole superradiance process.
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1 Introduction

Black holes are relativistic objects which are massive and
curious in the universe. Aspects of black hole physics have
been studied extensively for a long time. Stability is one of the
interesting problems in black hole physics. Superradiance is
an important factor which affects the stability of the charged
or rotating black holes [1]. When a (charged) bosonic wave
is scattering off a black hole, the bosonic wave can be ampli-
fied under certain conditions through extracting energy from
the black hole. This is called a superradiance process. For a
charged rotating black hole, the superradiance condition is

ω < m�H + q�H , (1.1)

wherem and q are azimuthal quantum number and the charge
of the incoming bosonic wave, �H is the angular velocity
of the black hole horizon and �H is the electromagnetic
potential of the black hole horizon [2–8]. If there is a mirror
between the black hole horizon and spatial infinity, the ampli-
fied superradiant modes may be reflected back and forth and
grows exponentially, which is the so-called black hole bomb
mechanism proposed by Press and Teukolsky [9].

Various kinds of black holes have been studied exten-
sively about their superradiant (in)stability in the literature.
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Regge and Wheeler proved that the spherically symmetric
Schwarzschild black hole is stable under perturbations [10].
In the asymptotically flat background, the charged Reissner–
Nordstrom (RN) black hole proved superradiantly stable
against charged massive perturbation [11–18]. The reason
is that if the parameters of RN black holes and perturbations
satisfy superradiant conditions, there is no effective trapping
potential well (mirror) outside the black hole horizon, which
reflects the superradiant modes back and forth. A similar
case exists for charged RN black holes in string theory. The
stringy RN black hole is shown to be superradiantly stable
against charged massive scalar perturbation [19].

When a mirror or a cavity is placed around a charged RN
black hole, it is proved that this black hole is superradiantly
unstable under charged massive scalar perturbation in certain
parameter spaces [20–24]. If the charged RN black holes are
in asymptotically curved backgrounds, such as anti-de Sit-
ter/de Sitter(AdS/dS) space, these curved backgrounds may
provide natural mirror-like boundary conditions which lead
to superradiant instability of the black hole and perturba-
tion systems [25–29]. A similar case exists for charged RN
black holes in string theory. When a mirror is introduced,
superradiant modes are supported and the stringy RN black
hole becomes superradiantly unstable under charged massive
scalar perturbation [30–32]. It is also found that extra cou-
pling between the scalar field and the gravity can result in
superradiant instability of RN/RN-AdS black holes [33,34].

In addition, previous studies imply that magnetic field sur-
rounding a black hole can also provide a confining mecha-
nism. In the weak magnetic field approximation, Refs. [35,
36] showed that when a scalar field is propagating on the Ernst
background [37], the magnetic field can induce an effective
mass μeff ∝ B (B is the magnetic field strength) for the scalar
field. A first fully-consistent linear analysis of the superradi-
ant instability of the Ernst spacetime and scalar perturbations
is given in [38]. By studying scalar perturbation of a mag-
netized Kerr–Newman black hole, the authors confirm the
details of the superradiant instability and find a constraint on
the black-hole spin and the surrounding magnetic field.

The influence of magnetic fields on black hole superra-
diance is an interesting topic and may have astrophysical
application. The Ernst black hole is not asymptotically flat
and describes a black hole immersed in an asymptotically
uniform magnetic field. In this paper we will discuss the
superradiant stability of a class of asymptotically flat mag-
netically charged black holes-dyonic RN black holes [39].
The spacetime metric of this kind of black holes are very
similar with RN black holes, however, there is an additional
magnetic field. By comparing the superradiant stability prop-
erties of the dyonic RN black holes with that of the RN black
holes, we can clearly see the effect of the magnetic field on
black hole superradiance.

The paper is organized as follows. In Sect. 2, we describe
the dyonic RN black hole and scalar perturbation system and
analyze the angular part and radial part of the equation of
motion of the scalar perturbation. In Sect. 3, we derive the
effective potential experienced by the scalar perturbation and
analyze the asymptotical behaviors of the effective potential.
In Sect. 4, we carefully analyze the shape of the effective
potential and get the superradiantly stable parameter region
for the system. Section 5 is devoted to the summary.

