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Abstract To understand the nature of two poles for the
Λ(1405) state, we revisit the interactions of K̄ N and π� with
their coupled channels, where two-pole structure is found
in the second Riemann sheet. We also dynamically gener-
ate two poles in the single channel interaction of K̄ N and
π�, respectively. Moreover, we make a further study of two
poles’ properties by evaluating the couplings, the compos-
iteness, the wave functions, and the radii for the interactions
of four coupled channels, two coupled channels and the sin-
gle channel. Our results show that the nature of two poles is
unique. The higher-mass pole is a pure K̄ N molecule, and the
lower-mass one is a composite state of mainly π� with tiny
component K̄ N . From our results, one can conclude that the
Λ(1405) state may be overlapped with two different states
of the same quantum numbers.

1 Introduction

Quantum chromodynamics (QCD) has become the funda-
mental theory for describing the strong interactions between
quarks and gluons, and perturbative QCD has also achieved
great success in explaining the strong interactions in the high
energy region. However, in the low energy region where
many resonances appear, the non-perturbative QCD should
be applied to understand the properties of the hadronic states
under the confinement. There were many proposals about
non-perturbative QCD approaches, see more details in the
reviews [1–3] and references therein. In recent years, due to
the development of the high energy experiments, many exotic
states were found, such as tetraquark-like or pentaquark-like
states, which were a chance and challenge to understand the
features of the non-perturbative QCD and caught much atten-
tion both in theories and experiments, see the reviews [1–13].
Understanding the structures and the decay properties of the
exotic states is an important and long term issue in the particle
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physics. In fact, as discussed in Ref. [3], most of the exotic
states are located nearby the thresholds of certain channels
and show up clearly molecular nature. A further study was
given in Ref. [14] to reveal this mysterious feature using a
nonrelativistic effective field theory with open channels, and
more investigations can be found in Ref. [15] where the spec-
tra of hadronic molecules in the charm sector were system-
atically researched with the single channel Bethe-Salpeter
equation.

Even though more and more new resonances have been
found in recent experiments and need to be understood their
nature, there are also some states found in the early stage,
such as f0(980), a0(980), Λ(1405), and so on, of which
the structures and other properties are still under debate. As
already known, early in 1961, the Λ(1405) resonance was
discovered below the K− p threshold in the π� invariant
mass spectrum [16], which was theoretically predicted in
Refs. [17,18] as a quasi-bound molecular state in the K̄ N
interaction. The Λ(1405) state has been studied extensively
in theory after its discovery by the experiments. At the begin-
ning, considered it as the normal three-quark baryon, the
constituent quark models failed to reproduce its mass and
describe its nature [19,20]. Treated as the five-quark baryon,
a Λ∗ state with the mass about 1400 MeV was obtained using
the MIT bag model [21], but its assignment to the Λ(1405)

resonance was still questionable due to the wave function
having other important components except for the part of K̄ N
and the small ratio of the coupling constants for the channels
of K̄ N and π�. Using Jaffe and Wilczek’s diquark model, it
was possible to interpret the Λ(1405) state as J P = 1

2
−

pen-
taquark state [22]. In the Skyrme model, the Λ(1405) state
was explained as the kaon bound state [23]. Constructing an
effective potential from the chiral meson-baryon Lagrangian
and using the coupled channel Lippmann-Schwinger equa-
tion, the Λ(1405) resonance was reproduced as a quasi-
bound state of K̄ N and the experimental data was well
described in Refs. [24,25]. Furthermore, also with the cou-
pled channel Lippmann-Schwinger equation (later denoted
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as the coupled channel Bethe-Salpeter equation under the on-
shell description [26]), but derived the interaction potential
only from the lowest order (LO) chiral Lagrangian, Ref. [27]
also dynamically generated the Λ(1405) resonance with one
cutoff for the loop functions, and described the experimental
data well.

Furthermore, using the chiral unitary approach (ChUA)
[26,27], where more details about the ChUA can be referred
to the recent reviews [28–31], more further investigations
had been done in Refs. [32–39] for the interactions of K̄ N
and its coupled channels to reveal the nature of the Λ(1405)

state. Especially, two-pole structure was found in different
Riemann sheets for the Λ(1405) state in Ref [32], which
was confirmed in the later work of [34,35] and investi-
gated with more details about the nature of two poles in
Ref. [36]. In Ref. [37] the quark mass dependence for these
poles was discussed. The pole structure of the Λ(1405) state
was looked inside with the interactions of coupled chan-
nels and single channel in Ref. [38]. In fact, the two-pole
structure of the Λ(1405) resonance was predicted for the
first time in Ref. [40] using the coupled channel Lippmann-
Schwinger equation where the cloudy quark bag model
was taken for the potentials. The progress on the ChUA
for the Λ(1405) resonance can be found in the reviews
[41].

