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Abstract A general analytic spherically symmetric solu-
tion of the Bogomol’nyi equations is found. It depends on
two constants and one arbitrary function on radius and con-
tains the Bogomol’nyi–Prasad–Sommerfield and Singleton
solutions as particular cases. Thus all spherically symmetric
’t Hooft–Polyakov monopoles with massless scalar field and
minimal energy are derived.

1 Introduction

The ’t Hooft–Polyakov monopole solutions are exact static
spherically symmetric solutions with finite energy of the field
equations of the SU(2) gauge model with the triplet of scalar
fields ϕ in the adjoint representation and λϕ4 type interaction
[1,2]. There are many other related solutions of the equa-
tions of motion without spherical symmetry and different
boundary conditions. All solutions are divided into homo-
topically inequivalent classes parameterized by the degree
of the map S

2 → S
2 (topological charge Q taking integer

values) defined by the boundary conditions (see, e.g. [3–6]).
Solutions with spherically symmetric boundary conditions
belong to the class with Q = 1.

Monopole-type solutions have many point particle prop-
erties: finite energy, stability and localisation in space, and
are interesting both from mathematical and physical point
of view. So far they are not observed in nature. Recently,
the ’t Hooft–Polyakov monopoles were given new physical
interpretation in solid state physics [7–9] describing elastic
media with continuous distribution of disclinations and dis-
locations.

In each Q-sector of the monopole-type solutions, there are
field configurations with minimal energy. They are defined
by the Bogomol’nyi equations [11]. The solutions with min-
imal energy satisfy also the original equations of motion of
the model for massless scalar fields without self interaction.
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Therefore solutions of the Bogomol’nyi equations are impor-
tant and interesting.

Bogomol’nyi equations reduce to the system of nonlin-
ear ordinary differential equations in the spherically sym-
metric case. The author was aware only of two exact ana-
lytic solutions of this system of equations: the Bogomol’nyi–
Prasad–Sommerfield [10,11] and Singleton [12] solutions. In
the present paper, we have found a general analytic spheri-
cally symmetric solution of the Bogomol’nyi equations. It
is parameterized by one arbitrary function of radius and two
constants. There is also one degenerate solution parameter-
ized by one arbitrary constant. In particular cases, a gen-
eral solution yields the Bogomol’nyi–Prasad–Sommerfield
and Singleton solutions. Thus we have found all spherically
symmetric ’t Hooft–Polyakov monopoles for massless scalar
fields which minimize the energy in the Q = 1 sector.

1.1 A general solution

We consider the Euclidean space R
3 with Cartesian coor-

dinates xμ and Euclidean metric δμν := diag (+ + +),
μ, ν = 1, 2, 3. Let there be the SU(2) local connection form
Aμ

i (x) (the Yang–Mills fields) and the triplet of scalar fields
ϕi (x), i = 1, 2, 3, in the adjoint representation of SU(2).
The totally antisymmetric tensor is denoted by εi jk , ε123 = 1,
and raising and lowering of Latin indices is performed by the
Euclidean metric δi j (the Killing–Cartan form of SU(2)).

We are looking for spherically symmetric solutions of the
Bogomol’nyi equations [11]

Fμν
i = εμνρ∇ρϕi , (1)

where

Fμν
i := ∂μAν

i − ∂ν Aμ
i + Aμ

j Aν
kε jk

i

is the local curvature form (the Yang–Mills field strength)
and

∇μϕi := ∂μϕi + Aμ
jϕkε jk

i (2)
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is the covariant derivative of scalar fields.
Any solution of the Bogomol’nyi equations satisfies also

the field equations of SU(2) gauge model in Minkowskian
space-timeR1,3 with massless scalar fields without self inter-
action in the time gauge A0

i = 0. The inverse statement
is not true. Smooth solutions of the Bogomol’nyi equations
have minimal energy in each sector of topologically different
(nonhomotopic) solutions of the model (see, e.g. [3–6]).

The boundary conditions are supposed to be spherically
symmetric

lim
r→∞Aμ

i → 0, lim
r→∞ϕi → xi

r
a, a �= 0, (3)

where r := √
xμxμ is the usual radius in the spherical coor-

dinate system.
The Bogomol’nyi equations are the system of 9 first order

nonlinear partial differential equations for 12 unknown func-
tions Aμ

i and ϕi . They are simpler then the original field
equations of the SU(2) gauge model.