2 Equations of motion of the scalar perturbation

The dyonic RN black hole is a stationary and spherically
symmetric spacetime geometry, which is a solution of the
Einstein–Maxwell theory [39]. Using the spherical coordi-
nates (t, r, θ, φ), the line element can be expressed in the
form (we use natural unit in which G = c = h̄=1)

ds2 = − �
r2 dt2 + r2

� dr2 + r2dθ2 + r2 sin2 θdφ2, (2.1)

where

� = −2Mr + r2 + Q2
e + Q2

m, (2.2)

M is the mass of the black hole, Qe and Qm are electric and
magnetic charges of the black hole respectively. The dyonic
RN black hole has an outer horizon at r+ and an inner horizon
at r−,

r+ = M+
√
M2 − Q2

e − Q2
m, r− = M−

√
M2 − Q2

e − Q2
m .

(2.3)

Obviously, they satisfy the following relations

� = (r − r+) (r − r−) , r+r− = Q2
e+Q2

m, r++r− = 2M.

(2.4)

The equation of motion for an electrically charged mas-
sive scalar perturbation � in the dyonic RN black hole back-
ground is descried by the covariant Klein–Gordon (KG)
equation

(
DνDν − μ2

)
� = 0, (2.5)

where Dν = �ν−iq Aν and Dν=�ν−iq Aν are the covariant
derivatives, q and μ are the charge and mass of the scalar field
respectively. The electromagnetic field of the dyonic black
hole is described by the following vector potential
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Aν =
(

−Qe

r
, 0, 0, Qm (cos θ ∓ 1)

)
, (2.6)

where the upper minus sign applies to the north half-sphere
of the black hole and the lower plus sign applies to the south
half-sphere [39].

The solution of the KG equation can be decomposed as
following form

�(t, r, θ, φ) = R(r)Y (θ)eimφe−iωt , (2.7)

where ω is the angular frequency of the scalar perturbation
and m is azimuthal harmonic index. Y (θ) is the angular part
and R(r) is the radial part of the solution. Plugging the above
solution into the KG equation, we can get the radial and angu-
lar parts of the equation of motion. Considering the electro-
magnetic potentials of the northern and southern hemispheres
are different, we will discuss the angular equation of motion
in two cases in the following.

2.1 The north half-sphere of the black hole (0 � θ � π
2 )

In this half-sphere, the angular part of the KG equation is

1

sin θ
∂θ (sin θ∂θY1(θ))

+
(

λ1 − m2 + 2
(
mqQm + q2Q2

m

)
(1 − cos θ)

sin2 θ

)
Y1(θ) = 0.

(2.8)

Defining χ = cos θ and plugging it into the above angular
equation, we can obtain the following differential equation

d2Y1

dχ2 +
(

1

χ − 1
+ 1

χ + 1

)
dY1

dχ
+

[
− m2

2(χ − 1)

+ (2qQm + m)2

2(χ + 1)
− λ1

]
Y1

(χ − 1)(χ + 1)
= 0. (2.9)

The above is a Fuchs-type equation with three singularities
(−1, 1,∞). The general solutions of it can be expressed by
hypergeometric functions as

Y1(χ) = C1(1 − χ)
−m

2 (1 + χ)
m+2qQm

2 2F1 (α1, β1; γ1; z1)

+ C2(1−χ)
m
2 (1+χ)

−m−2qQm
2 2F1 (α2, β2; γ2; z2) ,

(2.10)

where C1,C2 are constants. The parameters in the hyperge-
ometric functions are given by

α1 = 1

2

(
1 + 2qQm + √

1 + 4λ1

)
,

α2 = 1

2

(
1 − 2qQm + √

1 + 4λ1

)
;

β1 = 1

2

(
1 + 2qQm − √

1 + 4λ1

)
,

β2 = 1

2

(
1 − 2qQm − √

1 + 4λ1

)
;

γ1 = 1 − m, γ2 = 1 + m;
z1 = 1

2
(1 − χ), z2 = 1

2
(1 − χ).