Note that, Refs. [24,25] had taken into account the next
to leading order (NLO) of chiral Lagrangian to extract the
potential. The direct and crossed Born terms were consid-
ered to the interaction potentials in Ref. [32]. Moreover,
with the ChUA, Ref. [42] pondered the leading order con-
tact (Weinberg-Tomozawa) term, the direct and crossed Born
terms (the s- and u-channel contributions [43]), and the NLO
contact terms for the interaction potentials, where the contri-
butions of these terms to the fitting results were discussed in
details and it was found that the contributions from the Born
terms were small. More further investigations can be found in
Refs. [44–50]. Following Ref. [51], a Bethe-Salpeter frame-
work with full off-shell dependence was adopted in Ref. [52]
for the interactions of K̄ N and its coupled channels, where
the two-pole structure was confirmed and it was concluded
that the off-shell effect impacted slightly the description of
experimental data. A further investigation was given in Ref.
[53] with more constraints from the new experimental data.
Based on the results of lattice QCD and the ChUA in the
finite volume, Ref. [54] argued that the two-pole structure
was a fact of QCD and suggested that two different state cor-
responding to two poles should be put in the main listings of
Particle Data Group (PDG) [55]. To view the origin of two
poles, a comparative analysis of different theoretical mod-
els was performed in Ref. [56]. The wave function and the
compositeness for the Λ(1405) resonance were discussed
in details in Refs. [57,58] to address the critical issues on
its molecular picture. Using the ChUA and a full analysis

of low-energy experimental data including the differential
cross section data for the first time, Ref. [59] determined
the two poles of Λ(1405) by a simultaneous analysis of S-
and P-waves of the scattering amplitudes. With more con-
straints from the vector-baryon interactions in the ChUA,
the two poles were well reproduced in Ref. [60], where one
new state of isospin I = 1 was claimed. In a chiral quark
model, it was also supported that the Λ(1405) state was
a K̄ N bound state and had the two-pole structure in Ref.
[61]. Whereas, in the Skyrme model, the Λ(1405) state was
assumed to be a narrow K̄ N Feshbach resonance in Ref. [62].
Using a model-independent of Uniformized Mittag–Leffler
expansion, Ref. [63] fitted the experimental data well and
supported the single-pole picture of the Λ(1405). Recently,
also with the full off-shell dependence for the effective poten-
tials, the two-pole structure was confirmed once again in
Ref. [64] by applying subtractive renormalization for the
coupled channel scattering amplitudes. Besides, there were
also some experimental results for the two-pole structure
of the Λ(1405) state [65,66]. More about the status of the
Λ(1405) resonance can be found in the review of PDG [55]
by Meißner and Hyodo, and in the recent reviews of [67–
69].

In the present work, to understand more about the prop-
erties of Λ(1405), we revisit the coupled channel inter-
actions of K̄ N and its coupled channels with the ChUA
following the method of Ref. [70], where the pole struc-
tures of the σ or called f0(500), f0(980) and a0(980)

were investigated by their corresponding compositeness,
wave functions and radii in the coupled and single chan-
nel interactions. Our work is organized as follows. In the
next section, we briefly introduce the formalism of cou-
pled channel interaction within the ChUA, where Bethe-
Salpeter equation and the meson-baryon interaction poten-
tials are provided. Furthermore, we discuss the evaluations
of the couplings, the compositeness, the wave functions
and the radii for two poles of the Λ(1405). In the fol-
lowing section, we show our results of the coupled and
single channel interactions. At the end, it is our conclu-
sions.

2 Formalism

In this section, we first revisit the formalism of the ChUA for
the meson-baryon interactions, where the interaction poten-
tials are derived from the LO chiral Lagrangian and the scat-
tering amplitudes are evaluated with the coupled channel
Bethe–Salpeter equation. Next, we introduce the calculations
of the couplings, the wave functions, the compositeness and
the radii of the resonances by extending the work of [70] to
the baryonic sector.
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2.1 S-wave scattering amplitude in coupled channels

The LO baryonic Lagrangian that describes the low-energy
interaction of pseudoscalar mesons with baryon fields was
discussed in details in Refs. [71–74], where the interaction
Lagrangian at the LO momentum comes from the Γμ term
in the covariant derivative, given by

L(B)
1 =

〈
B̄iγ μ 1

4 f 2

[(
Φ∂μΦ − ∂μΦΦ

)
B

−B
(
Φ∂μΦ − ∂μΦΦ

)]〉
, (1)

where the symbol 〈〉 stands for the trace of SU (3) matrices,
and SU (3) matrices for the pseudoscalar mesons and the
lowest-lying 1

2
+

baryon octet are written as

Φ =
⎛
⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K 0

K− K̄ 0 − 2√
6
η

⎞
⎟⎠ , (2)

B =
⎛
⎜⎝

1√
2
�0 + 1√

6
Λ �+ p

�− − 1√
2
�0 + 1√

6
Λ n

�− �0 − 2√
6
Λ

⎞
⎟⎠ . (3)

Then, from the LO chiral Lagrangian in Eq. (1), we obtain
the S-wave interaction potentials for the coupled channels of
K̄ N . There are four coupled channels in isospin I = 0 and
strangness S = −1 sector, K̄ N , π�, ηΛ and K�, denoted
as channel 1, 2, 3 and 4, respectively. Finally, we get the
interaction potentials as [36],

Vi j = −Ci j
1

4 f 2

(
2
√
s − Mi − Mj

) (
Mi + E

2Mi

) 1
2

×
(
Mj + E ′

2Mj

) 1
2

, (4)

where E , E ′ are the energies of the initial and final mesons,
Mi , Mj the masses of the initial and final baryons, and the
coefficient matrix Ci j is symmetric, given in Ref. [27]. For
the meson decay constant, we take f = 1.123 fπ [36], where
fπ is the weak pion decay constant, having fπ = 93 MeV
[27].