Now we find a general static spherically symmetric solu-
tion of the Bogomol’nyi equations. We assume that the global
rotation group SO(3) acts simultaneously both on the base
R

3, and on the Lie algebra so(3), which, as a vector space, is
also a three-dimensional Euclidean space R3. It means that if
S ∈ SO(3) is an orthogonal matrix, then the transformation
has the form

Aμ
i �→ S−1ν

μ Aν
j S j

i , S ∈ SO(3).

Under this assumption, the difference between Greek and
Latin indices disappears, but we shall, as far as possible,
distinguish them for clarity.

The most general spherically symmetric components of
the connection have the form

Aμ
i (x) := εμ

i j x j
r
W (r) + δiμV (r) + xμxi

r2 U (r), (4)

where W , V , U are arbitrary sufficiently smooth functions
of radius.

If we include reflections into the rotation group, then
Aμ

k are components of the second rank pseudo-tensor with
respect to the action of the full rotation group O(3), due to
the presence of the third rank pseudo-tensor εi jk in Eq. (2).
Under the action of the full rotation group O(3) the function
W is a scalar, and V and U are pseudoscalars.

The famous ’t Hooft–Polyakov monopole solution [1,2]
corresponds to ansatz (4) with V ≡ U ≡ 0.

A general spherically symmetric ansatz for the scalar
fields is

ϕi := xi

r
F(r),

where F is an arbitrary function.

To simplify equations, we introduce dimensionless func-
tions K (r), L(r), M(r), and H(r):

W := K − 1

r
, U := L

r
, V := M

r
, F := H

r
. (5)

Then the full system of Bogomol’nyi equations becomes

r K ′ + M(L + M) = K H, (6)

−r K ′ + K 2 − 1 − LM = r H ′ − H − K H, (7)

rM ′ − K (L + M) = MH. (8)

A general solution of this system of equations for H ≡ 0
was found in [13], where it was given physical interpretation
in solid state physics as describing media with disclinations.
Therefore we assume that H �= 0 in what follows.

Now we introduce new independent variable

r �→ ξ := ln r, r > 0, (9)

and the index will denote differentiation with respect to ξ ,
e.g.

Mξ := dM

dξ
= rM ′, Mξξ = r2M ′′ + rM ′.

Theorem 1.1 A general solution of the system of Eqs. (6)–
(8) is

M(ξ) = ±
√

1 − K 2 + Hξ − H , (10)

L(ξ) = ∓Kξ − K 2 + 1 + Hξ − (K + 1)H
√

1 − K 2 + Hξ − H
, (11)

where H(ξ) is a solution of the Riccati equation

Hξ + H − H2 = C e2ξ (12)

with arbitrary constant C ∈ R and K is an arbitrary function
satisfying inequality

1 − K 2 + Hξ − H ≥ 0. (13)

The upper and lower signs in Eqs. (10), (11) must be chosen
simultaneously.

Proof Add Eqs. (6) and (7):

M2 + K 2 − 1 = r H ′ − H.

It implies Eq. (10). Substitution of this solution into Eq. (7)
yields

−Kξ + K 2 − 1 ∓ L
√

1 − K 2 + Hξ − H2 = Hξ − H − K H.

It gives Eq. (11).
After substitution of M (10) and L (11) into Eq. (8) and

changing of coordinate (9) all terms with K cancel, and we
get the equation for H(ξ):

Hξξ − Hξ − 2Hξ H − 2H + 2H2 = 0. (14)
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It is rewritten as

(Hξ + H − H2)ξ − 2(Hξ + H − H2) = 0.

This equation can be easily integrated yielding the Riccati
Eq. (12) with constant of integration C .

We are looking for real valued solutions, therefore Eq. (13)
must hold. �


Thus we reduced the whole problem to solution of the
Riccati Eq. (12), functions M and L are expressed through
H and K , the function K being arbitrary.

Now we consider two special cases. Let arbitrary function
K satisfy equation

K 2 = 1 + r H ′ − H. (15)

It implies M = 0. Then Eq. (8) yields K L = 0, and we have
two subcases: K = 0 and L = 0.

Subcase M = 0, K = 0. Then Eq. (6) is satisfied, and
Eq. (7) yields

r H ′ − H + 1 = 0.

Its general solution is

H = 1 + C1r, C1 = const. (16)

Thus we get

Proposition 1.1 If Eq. (15) holds and K = 0, then a general
solution of the Bogomol’nyi Eqs. (6)–(8) is

M = 0, H = 1 + C1r, (17)

the function L being arbitrary.

The gauge and scalar fields for this solution are

ϕi = xi

r

(
1

r
+ C1

)
,

Aμ
i = −εμ

i j x j
r2 + xμxi

r2 U (r),

(18)

the function U := L/r being arbitrary. To satisfy the bound-
ary conditions (3) we must assume that U (∞) = 0 and
C1 �= 0. This solution seems to be new.