(2.11)

In this case, the radial part of the KG equation is

� d

dr

(
�dR

dr

)
+U1R = 0, (2.12)

where

U1 =
(
ωr2 − qQer

)2 + �
(
q2Q2

m − μ2r2 − λ1

)
. (2.13)

2.2 The south half-sphere of the black hole (π
2 � θ � π )

In this half-sphere, the angular part of the KG equation is

1

sin θ
∂θ (sin θ∂θY2(θ))

+
(

λ2 − m2 − 2
(
mqQm − q2Q2

m

)
(1 + cos θ)

sin2 θ

)
Y2(θ)

= 0. (2.14)

Similarly, we define η = cos θ and the above equation can
be rewritten as

d2Y2

dη2 +
(

1

η − 1
+ 1

η + 1

)
dY2

dη

+
[

m2

2(η + 1)
− (2qQm − m)2

2(η − 1)
− λ2

]
Y2

(η − 1)(η + 1)
= 0.

(2.15)

The above is also a Fuchs-type equation with three singulari-
ties (−1, 1,∞). The general solutions of it can be expressed
by hypergeometric functions as

Y2(η) = C3(1 − η)
−m+2qQm

2 (1 + η)
m
2 2F1 (α3, β3; γ3; z3)

− C4(1 − η)
m−2qQm

2 (1 + η)
−m

2 2F1 (α4, β4; γ4; z4) ,

(2.16)
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where C3,C4 are constants. The parameters in the hyperge-
ometric functions are given by

α3 = 1

2

(
1 + 2qQm + √

1 + 4λ2

)
,

α4 = 1

2

(
1 − 2qQm + √

1 + 4λ2

)
;

β3 = 1

2

(
1 + 2qQm − √

1 + 4λ2

)
,

β4 = 1

2

(
1 − 2qQm − √

1 + 4λ2

)
;

γ3 = 1 − m + 2qQm, γ4 = 1 + m − 2qQm;
z3 = 1

2
(1 − η), z4 = 1

2
(1 − η).

(2.17)

In this case, the radial part of the KG equation is given by

� d

dr

(
�dR

dr

)
+U2R = 0, (2.18)

where

U2 =
(
ωr2 − qQer

)2 + �
(
q2Q2

m − μ2r2 − λ2

)
. (2.19)

2.3 Analysis of the angular functions

In order to ensure that the angular functions Yi (θ) (Y1(χ),

Y2(η)) are finite at the north and south poles, the general
solutions in equations (2.10) and (2.16) are chosen as follows,

Y1(χ) = C2(1 − χ)
m
2 (1 + χ)

−m−2qQm
2 2F1 (α2, β2; γ2; z2x) ,

(2.20)

Y2(η) = C3(1 − η)
−m+2qQm

2 (1 + η)
m
2 2F1 (α3, β3; γ3; z3) .

(2.21)

We also have the following remarks on the parameters in the
angular functions,

I: Finiteness of the factors (1 −χ)
m
2 and (1 + η)

m
2 implies

m � 0. (2.22)

II: In order for the convergence of the functions 2F1(α2,
β2; γ2; z2), 2F1(α3, β3; γ3; z3) when |z2|, |z3| � 1, we
obtain the charge quantization condition and constraints
on λ1, λ2

qQm = integer, λ1 = λ2 = l(l + 1), l > qQm .

(2.23)

2.4 The radial equation of motion

Now, we study the radial part of the equation of motion of the
scalar perturbation. Based on the discussion of the angular
part of the equation of motion, radial equations (2.13) and
(2.19) can be rewritten as

� d

dr

(
�dR

dr

)
+UR = 0, (2.24)

where

U =
(
ωr2 − qQer

)2 + �
(
q2Q2

m − μ2r2 − λ
)

. (2.25)

In order to discuss the asymptotic solutions of the radial
function near the outer horizon of the black hole, it is con-
venient to use the tortoise coordinate. Define the tortoise
coordinate r� by the equation

dr�
dr

= r2

� , (2.26)

and define a new radial function as ξ = r R, the radial equa-
tion (2.24) can be rewritten as

d2ξ

dr2
�

+U1ξ = 0, (2.27)

where

U1 = U

r4 − �
r3

d

dr

( �
r2

)
. (2.28)

Here the suitable boundary conditions we need are ingoing
wave near the outer horizon (r� → −∞, i.e. r → r+) and
exponentially decaying wave at spatial infinity(r� → +∞,
i.e. r → +∞). Hence, the radial equation of motion has the
following asymptotic solutions

ξ ∼

⎧
⎪⎨
⎪⎩

e−i(ω−ωc)r� , r� → −∞,

e−
√

μ2−ω2r� , r� → +∞.