The scattering amplitudes (T ) of the coupled channels
can be solved by Bethe–Salpeter equations with the on-shell
description [27],

T = [1 − VG]−1V, (5)

where the matrix V is constructed by the elements of Eq. (4).
The element of diagonal matrix G is given by the loop func-
tion of intermediate mesons and baryons in the l-th channel,

Gl = i
∫

d4q

(2π)4

2Ml

(P − q)2 − M2
l + iε

1

q2 − m2
l + iε

,

(6)

where P = p1 + k1 is the total momentum of the meson-
baryon system. Note that the loop function is logarithmically
divergent, which need to be regularized. Using the three-
momentum cutoff (CO) method, one can obtain [27],

Gl(s) =
∫ qmax

0

q2dq

2π2

1

2ωl(q)

Ml

El(q)

× 1

p0 + k0 − ωl(q) − El(q) + iε
, (7)

where ωl(q) =
√
q2 + m2

l , El(q) =
√
q2 + M2

l , and p0 +
k0 = √

s, qmax is the only free parameter. On the other hand,
with the dimensional regularization (DR) method, we take
the explicit formula from Ref. [32],

Gl(s) = 2Ml

16π2

{
aμ + ln

M2
l

μ2 + m2
l − M2

l + s

2s
ln

m2
l

M2
l

+qcml(s)√
s

[
ln

(
s −

(
M2

l − m2
l

)
+ 2qcml(s)

√
s
)

+ ln
(
s +

(
M2

l − m2
l

)
+ 2qcml(s)

√
s
)

− ln
(
−s −

(
M2

l − m2
l

)
+ 2qcml(s)

√
s
)

− ln
(
−s +

(
M2

l − m2
l

)
+ 2qcml(s)

√
s
)]}

,

(8)

where μ is the regularization scale, aμ the subtraction con-
stant, and qcml(s) the three momentum of the particles in the
center-of-mass (CM) frame, given by

qcml(s) = λ1/2
(
s, M2

l ,m2
l

)
2
√
s

, (9)

with the usual Källen triangle function λ(a, b, c) = a2 +
b2 + c2 − 2(ab + ac + bc).

In the ChUA, the mass (Mr ) and decay width (Γr ) of
the resonance in the coupled channels interactions can be
determined from the pole (sp) of the scattering amplitude in
the second Riemann sheets, having

√
sp = Mr − iΓr/2. 1

Thus, to search for the pole in the second Riemann sheet, the
scattering amplitude should be extrapolated to the complex
plane, which can be fulfilled by the Gl(s) function defined
to the second Riemann sheet,

1 Note that for the case of a bound state without open (coupled) channel
to decay, the pole will be located at the first Riemann and the real axes,
and thus, the pole has no width, written

√
sp = Mr .
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G(I I )
l (s) = G(I )

l (s) − 2i Im G(I )
l (s)

= G(I )
l (s) + i

2π

Mlqcml(s)√
s

, (10)

where G(I )
l corresponds to the loop function in the first Rie-

mann sheet, see Eq. (7) or Eq. (8).

2.2 Definition of the couplings and wave functions

To probe more structure properties of a resonance, we make
a further investigation on its couplings to the other coupled
channels, the wave functions, and so on. For the case of the
meson-baryon interaction, the couplings can be defined by
the residue of the pole,

g2
i = lim√

s→√
sp

(√
s − √

sp
)
Tii . (11)

Furthermore, we can generalize Weinberg’s rule [75] for
the bound state or resonance to the formalism of the ChUA
with the couplings [76],

−
∑
i

g2
i

[
dGl

d
√
s

]
√
s=√

sp

= 1, (12)

which is valid only for the case of a pure molecular state.
However, in some cases, a bound state or resonance con-
tains not only the molecular parts, but also some other non-
molecular components. Thus, for the case of the composite
state, this sum rule can be generalized as,

−
∑
i

g2
i

[
dGl

d
√
s

]
√
s=√

sp

= 1 − Z , (13)

where Z represents the probability of the other non-molecular
components contained in the bound state or resonance. Note
that for a specified channel, the Gl function should be extrap-
olated to the right Riemann sheet for a corresponding pole.
More details about the sum rule can be referred to Refs. [77–
82]

In order to make further study on the components and
sources of the states, we construct the wave function of res-
onances in a small distances. As done in Ref. [83], the wave
function of a resonance in coordinate space was given by,

φ(r) =
∫
qmax

d3p
(2π)3/2 e

ip·r〈p | �〉. (14)

Performing the angle integration of the momentum, one can
have [84],

φ(r) = 1

(2π)3/2

4π

r

1

N

∫
qmax

pdp sin(pr)

× �(qmax − |p|)
E − ω1(p) − ω2(p)

, (15)

where N is the normalization constant, and E ≡ √
sp. With

the wave function, we can calculate the form factor,

F(q) =
∫

d3rφ(r)φ∗(r)e−iq′·r =
∫

d3p
θ(Λ − p)θ(Λ − |p − q|)

[E − ω1(p) − ω2(p)]
[
E − ω1(p − q) − ω2(p − q)

] , (16)

where a normalization should be adopted to keep F(q =
0) ≡ 1 and θ(Λ− p) is the step function. Finally, we can get
the radius of the resonance with the form factor at origin,
〈
r2

〉
= −6

[
dF(q)

dq2

]
q2=0

, (17)

which is consistent with the one obtained from the tail of the
wave functions [78] for the state not close to the threshold,
see more discussions in Ref. [70].