Subcase M = 0, L = 0. Then the full system of the
Bogomol’nyi equations reduces to

r K ′ = K H,

r H ′ = K 2 − 1 + H.
(19)

This subcase corresponds to the ’t Hooft–Polyakov ansatz.
If we solve the second Eq. (19) for K and substitute the
solution into the first equation, then we obtain Eq. (14). Thus
the original ’t Hooft–Polyakov monopoles correspond to the
special case of general solution given by Theorem 1.1 when
arbitrary function is given by Eq. (15).

A general case. The Riccati Eq. (12) in old coordinate r
is

r H ′ + H − H2 = Cr2.

Substitution

H(r) := r

Z(r)
+ 1

results in the special Riccati equation (see, e.g. [14, Part III,
Chapter I, Eq. 1.99])

Z ′ + CZ2 = −1. (20)

Its solution going through the point Z(0) = Z0 is

Z(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Z0
√−C − tanh(

√−Cr)√−C + CZ0 tanh(
√−Cr)

, C < 0,

Z0 − r, C = 0,

Z0
√
C − tan(

√
Cr)√

C + CZ0 tan(
√
Cr)

, C > 0.

(21)

The constant of integrationC �= 0 can be absorbed by rescal-
ing the field and radius

Z �→ √|C | Z , r �→ √|C | r.
Then the solution is

Z(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z0 − tanh r

1 − Z0 tanh r
, C < 0,

Z0 − r, C = 0,

Z0 − tan r

1 + Z0 tan r
, C > 0.

(22)

For C = 0 the solution remains the same (21). Thus the
constant C in general solution (12) takes, in fact, only three
different values: C = −1, 0, 1.

The scalar fields for solution (22) are

ϕi (r) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xi

r

(
1 − Z0 tanh r

Z0 − tanh r
+ 1

r

)
, C < 0,

xi

r

(
1

Z0 − r
+ 1

r

)
, C = 0,

xi

r

(
1 + Z0 tan r

Z0 − tan r
+ 1

r

)
, C > 0.

(23)

At infinity the limit is

ϕi (∞) =

⎧
⎪⎪⎨

⎪⎪⎩

− xi

r
, C < 0,

0, C = 0,

?, C > 0.

Thus only solutions with C < 0 satisfy boundary condition
(3). In the case C > 0 the scalar field has periodic singular-
ities and does not have the limit as r → ∞. Therefore its
physical meaning is obscure.
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A general solution for the gauge field is more complicated
and depends on arbitrary function K (r). We return to its
analysis in future.

Up to now only a few spherically symmetric solutions of
the Bogomol’nyi equations are known.

If C < 0, Z0 = 0, and Eq. (15) holds, then

Z = − tanh r, H = 1 − r

tanh r
, K = ± r

sinh r
. (24)

This is precisely the famous Bogomol’nyi–Prasad–Sommerfield
solution [10,11]. For Z0 �= 0 and arbitrary function K (r) we
have infinitely many new solutions which differ, for example,
by the tensorial structure of the gauge field (4).

If C = 0 and Eq. (15) holds, then

Z = Z0 − r, H = Z0

Z0 − r
, K = ± r

Z0 − r
. (25)

This is the solution found in [12].

2 Conclusion

We considered the most general spherically symmetric ansatz
for the gauge and scalar fields in the SU(2) gauge model.
A general analytic solution of the Bogomol’nyi equations
is found. It includes the Bogomol’nyi–Prasad–Sommerfield
and Singleton solutions as particular cases. A general solu-
tion describes also infinitely many new solutions for differ-
ent values of constant Z0 and arbitrary function K (r). Thus
we obtained all spherically symmetric ’t Hooft–Polyakov
monopoles minimizing the energy in the Q = 1 sector. All
smooth solutions have the same minimal energy.

Scalar functions for C > 0 are not smooth. They have
periodic singularities when r ranges from 0 to ∞ and do
not have the limit as r → ∞. Therefore physical meaning
of these solutions of the Bogomol’nyi equations is obscure.
Anyway, we have proved that there are no other spherically
symmetric solutions.

The Lie algebra su(2) is isomorphic to so(3). Therefore
the ’t Hooft–Polyakov monopole solutions may be given
physical interpretation in solid state physics assuming that
the rotational group SO(3) acts in the tangent space. They
describe media with point disclinations [7–9]. Probably, the
obtained spherically symmetric solutions may be observed
in solids.
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