(2.29)

In the above equation, the critical angular frequency ωc is
defined as

ωc = q�, (2.30)

where � is the electromagnetic potential of the outer horizon
of the dyonic RN black hole, � = Qe/r+. The superradiant
condition for an electrically charged massive scalar pertur-
bation on the dyonic RN black hole background is

ω < ωc = qQe

r+
. (2.31)
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The bound state condition at spatial infinity for the scalar
perturbation is

ω2 < μ2. (2.32)

3 Effective potential and its asymptotic analysis

In this section, we will derive the effective potential from
the radial equation of motion and analyze its asymptotic
behaviours at the horizons and spatial infinity when the
parameters of the scalar field and the black hole satisfy the
bound state condition ω2 < μ2 and the superradiance con-
dition 0 < ω < qQe/r+.

Define a new radial function ψ by ψ = � 1
2 R, then the

radial equation of motion (2.24) can be transformed into a
Schrodinger-like equation

d2ψ

dr2 +
(
ω2 − V

)
ψ = 0, (3.1)

where

V = ω2 − U + (r+ − M)2

�2 (3.2)

is the effective potential experienced by the scalar pertur-
bation field. If there is no potential well outside the outer
horizon of the dyonic RN black hole, the system compos-
ing of the charged massive scalar perturbation field and the
dyonic RN black hole is superradiantly stable.

The asymptotic behaviors of the effective potential V at
the two horizons and spatial infinity are respectively

V (r → r−) → −∞, V (r → r+) → −∞; (3.3)

V (r → +∞) → μ2 + 2

r
f (ω) + O

(
1

r2

)
. (3.4)

The asymptotic behavior of the derivative of V at spatial
infinity is

V
′
(r → +∞) → − 2

r2 f (ω) + O

(
1

r3

)
, (3.5)

where the function f (ω) is

f (ω) = −2Mω2 + qQeω + Mμ2. (3.6)

Now, let’s prove that f (ω) is positive with the conditions
(2.31) and (2.32). Obviously, there are one negative and one
positive real roots for f (ω) = 0 and the positive one is

ω+ = qQe + √
q2Q2

e + 8M2μ2

4M
. (3.7)

In order to ensure f (ω) is positive, we just need to prove
0 < ω < ω+. We will discuss this in two cases.

• Case I: ω < μ <
qQe
r+

ω+ = qQe + √
q2Q2

e + 8M2μ2

4M
= qQe

4M
+

√
q2Q2

e

16M2 + μ2

2
.

(3.8)

Since r+ = M + √
M2 − Q2

e − Q2
m > M , we get an

inequality as follows

ω+ = qQe

4M
+

√
q2Q2

e

16M2 + μ2

2
>

μ

4
+

√
μ2

16
+ μ2

2
= μ > ω.

(3.9)

• Case II: ω <
qQe
r+ < μ

We can also easily get

ω+ >
qQe

4r+
+

√
q2Q2

e

16r2+
+ q2Q2

e

2r2+
= qQe

4r+
+

√
9q2Q2

e

16r2+

= qQe

r+
> ω. (3.10)

From the three equations of (3.3)–(3.5), we know that
there is at least one extreme between the inner horizon and
the outer horizon (r− < r < r+) and there exists at least
one maximum outside the outer horizon (r > r+) since
f (ω) > 0. There is no potential well near the spatial infinity
and the system may be superradiantly stable. In next section,
we will go a step further and find the regime, satisfied by the
parameters of the system, where there is only one maximum
outside the outer horizon for the effective potential and no
potential well exists, which means the system is superradi-
antly stable.