3 Results

We first revisit the K̄ N interactions with coupled channels
of K̄ N , π�, ηΛ and K� in the isospin basis as done in Ref.
[27]. Since the two relevant poles found in the second Rie-
mann sheet (shown below) couple strongly to the K̄ N and
π� channels, we pay more attention to these two channels.
Then we research the interactions with only two coupled
channels of K̄ N and π�, and the interactions of these two
single channels in the isospin I = 0 and strangeness S = −1
sector. The Λ(1405) resonance is dynamically generated in
the coupled channels interactions, where two-pole structure
is found. In order to make further understanding of the com-
ponents and properties for this resonance, and to reveal the
nature of two poles, we investigate the couplings, the com-
positeness, the wave functions and the radii of two poles in
the coupled channel and single channel interactions.

3.1 Coupled channels approach

First, we show our results for the coupled channel interac-
tions with four coupled channels K̄ N , π�, ηΛ, K�, and
two coupled channels K̄ N , π�. As discussed in the last sec-
tion, the free parameters of the ChUA are qmax for the CO
method, or the regularization scale μ and subtraction con-
stant aμ for the DR method, which are used to regularize
the loop functions. The values of these parameters for the
case of four coupled channels are μ = qmax = 630 MeV
[27] and aK̄ N = −1.84, aπ� = −2.00, aηΛ = −2.25,
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Fig. 1 π� invariant mass spectrum of the channel π� → π� with
a normalization coefficient C = 113 for four coupled channels and
C = 110 for two coupled channels. Data are taken from Ref. [85]

aK� = −2.67, which are taken from Ref. [36]. For the case
of two coupled channels, we obtained μ = qmax = 623 MeV
and aK̄ N = −1.86, aπ� = −2.09 by fitting the data of the
π� invariant mass distributions, see Fig. 1, where the results
of both cases describe the experimental data well. In Fig. 1,
we show the results of the π� invariant mass distributions,
which are given by

dσ

dMinv

= C |Tπ�→π� |2 kπ , (18)

where C is a normalized constant, Tπ�→π� the scattering
amplitude of π� channel obtained from Eq. (5) for I = 0
sector, and kπ the π momentum in the CM frame of π�

system. For the case of four coupled channel, the results of
Fig. 1 are consistent with the ones obtained in Ref. [27]. It
look like a bit better for the results of the two coupled channel
case in Fig. 1. There are also some other experimental data
as shown in Fig. 2. The results of Fig. 2 are the low energy
total cross sections of the channel K− p scattering to various
final states,2 which are given by

σi j = 1

4π

MM ′

s

k′

k

∣∣Ti j ∣∣2
, (19)

where M (M ′) is the initial (final) baryon mass and k (k′) the
initial (final) three momentum in the CM frame. It is worth
to mention that, since some of the physical decay channels
mix with isospin I = 0 and I = 1 components, we consider
their mixture in our calculations, where the evaluations of the
amplitudes for I = 1 are not shown and can be referred to
Ref. [27] for more details. As one can see in Fig. 2, the results
obtained for four and two coupled channels are consistent
with the experimental data within the uncertainties.

2 Since we focus on the origin of two poles and their different properties
in the present work, we did not include these data for the fit of the two
coupled channels case. Due to large uncertainties and inconsistency of
the data, for the simplicity, we do not show the results of the combined
fit with all these data. In our several further fits with all the data, the total
χ2 for some reasonable fits are not much different and our conclusion
is not altered.

Fig. 2 Cross sections for K− p → K− p, K̄ 0n, π+�−, π−�+ , and
π0�0 in the lab frame. Solid (Red) line: results of four coupled channels.
Dashed (blue) line: results of two coupled channels. See Refs. [86–93]
for the details of the experimental data

In the presence of bound state or resonance, a peak will
appear in modulus square of the scattering amplitude. Thus,
to look for the resonance of the interaction, we plot the mod-
ulus squares of the scattering amplitudes of K̄ N and π�

for the case of the coupled channel interactions, which are
shown in Fig. 3. As one can see from Fig. 3, there are clear
peak structures above the π� threshold in all the scatter-
ing amplitudes, and the line shape of the curves for two and
four coupled channels are consistent with each other, where
only the maximum values and the peak positions are a lit-
tle different in the K̄ N → K̄ N and K̄ N → π� channels.
These results also show that the other two coupled channels
ηΛ and K� have small contribution to these peaks. But, the
properties of these peaks are different. The one appearing
in the K̄ N → K̄ N interaction has a mass close to the K̄ N
threshold with a narrower width, which is similar to the one
of the K̄ N → π� transition. However, the one from the
π� → π� interaction has a lower mass with a wider width.
Two poles’ coherence behaviour is similar the ones as shown
in Ref. [94]. Indeed, this is the two-pole structure, as found
in Refs. [32,34–36] and shown clearly in Fig. 4, where we
exhibit three-dimension drawing of the modulus of the scat-
tering amplitude

∣∣TK̄ N

∣∣ in the second Riemann sheet for the
two cases of coupled channel interactions.

In order to get the masses and widths of these peaks, we
look for the poles in the unphysical Riemann sheet, which
correspond to the singularity of the scattering amplitude in
complex energy plane. As discussed in the last section, in
the ChUA, the Riemann sheets can be defined through the
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Fig. 3 Modulus square of K̄ N → K̄ N , K̄ N → π� and π� → π�

amplitudes

Fig. 4 Modulus of the scattering amplitude
∣∣TK̄ N

∣∣ in the second Rie-
mann sheet of the complex energy plane (

√
s = x + iy) for the inter-

actions of four (left) and two (right) coupled channels

loop function Gl(s). By doing that, we find the correspond-
ing poles of these peaks in Fig. 3 in the second Riemann
sheet, as summarized in Table 1, where two regularization
methods were used for the loop function Gl(s), the CO
method and DR method. In the case of four coupled chan-
nels, using DR method, two poles are found in the second
Riemann sheet, which correspond to the Λ(1405) state.3

Both poles are below the K̄ N threshold and above the π�

threshold, and thus the π� channel is the only open chan-
nel in I = 0. Another pole is found, which corresponds
to the Λ(1670) state. These results are consistent with the
ones obtained in Ref. [36]. However, using CO method, two
similar poles are found, whereas the third pole is far above
the region where the Λ(1670) state appeared. The inconsis-
tency for the third pole indicates that, using only one CO,
one can not reproduce well for both Λ(1405) and Λ(1670)

states, and different cutoff should be used for the K� inter-
action to dynamically generate the Λ(1670) state properly.
Since we mainly concern about the Λ(1405) state, we will
use the DR method for the following calculations. Thus,
to investigate more details of two poles for the Λ(1405)

3 Since the two poles appear in the same Riemann sheet, they actually
correspond to two different states. In the latest PDG [55], the lower-
mass pole was assigned as a Λ(1380) resonance and the higher one
considered for the Λ(1405) state, see more discussions later.

state, we omit the other two channels ηΛ and K�, and
study the coupled channel interactions of two channels K̄ N
and π�. Two poles

√
sp = (1384.54 + 60.98i) MeV and√

sp = (1438.95 + 12.44i) MeV are present in the second
Riemann sheet, which are consistent with the ones obtained
by the CO method. Compared with the results of four cou-
pled channels, the mass and width of the lower-mass pole are
slightly smaller. On the contrary, for the higher-mass pole,
the mass become larger and the width smaller. From these
results, one can see that the positions of these poles do not
change remarkably by reducing the coupled channels from
four channels to two channels. Hence, these two poles are
dominated by the strong interactions of the K̄ N and π�

channels, which can also be confirmed by the results of the
couplings and the single channel interaction below. Note that
the mass of higher-mass pole in two coupled channels case
is slightly above the threshold of K̄ N channel.

From the former results, we can estimate that each pole is
mainly contributed from which channels. To show how the
poles couple to the channels quantitatively, we calculate the
couplings. The coupling strength of the resonance to each
coupled channel is extracted from the residue of the scatter-
ing amplitude around the pole position as discussed in last
section. The corresponding couplings for four coupled chan-
nels and two coupled channels are present in Table 2. For
the case of four coupled channel interactions, the couplings
of the two channels K̄ N and π� for the lower-mass pole√
sp = 1390.61 + 65.91i are about three times larger than

those of the other two coupled channels, ηΛ and K�. Among
them, the one of the π� channel is bigger than that of the
K̄ N channel, which means that the lower-mass pole is dom-
inated by the π� channel. The coupling of the K̄ N channel
for the higher-mass pole

√
sp = 1426.77 + 16.32i is about

2.71, which is two times bigger than the ones for the channels
π� and ηΛ, whereas the one of the last K� channel is quite
small. Thus, the higher-mass pole is mainly contributed by
the K̄ N channel. Besides, the third pole, which corresponds
to the Λ(1670) state, is strongly coupled to the K� channel.
These results are compatible with the results of Refs. [36,96]
and crossed check by two coupled channels results.

Using the sum rule of Eq. (13), the compositeness of the
two poles was computed with the couplings obtained above,
where one can check whether these poles are a pure molec-
ular state or have something else. Our results are shown in
Table 3. As one can see in Table 3, the first pole is highly
dominated by the π� components with the amount of 63%,
whereas the one of K̄ N is about three times smaller. The
components of second pole are mainly constructed by the
part of K̄ N , which is up to 98%, and have a tiny part of
π�. Note that the contributions from the other two channels,
ηΛ and K�, are quite small for these two poles, owing to
their thresholds far above two poles. Indeed, this conclusion
can be confirmed by the results of the two coupled chan-
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Table 1 Poles positions∗ compared with the other works and experimental results (Unit: MeV)

1st pole 2nd pole 3rd pole

Four coupled channels (DR) 1390.61 + 65.91i 1426.77 + 16.32i 1680.38 + 20.18i

Four coupled channels (CO) 1377.35 + 58.46i 1427.96 + 18.10i 1762.8 + 27.51i

Two coupled channels (DR) 1384.54 + 60.98i 1438.95 + 12.44i

Two coupled channels (CO) 1375.56 + 62.63i 1438.04 + 11.44i

Ref. [48], NLO 1381+18
−6 − 81+19

−8 i 1424+7
−23 − 26+3

−14i

Ref. [49] solution II 1388+9
−9 − 114+24

−25i 1421+3
−2 − 19+8

−5i

Ref. [53] solution II 1330+4
−5 − 56+17

−11i 1434+2
−2 − 10+2

−1i

Ref. [53] solution IV 1325+15
−15 − 90+12

−18i 1429+8
−7 − 12+2

−3i

Ref. [95] one-pole solution (1421 ± 3) − (23 ± 3)i

Ref. [95] two-pole solution 1380 − 90i (fixed) (1423 ± 3) − (20 ± 3)i

*Note that the poles are always a pair of conjugated solutions in the complex Riemann sheet. But, the pole corresponding to a resonance should
be the one with negative imaginary part,

√
sp = Mr − iΓr/2 as defined above. With the definition of Eq. (10), one can find the pole of positive

imaginary without strictly specifying the signs of the three momenta for the definition of Riemann sheets, which is sometimes assigned as the pole
of the resonance

nels. Besides, in the results of four coupled channels, there
is the third pole, corresponding to the Λ(1670) state, which
is significantly contributed by the K� channel. Note that,
as discussed in Ref. [97], the compositeness condition of
Eq. (13) is valid for the case of the weak-binding limit and
the pole with narrow width. Thus, the compositeness of the
third pole is questionable, since it is the bound state of the
K� with large binding energy of about 134 MeV. Indeed, this
is similar to the case of the f0(500) (or called σ ) resonance
as found in Ref. [70], which has a large width of about 400
MeV. This is why we investigate the couplings and the com-
positeness together. Thus, our final conclusions are based on
both results.