4 Analysis of superradiant stability

In this section, we will find the regions in the parameter
space where the system of dyonic RN black hole and massive
scalar perturbation is superradiantly stable. We determine the
parameter regions by considering the extremes of the effec-
tive potential in the range r− < r < +∞.

4.1 Explicit expression of derivative of V

Now, we define a new variable y, y = r−r−. The expression
of the derivative of the effective potential V is
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V ′(r) = −2
(
Ar4 + Br3 + Cr2 + Dr + E

)

�3

= V ′(y) = −2
(
A1y4 + B1y3 + C1y2 + D1y + E1

)

�3 ,

(4.1)

where

A1 = A; B1 = (4r−) A1 + B, (4.2)

C1 =
(

6r2−
)
A1 + (3r−) B1 + C, (4.3)

D1 =
(

4r3−
)
A1 +

(
3r2−

)
B1 + (2r−)C1, (4.4)

E1 =
(
r2−

)
A1 +

(
r3−

)
B1 +

(
r2−

)
C1 + (r−) D1 + E .

(4.5)

Explicitly,

A1 = −2Mω2 + qQeω + Mμ2, (4.6)

B1 = − 2
(
8M2 − 6Mr+ + r2+

)
ω2 + 2qQe (5M − 2r+) ω

+ μ2 (
6M2 − 6Mr+ + r2+

) − q2 (
Q2

e + Q2
m

) + λ,

(4.7)

C1 = − 6 (2M − r+) 3ω2 + 9qQe (2M − r+) 2ω

+ 3
(
(M − r+)

(
μ2 (2M − r+)2

−q2Q2
e − q2Q2

m + λ
) − Mq2Q2

e

)
, (4.8)

D1 = − 2 (4M − 3r+) (2M − r+) 3ω2

+ 2qQe (7M − 5r+) (2M − r+) 2ω

+ 2q2 (−Q2
m

(
M2 − 5Q2

e

) + 4Q4
e + Q4

m

)

− 2q2Q2
e (3M (r+ − 2M)

+ 2μ2 (
2M2 − 3Mr+ + r2+

) 2

+2
(
Q2

e + Q2
m

)) − 12Mq2Q2
er−

+ 2 (M − r+) 2(λ − 1), (4.9)

E1 = (r+ − r−) (qQe − ωr−) 2r2− + 1

4
(r+ − r−)3 . (4.10)

Because we are interested in the extremes of effective poten-
tial V , i.e. the roots of V ′, in the next we mainly analyze the
numerator of V ′, which is

g(y) = A1y
4 + B1y

3 + C1y
2 + D1y + E1. (4.11)

4.2 Analysis of roots of V ′ = 0

From the asymptotic behaviors of the effective potential at
the inner and outer horizons and spatial infinity, we know
that there are at least two positive roots for g(y) = 0. These
two positive real roots are denoted by y1, y2, namely

y1 > 0, y2 > 0. (4.12)

The numerator of the derivative of the effective potential
g(y) is a quartic polynomial in y. The equation g(y) = 0
has four roots, which are denoted by y1, y2, y3 and y4. By
the Vieta theorem, we have

y1 + y2 + y3 + y4 = − B1

A1
,

(4.13)

y1y2 + y1y3 + y1y4 + y2y3 + y2y4 + y3y4 = C1

A1
, (4.14)

y1y2y3 + y1y2y4 + y1y3y4 + y2y3y4 = −D1

A1
,

(4.15)

y1y2y3y4 = E1

A1
. (4.16)

It is worth an immediate remark here. The four roots are not
necessary all real. y3, y4 may be complex roots and y3 = y∗

4 .
We suppose the four roots are all real. This is the most worse
case and we just want to find a sufficient condition for the
system to be superradiantly stable.