The CLAS collaboration reported the observation of two-
pole structure of Λ(1405) from the electroproduction pro-
cess, and found that this state was not a simple Breit-Wigner
resonance [66]. One can see from the results of Fig. 3 that the
scattering amplitudes of Tπ�→π� and TK̄ N→K̄ N (TK̄ N→π�)
are dominated by the lower and higher-mass poles, respec-
tively. As discussed in Ref. [41], as a consequence of the
interference of these two poles in the amplitudes, one could
observe only a single resonance peak experimentally in one
channel. Therefore, if the Λ(1405) is not a single resonance,
it should be a superposition of two independent states with
the same quantum numbers. To show this interference effect
on the final observation, as done in Ref. [36], we take

TK̄ N→π� = gp1

K̄ N
1√

s−Mp1 +iΓp1 /2
gp1
π�

+gp2

K̄ N
1√

s−Mp2 +iΓp2 /2
gp2
π�, (20)

Tπ�→π� = gp1
π�

1√
s−Mp1 +iΓp1 /2

gp1
π�

+gp2
π�

1√
s−Mp2 +iΓp2 /2

gp2
π�, (21)

where the upper indexes p1 and p2 denote the first pole and
second pole found in the second Riemann sheet, respectively,
and gp

i are the couplings of i-channel for a certain pole (p),
which were given in Table 2. The results are shown in Fig. 5,
where one can see that the results of Eq. (21) for four cou-
pled channels (the top-right one) are well consistent with the
one of π� invariant mass distributions in Fig. 1. For two
coupled channels, the higher mass pole looks like to have
stronger strengths, since the higher mass pole has moved
to higher energy above the K̄ N threshold. Indeed, the line
shape depends on the two poles’ position. The fact is that
the Λ(1405) is overlapped by two close poles (states) as
discussed in our work. Besides, the results of Eq. (20) are
mainly contributed by the higher-mass pole, which are con-
sistent with the ones of Fig. 3 for both four channels and two
channels cases. Furthermore, to show the inference effect
more clearly, we take for the conjugated pole,

TK̄ N→π� = gp1

K̄ N
1√

s−Mp1 −iΓp1 /2
gp1
π�

+gp2

K̄ N
1√

s−Mp2 −iΓp2 /2
gp2
π�, (22)

Tπ�→π� = gp1
π�

1√
s−Mp1 −iΓp1 /2

gp1
π�

+gp2
π�

1√
s−Mp2 −iΓp2 /2

gp2
π�, (23)

where the results are shown in Fig. 6. From Figs. 5 and 6,
one can see that the peak position of the Λ(1405) is mainly
contributed by the two poles, due to their interference con-
sequence, which is originated from the strong coupled effect
between the channels of K̄ N and π�. Thus, the mass and
width of the peak Λ(1405) are between two poles’ masses
and widths, respectively. For more discussions about the
interference effects of the Breit-Wigner parameterization can
be referred to Ref. [98].
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Table 2 Couplings for each coupled channel compared with the other works
√
sp gK̄ N

∣∣gK̄ N

∣∣ gπ� |gπ� | gηΛ

∣∣gηΛ

∣∣ gK� |gK�|
Four coupled channels

1390.61 + 65.91i 1.20 + 1.74i 2.12 2.46 + 1.51i 2.88 0.01 + 0.76i 0.76 0.45 + 0.41i 0.61

1426.77 + 16.32i 2.55 − 0.94i 2.71 0.42 − 1.45i 1.51 1.40 − 0.20i 1.41 0.11 − 0.33i 0.35

1680.38 + 20.18i 0.30 + 0.72i 0.78 0.01 + 0.27i 0.27 1.05 + 0.11i 1.06 3.45 + 0.12i 3.46

Two coupled channels

1384.54 + 60.98i 1.46 + 1.45i 2.06 2.38 + 1.29i 2.71 − − − −
1438.95 + 12.44i 2.00 − 1.34i 2.41 0.07 + 1.42i 1.42 − − − −

Ref. [36]

1390 + 66i 1.2 + 1.7i 2.1 −2.5 − 1.5i 2.9 0.010 + 0.77i 0.77 −0.45 − 0.41i 0.61

1426 + 16i −2.5 + 0.94i 2.7 0.42 − 1.4i 1.5 −1.4 + 0.21i 1.4 0.11 − 0.33i 0.35

1680 + 20i 0.30 + 0.71i 0.77 −0.003 − 0.27i 0.27 −1.1 − 0.12i 1.1 3.4 + 0.14i 3.5

Ref. [96]