In the following, we would like to analyze the three coeffi-
cients A1,C1 and E1. The coefficient A1 has already proved
to be positive in previous section. For coefficient E1, it is
easy to see that

r+ > r−, E1 = (r+ − r−) (qQe − ωr−) 2r2−

+1

4
(r+ − r−)3 > 0. (4.17)

Thus, according to the Eq. (4.16) of Vieta theorem, there
are two cases for the four roots of the equation g(y) = 0:
two positive roots and two negative roots or all four positive
roots. If C1 is less than 0, these four roots are two positive
and two negative roots, there is no potential well outside the
outer horizon and the system is superradiantly stable.

In the following, we will find the regime where C1 < 0.
C1 can be treated as a quadratic polynomial in ω,

C1(ω) = −6 (2M − r+) 3ω2 + 9qQe (2M − r+) 2ω

+ 3
(
(M − r+)

(
μ2 (2M − r+)2 − q2Q2

e

−q2Q2
m + λ

)
− Mq2Q2

e

)
.

(4.18)

Given the condition (M − r+) < 0 and the inequality (2.23),
−q2Q2

m + λ > 0, we have

C1(ω) < −6r3−ω2 + 9qQer
2−ω

+3 (M − r+)
(
μ2r2− − q2Q2

e

)
− 3Mq2Q2

e . (4.19)
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Fig. 1 Superradiantly stable effective potentials. The black hole mass
is chosen as M = 1. The charges are chosen as Qe = 0.4, Qm = 0.4 and
Qe = 0.7, Qm = 0.3 for the solid curve and dashed curve respectively.
The other parameters are chosen as l = 2, ω = 0.02, μ = 0.05, q = 0.1

Using the equation M − r+ = r− − M , the above inequality
can be rewritten as

C1(ω) < −6r3−ω2 + 9qQer
2−ω

+3

2
μ2r3− − 3

2
μ2r+r2− − 3q2Q2

er−. (4.20)

Considering the bound state condition (2.32) and the above
inequality, we have

C1(ω) < −6r3−ω2 + 9qQer
2−ω

+3

2
ω2r3− − 3

2
ω2r+r2− − 3q2Q2

er− ≡ 3r−h(ω),

(4.21)

where

h(ω) = −1

2

(
3r2− + r+r−

)
ω2 + 3qQer−ω − q2Q2

e .

(4.22)

When h(ω) < 0, we have C1 < 0. Regarding h(ω) as a
quadratic function of ω, the discriminant of h, �h , is

�h = q2Q2
er− (3r− − 2r+) . (4.23)

It is obvious that when

r−
r+

<
2

3
, (4.24)

�h < 0, h(ω) < 0 and C1(ω) < 0. Two examples of
the superradiantly stable effective potential are illustrated in
Fig. 1

5 Summary

We have investigated the superradiant stability property of
a system consisting of a dyonic RN black hole and an elec-
trically charged massive scalar perturbation. The dyonic RN
black hole is an electrically and magnetically charged black
hole which is also spherical and asymptotically flat. The
equation of motion of the scalar perturbation in the dyonic RN
black hole background is separated into angular and radial
parts. We discuss the angular equations in two cases and
obtain the charge quantization condition

qQm = integer, (5.1)

and a bound on the magnetic charge of the black hole

l(l + 1) > q2Q2
m . (5.2)

The radial equation of motion is transformed into a Schro-
dinger-like equation and the effective potential V experi-
enced by the scalar perturbation is derived. Through the anal-
ysis of the effective potential, we find the following simple
regime

r−
r+

<
2

3
, or

Q2
e + Q2

m

M2 <
24

25
(5.3)

where there exists no trapping potential outside the black
hole horizon and the system is superradiantly stable.

By taking Qm = 0 limit in (5.3), we obtain that the elec-
trically charged RN black hole is superradiantly stable when
Q2
e

M2 < 24
25 , which is consistent with the previous result that

all electrically charged RN black holes with Q2
e

M2 � 1 are
superradiantly stable under charged massive scalar perturba-
tion [11–14]. It is obvious that the limit is not the same as
the previous result. This is because we take some approxi-
mations in the proof here and the result in (5.3) is a sufficient
condition for the dyonic RN black hole to be superradiantly
stable. It will be interesting to further study the complemen-
tary parameter regime of our result here and get full under-
stand of the superradiance (in)stability for the system with a
dyonic RN black hole and scalar perturbation.
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