1391 − 66i −0.86 + 1.26i − −1.42 + 0.88i − −0.01 + 0.79i − −0.33 + 0.30i −
1426 − 17i 1.84 + 0.67i − 0.26 + 0.85i − 1.44 + 0.21i − 0.09 + 0.24i −

The wave function also contains the information of the
structure of a state, since the wave function in coordinate
space indicates the spatial composition of the components.
The wave functions of the two poles for the cases of four and
two coupled channels are shown in Figs. 7 and 8 for the com-
ponents of K̄ N and π�, respectively, which are consistent
with the ones obtained in Ref. [83] qualitatively (with dif-
ferent normalizations). From Figs. 7 and 8, one can see that
the real parts of wave functions almost become zero after a
certain size of about 4 fm, and the imaginary parts are simi-
lar, which means that the wave functions would be confined
within a few fm. This is a feature for the molecular state,
which is different to the compacted one. Note that the results
of Figs. 7 and 8 are just the scattering wave functions. In prin-
ciple, for the case of the open channel, such as theπ� channel
in our case, the wave functions shown in Fig. 8 would have the
parts of the outgoing plane wave function, which were out of
our concerns and ignored. More details can be found in Refs.
[76,83].

To quantify the spatial size of the Λ(1405), we calcu-
lated the radii of states using Eq. (17) with the form fac-
tors obtained. Since the form factors are complex with the
poles of the resonance having widths, the radii for two
poles become complex, as shown in Table 4. The modu-
lus of radius of the higher-mass pole is 1.57 fm and 1.58
fm for four and two coupled channels, respectively. How-
ever, the one for the lower-mass pole is 0.67 fm and 0.66
fm, respectively, which are within the typical hadronic scale
≤ 0.8 fm [78]. These results for the higher-mass pole
are consistent with the ones obtained in Ref. [78], about
1.69 fm with binding energy 10 MeV. Consequently, the
radius of the higher-mass pole is about two times larger
than the typical size of the hadrons, which has quite dif-

ferent size nature compared with the one for the lower-mass
pole.

Moreover, we can study the scattering length of the elastic
channels at the threshold [27], written as

aii = −1

4π

M√
s
Tii , (24)

which is an important parameter in analyzing low energy
interactions. The scattering lengths of K− p channel are sum-
marized in Table 5. The result of four coupled channels is in
good agreement with the experimental values and the one
of NLO calculations. Its value is slightly changed for two
coupled channels case.

3.2 Single channel approach

For the sake of a comprehensive understanding of the pole
structure of the Λ(1405), we investigate the single channel
interaction, where the interactions for the channels K̄ N and
π� are done individually without the coupled channel effect.
The results of modulus squares for the scattering amplitudes
are shown in Fig. 9. From Fig. 9, we can see a sharp peak
with zero width in the K̄ N channel and a wide bump struc-
ture in the π� channel. Since we have found two poles which
coupled to the K̄ N and π� channels in the coupled chan-
nel interactions, these structures are the corresponding ones
for these channels in the single channel interaction. In this
case, there are only two Riemann sheets for each channel.
As shown in Table 6, we find one pole of

√
sp = 1429.71

located at the first Riemann sheet and below the threshold
in the case of K̄ N interaction, which is a bound state of
K̄ N with zero width for no channel to decay in the sin-
gle channel interaction. This indicates that the interaction
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Fig. 5 π� spectra using Breit-Wigner parameterization with Eqs. (20)
and (21) for four coupled channels (upper) and two coupled channels
(lower)

of K̄ N is strong enough to bound a state. Whereas, the one
of

√
sp = 1380.75 + 80.95i appears in the second Riemann

sheet and above the threshold of π� channel, which is a
broad resonance for the weak potential of the π� channel
and analogous to the case of f0(500) in the ππ interaction,
see the results of Ref. [70]. Hence, the pole of π� has large
decay width as in the case of the coupled channels, because
it is above the π� threshold and thus it still can decay to
π� channel. From these results, one can see clearly that two
poles found in the coupled channel interactions can be gen-
erated directly in the single channel interaction even without
coupled channel effects, which is different from the case of
a0(980) in the K̄ K interactions of isospin I = 1 sector, see
the results of Ref. [70]. Thus, the strong interactions for the
attractive potentials of K̄ N and π� channel can reproduce
a bound state or resonance independently, which is analo-
gous to the case of the K K̄ and ππ interactions in I = 0
sector, generated the f0(980) and f0(500), respectively, as
discussed in Ref. [70]. Therefore, one can conclude that, two
poles contributed from K̄ N and π� are corresponded to two
different states

Even though the couplings lose the physical meaning since
there is no coupled channel interaction, we calculated the
corresponding couplings, which are given in Table 6 for the
purpose of evaluating the compositeness. The results of the
compositeness are given in Table 7, which are consistent with
the ones obtained in the case of coupled channel interactions
above, see Table 3. Note that the value of compositeness for
the higher-mass pole is real for the real pole of a bound state.

To check whether the spatial distributions of these poles
found in single channel interactions are affected by the cou-
pled channel effect or not, we also evaluated the correspond-
ing wave functions, which are shown in Fig. 10. Now, due
to the higher-mass pole is a bound state of no width, it has
a real wave function. But, the behaviour of the function is

Fig. 6 The same as Fig. 5 but with Eqs. (22) and (23) for four coupled
channels (upper) and two coupled channels (lower)

Fig. 7 Wave functions of two poles for the K̄ N channel

Fig. 8 Wave functions of two poles for the π� channel

still the same as the one in the coupled channel case. With
the form factors obtained from the wave functions, the radii
evaluated with Eq. (17) for two poles are given in Table 8.
Analogously, the radius for the higher-mass pole of K̄ N is
real now, where its value is 2.79 fm and much greater than
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Table 4 Radii of the poles
evaluated with Eq. (17) in
coupled channels approach

√
sp

√〈
r2

〉
K̄ N |

√〈
r2

〉
K̄ N |

√〈
r2

〉
π�

|
√〈

r2
〉
π�

|

Four coupled channels

1390.61 + 65.91i – – (0.67 + 0.06i) fm 0.67 fm

1426.77 + 16.32i (1.46 + 0.57i) fm 1.57 fm – –

Two coupled channels

1384.54 + 60.98i – – (0.65 + 0.10i) fm 0.66 fm

1438.95 + 12.44i (1.16 + 1.07i) fm 1.58 fm – –

Table 5 Scattering length of
K− p channel

Approaches aK− p (fm)

Four coupled channels −0.73 + 1.31i

Two coupled channels −0.15 + 1.48i

Ref. [48], NLO −0.70 + 0.89i

Ref. [49] (Fit I) −0.67+0.13
−0.12 + 0.92+0.07

−0.08i

Ref. [49] (Fit II) −0.61+0.13
−0.15 + 0.89+0.07

−0.06i

Exp. [99] (−0.78 ± 0.15 ± 0.03) + (0.49 ± 0.25 ± 0.12)i

Exp. [93] −0.67 + 0.64i

Exp [100] (−0.65 ± 0.10) + (0.81 ± 0.15)i

Fig. 9 Modulus squares of TK̄ N→K̄ N (left) and TK̄ N→π� (right)
amplitudes in single channel interaction

Table 6 Pole positions and couplings in single channel interaction
√
sp gK̄ N

∣∣gK̄ N

∣∣ gπ� |gπ� |
1380.75 + 80.95i − − 1.97 + 1.45i 2.44

1429.71 1.81 1.81 − −

the ones 1.57 fm or 1.58 fm obtained in the case of coupled
channel interactions, see Table 4. But, the one for the lower-
mass pole of π� is 0.78 fm, which is just slightly greater
than the ones 0.67 fm or 0.66 fm in Table 4 and still kept in
the the typical hadronic scale. Once again, one can see the
different properties of two pole.

4 Conclusions

In the present work, to examine the properties of the Λ(1405)

state, we revisit the meson-baryon interactions with the chiral
unitary approach, where we investigate the interactions of

coupled channels (four coupled channels and two coupled
channels) and single channel (two single channel) in isospin
I = 0 and S = −1 sector. Both in the cases of four coupled
channels and two coupled channels, two poles corresponding
to the Λ(1405) state are found in the second Riemann sheet.
We determine the free parameters of aμ in the loop functions
with the constraint of some experimental data. With the Breit-
Wigner parameterization, we show that how the Λ(1405)

peak found in the experimental invariant mass distribution
of π� can be demonstrated through the interference effects
of two poles. In the case of the single channel calculation,
we find a pole from each channel interaction of K̄ N and π�,
which indicates that two poles can be dynamically generated
from the single channel interactions even without the coupled
channel effects. Based on these results, one can find that two
poles have different natures and should be assigned to two
different states.

Furthermore, we study the couplings, the compositeness,
the wave functions, and the mean-squared distance of these
dynamically generated poles both in coupled channels and
single channel interactions. From the results of the cou-
plings and compositeness, we find that the higher-mass pole
is strongly coupled to K̄ N channel and contributed mostly
by the K̄ N components, which is nearly up to 100%. How-
ever, the lower-mass pole is tightly coupled to the π� chan-
nel with some contributions from the K̄ N interaction, where
about 60% of the pole component is π� and about 20% is
K̄ N . With the wave functions obtained, we calculate the radii
of two poles. From our results, the radius of the higher-mass
pole is about 1.57 fm for the case of coupled channel inter-
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Table 7 Compositeness of the
poles in single channel
interaction

√
sp (1 − Z)K̄ N

∣∣(1 − Z)K̄ N

∣∣ (1 − Z)π� |(1 − Z)π� |
1380.75 + 80.95i − − 0.30 − 0.35i 0.45

1429.71 0.89 0.89 − −

Table 8 Radii of the poles
evaluated with Eq. (17) in single
channel approach

√
sp

√〈
r2

〉
K̄ N |

√〈
r2

〉
K̄ N |

√〈
r2

〉
π�

|
√〈

r2
〉
π�

|

1380.75 + 80.95i − − (0.78 + 0.08i) fm 0.78 fm

1429.71 2.79 fm 2.79 fm − −

Fig. 10 Wave functions of the poles of K̄ N (upper) and π� (lower)
in single channel approach

actions and 2.79 fm in the single channel interaction, which
are larger than the typical hadronic scale. Whereas, the one
for the lower-mass pole is about 0.66 fm and 0.78 fm for
the coupled channel and single channel interactions, respec-
tively, which are within the typical hadronic scale. Thus, the
components and the sizes for the two poles are unique.

Eventually, based on these results obtained, one can con-
clude that the natures of two poles corresponding to the
Λ(1405) state are quite different. The higher-mass pole is
a pure K̄ N molecule, and the lower-mass one is a compos-
iteness of main components of π� and small part of K̄ N .
Therefore, we achieve that the Λ(1405) state is the superpo-
sition of two different states with the same quantum numbers
rather than only one ordinary particle.
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